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 The distribution of wind speed and the optimal assessment of wind 
energy potential are very important factors when selecting a 
suitable site for a wind power plant. In wind farm design projects 
for the supply of electrical energy, designers use the Weibull 
distribution law to analyse the characteristics and variations of 
wind speed in order to evaluate the wind potential. In our study we 
used two approaches, namely, the Multilayer Perceptron (MLP) 
approach and the Support Vector Machine (SVR) approach to 
determine a distribution law of wind speeds and to optimally 
evaluate the wind potential. These two approaches were compared 
to two well-known numerical methods which are the Justus 
Empirical Method (EMJ) and the Maximum Likelihood Method 
(MLM). The results show that the neural network approach 
produces a better fit of the distribution curve with an Root Mean 
Square Error (RMSE) of 0.00005016 at Lomé, 0.000040289 at 
Cotonou site and a more interesting estimate of the wind potential. 
After that SVR show a better result too with an RMSE of 0.0095618 
at the Lomé site and 0.0053549 at the Cotonou site. 
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1 Introduction 

The fact that fossil fuels are running out worldwide has led many researchers to focus on renewable energy 
sources in the last decade [1]. In addition, increasing industrialization and population growth in many 
countries, coupled with rising energy demand, has made renewable energy sources more popular economically 
and environmentally sustainable. An economic system based on fossil fuels is no longer sustainable with a 
significant increase in energy demand, and this tendency to promote renewable energy is one way to better 
reduce environmental degradation from CO2 emissions [2]. Renewable energy sources include natural energy 
sources such as wind, solar, geothermal, ocean and bioenergy. Among these energy sources, wind energy is of 
considerable importance because of its energy production potential, market value, wide range of applications 
and economic characteristics. 

The exploitation of the wind energy plant first requires a statistical study of the site to assess its feasibility. 
Therefore, knowledge of the available and recoverable energy to predict the types of wind turbines to be 
installed is necessary. The purpose of this study is therefore to make a statistical study of wind speed 
measurements taken at the operating site in order to determine a distribution law, which will be necessary to 
evaluate the wind potential. This study is important because wind speed is considered to be a random and 
intermittent variable, and a simple measurement is not enough to characterize the potential of a site [3]. Various 
functions are used in the literature to determine the distribution law, such as the Gamma function [4-6], inverse 
Gamma function [7], Rayleigh distribution, lognormal, normal, Pearson type V, Kappa, Gumbel, binomial, 
and Weibull distribution functions [8-11]. However, the most commonly used function for modeling wind 
speed data is the Weibull distribution function because it gives better results compared to the other functions 
[12]. Elamouri and Amar Ben evaluated the wind potential at 17 sites in Tunisia using the meteorological 
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method and the Weibull method. The result was that the Weibull method gave better results compared to the 
other methods [13]. Kiss and Jánosi [14] evaluated the surface wind speed over a 44-year period with a 6-h 
resolution. They tested the well-known distribution functions: Rayleigh, binormal, Weibull and lognormal, 
and they observed that the Weibull function gives a better performance. They found that the generalized 
gamma distribution, which is independent of shape parameters, provides an adequate and unified solution 
almost everywhere.  

The geographical distribution of the fitted parameters shows the possible climatological origin of the 
different wind speed distributions. They also found that the Weibull model can indeed characterize the wind 
histograms well overseas and in parts of the country. This comparison was made in Turkey and the distribution 
of Weibull prevailed over that of Rayleigh [15]. In Rwanda, the work of Safari et al. showed that the Weibull 
distribution outweighed the Rayleigh distribution in a statistical study of wind characteristics and wind 
potential assessment [16]. The Weibull distribution function is characterized by two parameters "k" and "c" 
and several numerical methods are available to express these parameters [17-18].  

The best-known methods include the Moment Method (MM), Justus Empirical Method (EMJ), Maximum 
Likelihood Method (MLM) [19-20], Modified Maximum Likelihood Method (MMLM), Energy Structure 
Factor Method (EPFM), Empirical Lysen Method (EML), Graphical Method (GM) [21-22]. In order to find a 
better approximation of the wind speed distribution law, other approaches were used, namely: the Multilayer 
Perceptron (MLP) used by THIAW et al. in their work to evaluate the wind potential in Senegal [3], gave a 
better result than the Weibull distribution with an area of up to 0.997.  
M. Carolin Mabel and E. Fernandez developed a model using neural network methodology that involves three 
input variables - wind speed, relative humidity and generation hours - and one output variable, which gives the 
energy output of wind farms.  

This model was used to estimate the energy yield of 07 wind farms in India with a root mean square error 
of 7.6.10-3 [23]. A generalized feed-forward neural network (GFNN) is used by Celik and Kolhe [24] to 
estimate the annual wind speed distribution. It has been noted that GFNN produces a better wind speed 
distribution for calculating wind energy production for some wind turbine generators. Togo and Benin are a 
region where renewable energies are being promoted, particularly wind energy, to compensate for the energy 
deficit of these countries. We are interested in these countries, more specifically in the Lomé and Cotonou sites 
for their geographical positions and also for wind energy projects. Such is the case of the Eco Delta project 
which will allow the construction of the first 25.2 MW wind farm in West Africa in Togo. In our study, we 
will use the MLP, SVR, EMJ and MLM approaches because of their better performances to adjust the 
frequency histogram and to evaluate the wind potential in an optimal way [25-27]. Few studies have been done 
on the Lomé and Cotonou sites in relation to wind potential assessment.  

The most recent one is that of Salami and al [17]. who worked on the evaluation of the wind potential using 
a hybrid Weibull approach because of the calm winds at the Lomé site. Since the approach used does not 
involve neural networks, we thought it appropriate to explore their approach given the notoriety of neural 
networks in non-linear regression. 

The paper is organized as follows: Section 2 describes the classical methods used to evaluate wind potential 
and Section 3 describes the numerical methods used to evaluate wind potential. Section 4 discusses the 
statistical performance indicators used. In the fifth section, we present the calibrations made to obtain the ideal 
model for the simulation. Then, in section 6, we present our results and discussions resulting from the 
simulations at the two sites (Lomé and Cotonou) and conclude in section 7. 

 
2    Classical method of wind distribution and numerical methods for wind potential assessment 
 

The paper is organized as follows: Section 2 describes the classical methods used to evaluate wind potential 
and Section 3 describes the numerical methods used to evaluate wind potential. Section 4 discusses the 
statistical performance indicators used. In the fifth section, we present the calibrations made to obtain the ideal 
model for the simulation. Then, in section 6, we present our results and discussions resulting from the 
simulations at the two sites (Lomé and Cotonou) and conclude in section 7. 
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2.1 Estimation of Weibull parameters 
 

The Weibull distribution is a widely used tool in statistical analysis [21]. In the context of wind energy, 
this tool will be used to understand the wind distribution at a production site and this is commonly referred to 
as the Weibull probability density function of wind speed. This function is characterized by three or two 
parameters [28], the most commonly used is the two-parameter function (1).  
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where ( )f v  is the distribution law or probability density , v  is the wind speed expressed in (m/s), c  is the scale 

factor, kis the shape factor characterizing the asymmetry of the distribution.  
When k = 2 the distribution is called Rayleigh distribution which is a special case of the Weibull distribution. 
The cumulative function of the probability density function is given by (2) [3]. 
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In the literature several numerical methods are used to determine the parameters and the Weibull 
distribution: the Justus Empirical Method and the Maximum Likelihood Method, etc. 
 
2.1.1 The Empirical Method of Justus (EMJ) 

The form factor k and the scale factor c can be estimated by the following equation: 
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2.1.2 The Maximum Likelihood Method (MLM) 

This is a very difficult method to solve and it is through numerical iterations that the parameters of the Weibull 
distribution are determined [29]. The parameters k and c are determined by equations (5) and (6). 
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2.2. The wind potential assessment 
 

Wind potential is estimated by relationships (7) to (9). 
 Energy available (Ea) at the site during a period T ( 30×24h for the month or 365 × 24h for the year) is 

given by (7). It is expressed in kWh/m². 
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Recoverable energy (Er) at the site according to the characteristics of the wind turbine is given by the relation (8) 
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 Energy produced (Ep) by the wind turbine is expressed by the relation (9) 
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In relations (7) to (9):  
- ( )f v is the wind speed distribution function; 

- S is the area swept by the wind turbine blades; 
-  is the air density, a parameter varying with latitude and temperature; 

- v is the instantaneous wind speed; 
- Vs is the starting speed of the wind turbine; 
- Vr is the nominal speed of the wind turbine; 
- Vc is the maximum speed of the wind turbine; 
- P(v) characterizes the power of the wind turbine as a function of the wind speed. 
Wind turbine power curve modeling, which shows the relationship between wind speed and power, can be 
used as an important tool for monitoring and forecasting wind energy [30]. The wind turbine power curve is 
shown in Figure 1. 
 

 
 

Figure 1. Power curve of a wind turbine. 
 

The power curve characterizes how the wind turbine converts a range of speed into electric power. The power 
output 𝑃(𝑣) of the wind turbine as a function of the wind speed is given by (10). 
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This power is a simple expression except in the interval. In this interval  ,s rv v , the expression of the power 

can be approximated by (11). 
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where k is the Weibull constant already defined and a1 and b1 expressed by (12) and (13). 
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3   Numerical methods for wind speed characterization 
 

In this section we will examine two numerical approaches, the MLP approach and the SVR approach. 
The MLP approach is a neural network based method and the SVR approach is a maximum margin notion and 
kernel based method. They are widely used in pattern recognition, prediction, classification and regression 
analysis. They offer an alternative way to deal with complex and poorly defined problems [35]. 

 

3.1 MLP approaches 
 

An Artificial Neuronal Network (ANN) is defined as a complex network made up of interconnected 
networks formed by elementary computer units (formal neurons).  The neurons are organized in layers and can 
be connected in different ways. This topology of connection between neurons defines the architecture of the 
network and is related to the task to be performed. This task is often specified in the form of examples including 
a set of input values and a set of corresponding output values [3]. The network must "train" in order to be able 
to provide correct answers for other unknown inputs. Learning is a procedure for evaluating the network to 
meet performance criteria in order to minimize the error between the network output and the actual output 
value. Learning is performed according to an algorithm specific to the network architecture. 
There are several types of ANNs. The MLP type ANNs are the most widely used, especially in nonlinear 
regression problems [31-32]. An MLP network consists of one or more hidden sigmoid layers as an activation 
function and an output layer. Figure 4 shows an example of a two-input MLP network comprising a three-
neuron hidden layer and a neuron output layer. The neurons of the hidden layer L receive information from 
the neuron layer L-1 and are connected to the neuron layers L+1. There is no connection between neurons of 
the same layer. Each neuron of the output layer performs a non-linear function of the input layer. For more 
information on MLP, see [33-34]. The si potential of a neuron i and its activation Oi are given by relations (14) 
and (15), respectively 
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where p denotes the number of neurons of the upstream layer connected to the neurons xi; xj represents the 
input j of the network if the neuron i belongs to the first hidden layer, or, on the contrary, the neuron j represents 
the output Oj of the hidden layer which comes before the neuron i; wij is a constant scalar which represents the 
weight of the connection between the neuron i and the neuron j; bi is the bias; hi() the activation function of 
the neuron i. It can be different because it depends on whether the neuron is a hidden neuron or an output 
neuron. In general, hidden neurons have the same activation function which is the sigmoid function. Output 
neurons generally have the same activation function which is linear i.e. h(s)=s. 
 

 
Figure 2. MLP structure. 

 
3.2 SVR approaches 
 

Derived from Support Vector Machine or Wide Margin Separators, (SVM) which are widely used tools in 
pattern recognition, prediction, classification and regression analysis [36-38]. SVMs achieve better 
performance compared to other traditional techniques such as neural networks and other conventional 
statistical models. The SVR can be divided into two categories depending on the problems faced. The linear 
SVR is available for linear problems and the non-linear SVR for more complex cases. The purpose of SVR is 
to approximate a set of data (xi,yi) by a function fw,b.  
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in the linear case such as  ,w b i if x y    with  1,i n . 

The idea is to minimize the term w while being under the constraint of not exceeding an error rate 𝜀. From 
a graphical point of view, this is like finding an area of the plane that contains all the xi examples of width 2ε 
called tube. If we consider the minimization of we obtain the quadratic problem of the relation (17): 
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This description of the problem therefore considers that a linear function that approximates all the examples 

with a precision exists. This is not always the case in practice. In the presence of outliers, it is also more 
important to allow some errors. In this case, the concept of flexible margin is used. It consists in introducing 
relaxation variables 𝜉𝑖, 𝜉𝑖∗ to  
make the constraints of the optimization problem feasible, which becomes the relation (18); 
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This function can be interpreted as creating a ray insensitivity tube ε around the fw,b(x). Going through the dual 
formulation and the Lagrange equation, the resulting function can be written as: 
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𝛼௜ and 𝛼௜

∗ are the Lagrange multipliers derived from the dual formulation. 
As the data become more and more complex, nonlinear regression problems are solved with the use of kernel 
functions. That is, by projecting the data from the input space into a higher dimensional space. This is done in 
order to save time. The generalized form of the function becomes the relation (20). 
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The types of kernels available for solving nonlinear problems are listed in Table 1. 
 

Table 1. Types of kernels. 

Kernel Function 
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4   Evaluating the performance of approaches 

The performance of a calculation method is related to the margin of error that is obtained. The smaller the 
margin of error, the more efficient the method used. 
In this work we used two performance indices, namely the square root means square error (RMSE) and the 
coefficient of determination (R²). 
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,i estX  is the estimated value and ,i actX  is the observed value 
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,act moyX is the mean value of the measured or observed data and estX  is the estimated value. 

 
5   Calibration 
 

In this section, we determine the best settings for the Cotonou and Lomé sites with the different approaches 
discussed. 
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5.1 Weibull parameters from distribution-based methods 
 

The values of the Weibull k and c parameters are calculated according to the different classical methods 
used (EMJ and MLM) and the results are presented in Table 2. Using the factors found the modelling of the 
Weibull distribution will be done. 

 

 Table 2. Weibull parameters obtained from EMJ and MLM for the sites of Cotonou and Lomé. 
 

Methods 
Lomé Cotonou 

k c k c 
EMJ 1,8233 3,9704 2,3671 4,5264 
MLM 2,0310 4,1788 2,5722 4,6173 

 
5.2   MLP 
 

In order to be able to adjust the histogram of wind speed frequencies, we have defined a MLP with two 
(02) inputs, which will be dedicated to wind speeds and frequencies, and only one output, which will be the 
speed frequencies. For the hidden layer the number of neurons of the hidden layer after several tests is set to 9 
and we have chosen a single neuron for the output. The result of the tests is obtained by varying the number 
of neurons in the hidden layer from 4 to 10. 
 

Table 3. Choice of the number of neurons. 
 

Nombre de 
Neurones 

RMSE 

 Lomé Cotonou 

4 0,00184301 0,00534417 
5 0,00167651 0,00488000 
6 0,00038814 0,00487000 
7 0,00041508 0,00126947 
8 0,00041634 0,00001450 
9 0,00008020 0,00001380 
10 0.0009560 0,00001980 

 
5.3 SVR 
 

To determine the fit of the wind speed frequency histogram, wind speeds are used as input to the SVR 
model and speed frequencies are used as output. Since the problem we are working on is non-linear, we used 
kernel functions to find the best function. The RMSE is used here to make the comparison to find the best 
result. Table 4 shows the results of the tests for the different locations. According to the results, the Gaussian 
kernel is the one with the best performance. 

 
Table 4. Comparison of SVR kernels. 

 

Kernels RMSE 

Lomé Cotonou 

Linear 0.056404569 0,133998139 

Polynomial 0,041952826 0,084815911 

Gauss 0,000704443 0,003901821 
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6    Results and discussion 
 

The purpose of this article is to carry out a comparative evaluation of wind potential assessment methods in 
Togo and Benin, the case study includes the following four steps: 
 For each of the four methods EMJ, MLM, MLP and SVR, we obtain the probability density function of the 

wind speed or distribution law fj (v) by using as input the measured wind speed series 
 We fit the obtained probability densities to the frequency histograms and derive the approximation errors of 

the distribution ej 
 Then we calculate the energy potentials Ej using the power curve of the wind turbines and evaluate the 

associated energy errors ξj 
 Finally, the methods for evaluating energy potential are compared on the basis of performance indicators, 

which are the RMSE and the R2 
 

6.1   Wind speed characterization performance 
 

To verify that the results obtained by the three approaches are distributional laws, the integral given by the 
relation must be calculated (23). If this integral is equal to 1 then these results obtained will be considered as 
laws of distribution. Table 5 shows the results of the calculation. 
 

Table 5. Distribution area. 

 MLP SVR 

Lomé 0.996 0.995 

Cotonou 0.997 0.996 

 
The results in the table tend towards 1, so we can say that they are distribution laws. 
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Figures 3 and 4 show the distribution function curves for fitting the annual wind frequency histograms for the 
two sites. Performance evaluation metrics described in previous section are presented in Table 6 to compare 
the performance of the five methods. Results show a better performance of the MLP approaches compared to 
the other approaches used, regardless of the wind site. These results compared to the work of Asghar and al. 
show that the MLP approach fitted the distribution curve better than the neuro-fuzzy approach [21] 
(0.00005016 versus 0.0014294 for the RMSE). We also observe the performance of this approach compared 
to the work of Salami et al [17]. based on the consideration of calm winds at the Lomé site. The MLP approach 
fits the distribution better than the Hybrid Weibull approach used (0.95%). 
 

 

Figure 3. Wind speed distribution function for the site of Lomé. 
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Figure 4. Wind speed distribution function for the site of Cotonou. 

In order to compare the approaches used, the performance indicators for each approach are listed in Table 6. 
The results show that the MLP approach prevails over the others regardless of the site. 
 
6.2   Wind turbine 
 

In our work, we based our choice of the E-48 wind turbine in ENERCON reviews [39]. Its characteristics are 
given in Table 7. 

Table 6. Characteristics of E-48.  

Name E-48 

Cut-in speed (m/s) 3 

Rated speed (m/s) 12 

Cut-out speed (m/s) 25 

Rated output power (kW) 800 

Blade diameter (m) 48 

Hub(m) 76 

 
Normally the cut-off speed will vary between 28 and 34 ms-1. However, in our study, a speed of 25 ms-1 was 
assumed due to the absence of the power curve beyond this speed. 
Figure 5 shows the wind power curve of E-48 as modeled by the constructor as well as using the numerical 
methods discussed in this paper. 
 

 
Figure 5. Characteristic power curve modeling for E-48. 
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Table 7. Method comparison. 

Since wind speed measurements have not been taken at the altitude where the turbines will be deployed, it is 
necessary to extrapolate the wind speed values at the hub height of the turbine using the vertical wind profile 
power law model proposed by Hellman [40] and expressed in equation (24). 
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v h
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Where v is the wind speed at altitude h and 0v the speed at reference altitude 0h . The wind shear coefficient 

or coefficient of friction α, generally ranges from 0.40 in areas with tall buildings to 0.10 on smooth, hard 
ground, lakes or the ocean. For Lomé and Cotonou, as the measurements were taken in airport areas, we chose 
α=0.1 in this study. 
 
6.3   Wind potential estimation 
 

In this section, we compare the accuracy of the energy potential estimates of the four methods (EMJ, MLM, 
MLP, and SVR). The comparison is made with the observed energy potential which is obtained by calculating 
the energy potential using the time series of the measured raw wind speed and the wind power curve of the 
selected turbine manufacturer. Three quantities of energy are taken into account for the comparison: the 
available energy per unit area Ea in kWh/m2, the recoverable energy Er in kWh and the produced energy Ep 
in kWh. 
 
6.3.1   Available energy 
 

Table 8 presents the energy available per unit area observed monthly and estimated by the methods. To 
show the comparison between the results of the approaches used, we present the correlations between the 
observed and estimated available energy on figures 6 and 7. The RMSE of the MLP approach is at least three 
orders of magnitude lower than that of the other three methods. The RMSE tends to overestimate the energy 
density at the Lomé site. 
 
6.3.2   Recoverable energy 
 

As previously, a comparison was made between the monthly recoverable energy Er in kWh respectively 
at the Lomé and Cotonou sites and the observed or actual recoverable energy values which are calculated from 
the measured wind speed data (see Table 9). Figures 8 and 9 show the correlation between observed and 
estimated recoverable energy for the Lomé and Cotonou sites respectively. 
The correlation graphs in Figures 10 and 11 show that the MLM and EMJ lead to the most inaccurate estimates 
of recoverable energy. In fact, for both sites, these methods underestimate the recoverable energy values. This 
behaviour results from the Weibull distribution methods overestimating the density of low velocities. Although 
the SVR gives acceptable estimates for the Lomé site, its RMSE at the Cotonou site is of the same order of 
magnitude as those of MLM and EMJ. As with the estimates of available energy, MLP ranks first with more 
accurate estimates. 
 
 
 
 

 EMJ MLP MLM SVR 

 R² RMSE R² RMSE R² RMSE R² RMSE 

Lomé 0.9687 0.0187 1.000 0.000 0.9649 0.020 0.9841 0.009 

Cotonou 0.9570 0.0220 1.000 0.000 0.9670 0.021 0.9989 0.005 
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6.3.3 Produced energy 
 

Table 10 shows the energy produced or wind power generation Ep in kWh at the Lomé and Cotonou sites. 
The observed or actual energy production calculated from the measured wind speed data is compared to the 
estimated wind energy production. Figures 14 and 15 show the correlation between observed and estimated 
energy production for the Lomé and Cotonou sites respectively. 
The results of the correlation study show that MLM and EMJ methods based on the Weibull distribution 
systematically underestimate the energy output of wind turbines. Although the SVR obtains acceptable 
estimates at the Lomé site, it mainly underestimates wind energy production values at the Cotonou site. The 
MLP proves to be the most accurate for both sites, as shown in Figures 12 and 13. 
 

Table 8. Available energy density estimation (kWh/m2). 

 

 
Figure 6. Correlation between observed and estimated available energy density for Lomé. 

 Lomé Cotonou 

Month Obs. MLP SVR EMJ MLM Obs. MLP SVR EMJ MLM 

Jan. 43,62 43,29 52,60 44,50 46,59 46,10 46,14 59,59 45,42 46,16 

Feb. 77,54 77,71 92,71 80,45 82,72 87,52 87,08 79,94 91,47 90,32 

Mar. 87,74 88,10 121,17 90,42 92,63 96,84 96,84 89,27 101,89 100,09 

Apr. 69,97 70,31 171,06 72,89 75,42 82,69 82,80 78,76 85,44 85,56 

May 46,96 48,73 43,74 48,30 50,29 57,68 58,35 70,34 58,15 59,47 

June 57,86 57,34 66,50 59,75 61,82 71,41 71,33 89,29 74,04 75,48 

July 89,85 89,35 114,59 91,98 92,42 116,59 116,62 133,49 120,70 119,51 

Aug. 110,61 111,26 158,28 112,40 112,03 118,36 117,46 143,79 122,18 121,85 

Sep. 92,35 92,95 110,75 94,20 94,97 100,96 100,83 116,15 106,59 105,99 

Oct. 57,34 57,33 64,77 58,94 60,81 58,21 58,01 66,62 59,62 60,64 

Nov. 44,90 44,88 56,86 45,91 47,50 52,70 52,80 66,44 52,41 52,70 

Dec. 39,55 39,62 52,62 40,12 41,83 47,09 47,10 61,45 46,21 46,62 
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Figure 7. Correlation between observed and estimated available energy density for Cotonou.  
 

Table 9. Recoverable energy estimation (kWh). 

 

 

 

 

 
 
 
 
 

 Lomé Cotonou 

Month Obs. MLP SVR EMJ MLM Obs. MLP SVR EMJ MLM 

Jan. 1338,96 1487,41 1543,50 576,84 911,75 1575,35 1632,74 1741,70 675,97 821,84 

Feb. 2256,12 2400,51 2397,26 982,80 1263,56 3028,02 3135,22 2259,32 1322,18 1484,56 

Mar. 2728,72 2689,27 2761,58 1084,95 1373,65 3628,73 3466,82 2322,58 1484,77 1679,00 

Apr. 2555,64 2271,76 2391,24 892,63 1186,90 3149,38 2886,74 2281,55 1199,76 1415,63 

May 1962,82 1673,98 1642,78 607,58 905,78 2288,98 1972,34 1861,55 809,24 1007,27 

June 2026,72 2045,79 2033,82 749,78 1006,57 2508,27 2490,53 2392,91 987,93 1272,66 

July 2933,38 3059,06 3135,84 1225,42 1365,74 3736,94 3904,56 3350,62 1701,40 1823,20 

Aug. 3496,85 3610,83 3655,80 1532,22 1606,99 4325,46 4133,44 3930,85 1836,23 1926,84 

Sep. 3257,28 3101,21 3118,39 1206,89 1345,47 3849,82 3590,79 3449,54 1457,29 1782,36 

Oct. 2403,33 2087,76 2022,03 745,97 967,02 2531,42 2052,42 1894,93 838,57 1028,53 

Nov. 2001,16 1812,64 1920,72 615,12 831,77 2119,30 1919,72 1764,69 795,16 919,93 

Dec. 1718,32 1614,71 1728,40 537,15 806,48 1857,41 1732,89 1833,68 701,57 813,13 
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Table 10. Wind turbine output energy estimation (kWh). 

Figure 8. Correlation between observed and estimated recoverable energy on the site of Lomé. 

 
Figure 9. Correlation between observed and estimated recoverable energy on the site of Cotonou. 

 

 Lomé Cotonou 

Month Obs. MLP SVR EMJ MLM Obs. MLP SVR EMJ MLM 

Jan. 44819,60 44805,30 54004,19 40591,66 45473,75 47268,98 47317,13 61302,58 45494,08 46781,36 

Feb. 80666,95 80371,97 89951,98 79225,91 83570,95 92295,19 92479,42 80897,66 95352,61 94657,03 

Mar. 91143,12 91333,28 115021,50 88836,31 93463,65 102517,44 101898,57 90686,23 106856,16 105490,33 

Apr. 72372,36 72281,81 112155,15 71901,73 76209,15 86458,74 86376,54 78097,55 88347,20 89214,99 

May 48072,94 47625,44 42527,44 47417,46 50712,13 58957,99 58815,27 60432,51 59142,45 61048,44 

June 59907,14 59463,21 63890,18 58877,55 62420,96 74447,50 74353,51 85634,60 74949,03 77799,98 

July 94292,97 93343,02 114702,58 94203,07 95524,21 122945,80 123028,00 135774,10 126909,05 126143,37 

Aug. 115991,63 114254,39 152781,04 116972,61 116997,09 125951,93 124789,52 152155,07 130072,52 129943,30 

Sep. 98024,08 98078,04 116612,05 93053,45 95641,97 108463,80 107869,25 124577,80 105378,70 109467,25 

Oct. 60993,18 61047,57 67561,40 57185,18 61151,65 60397,15 60154,68 60736,78 60828,04 62378,37 

Nov. 50490,76 50490,78 62900,26 47248,99 50637,15 54363,16 54502,78 58051,67 53762,00 54173,96 

Dec. 44669,80 44758,06 58326,92 41867,41 45427,11 48226,40 48168,58 57147,80 47100,35 47592,87 
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7   Conclusion  
 

This study of wind energy resource assessment in Benin and Togo, two West African countries, examines 
four methods for assessing wind energy potential: MLP, SVR, EMJ, and MLM.As expected, the results of the 
case studies confirm that accurate estimation of the wind speed distribution law has a significant impact on 
wind potential assessment. The comparison of the performances of the methods studied in this work shows 
that the MLP approach, with an RMSE of 0.00005016 for the Lomé site and 0.000040289 for the Cotonou 
site, is the best method for evaluating the wind potential at the Togo and Benin sites. The SVR method is in 
second place with an RMSE of 0.0095618 for the Lomé site and 0.0053549 for the Cotonou site. 

 

 
Figure 10. Correlation between observed and estimated wind energy output on the site of Lomé. 

 
Figure 11. Correlation between observed and estimated wind energy output on the site of Cotonou. 

 
These two methods based respectively on neural networks and regression are clearly more efficient than 

the other two methods studied in this work, for the estimation of the energy produced per unit area, the 
recoverable energy and the wind energy production for the two wind sites. Although the Weibull distribution 
is widely used in the assessment of wind energy potential for wind farm sites, this study showed that the two 
methods based on the Weibull distribution, EMJ and MLM, lead to the least accurate estimates, particularly in 
the quantification of recoverable energy and wind turbine production.  Although the SVR is the second most 
important method used for The study, it is unstable depending on the type of estimate and the wind site. Its 
performance is not uniform for the two sites and it is less recommended for the Cotonou site. Therefore, the 
best method for estimating wind potential recommended for the Lomé (Togo) and Cotonou (Benin) sites is the 
MLP based on the neural system with 9 neurons in the hidden layer. To summarize, the SVR and MLP 
approaches, once calibrations are well done, are good leads in wind potential assessment for any site. In sum, 
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the different approaches used have made it possible to evaluate the wind energy potential on the two sites. On 
average, the energy available annually on the Lomé site is evaluated at 68.40 kWh/m² by the MLP, 92.13 
kWh/m² by the SVR against 68.19 kWh/m² for the real value. For the Cotonou site the average is around 77.95 
kWh/m² for the MLP, 87.93 kWh/m² for the SVR against 78.01 for the observed average. 
The annual recoverable averages are estimated respectively as follows 2389.94 kWh for the observed,2321.24 
for the MLP and 2362.61 for the SVR on the site of Lomé and that of Cotonou: 2883.26 kWh, 2743.18kW and 
2423.66 kWh respectively for the observed value, MLP and SVR approaches. With the E-48 aerogenerator, 
installed at an altitude of 76m, the average energy produced during the year is 71787.04 kWh at the Lomé site 
and the estimates by the different approaches give 71487.74 kWh for the MLP and 87536.22 for the SVR. At 
the Cotonou site we observe 81857.84 kWh against 81644.10 kWh for the MLP and 87124.53 for the SVR. 
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