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 Current applications of graph theory involve gear modeling for 
dynamic analysis, kinematic analysis, synthesis, structural 
analysis, optimization of gear chains, and automatic design 
based on the so-called graph grammars. Some tasks can be 
solved only with methods from graph theory, for example, the 
enumeration of design solutions.  
The purpose of modelling an automatic transmission with graphs 
can be versatile, namely: determining the ratio of individual 
gears, analyzing the speed and acceleration of individual 
rotational elements. At a later stage, the methods of decision 
logical trees can be used to analyze the functional schemes of 
selected gears. However, for graphs that are transmission 
models, tree structures that play parametrically can be used. This 
allows for the generalization and extension of the algorithmic 
approach.  

Keywords:   
Computational model 
Mechanical engineering 
Optimization 
Automatic gearboxes 
Graph theory 

 

DOI: https://doi.org/10.30765/er.1802 

 
1 Introduction  
 

The optimization problem can be solved by reviewing all possibilities (all elements of the state space). 
The state space reflects the model of a given system, e.g. a machine system is described by the state space. 
Diagrams are created that represent a certain class of phenomena in a given problem area in order to create a 
basis for research and (or) communication. In a general sense, it is a mental (internal) or formal description 
(diagrams, mathematical formulas, relations, etc.), generally reduced to the most essential symbolic features. 
In technical issues, there are real models that describe the actual construction of a specific object. One can 
quote Regnier's definitions [1]: Nothing, on the one hand, that an abstract object is completely described by 
its definitions, and a concrete object is never exhaustively described, one can say: an abstract object is a 
model of a concrete object, if the definition the former is taken to represent the latter.  

The real model, then, is one that describes the actual construction of a specific object“. In the case of 
systems built of a large number of subsystems, analytical solving of differential equations is usually labor-
intensive or may be significantly difficult. In such cases, network methods are used, called in the literature 
non-classical methods. Due to the high degree of algorithmization of network methods, their implementation 
in computer computing systems is facilitated. On the other side, graphically - in the form of graphs, they 
present the structure of the model system. Graphs and structural numbers have long played a role as models 
of mechanical systems [2] and are still systematically developed [3, 4, 5, 6, 7]. Power flow graphs (bond 
graphs) in system modeling are presented, among others, by [8] while graphs used in hydraulic systems by 
[9]. Graph classes such as polar graphs, flow graphs, hybrid graphs and structural numbers are used. In 
addition, there are special stream graphs, e.g. in chemical and process engineering. Trees are a specific type 
of connected graphs without cycles. Many examples of trees are provided by logical structures, for example: 
multivalued logical trees, polls, multi-income game dendrites, (...).  

The property of trees is that they start at the root from which the branches are built up. The use of trees in 
the optimization of machine systems is fully useful in the sphere of concepts, because it allows the selection 
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(change) of the arithmetic values of the appropriate design and / or operational parameters of a given 
machine system and the assessment of the system operation under new conditions [10, 11, 12]. At each stage 
of optimization, it is possible to create a tree by selecting the optimal decisions. Then it is possible to attach 
vertices to the tree to represent the optimal respones to changes in arithmetic construction parameters. If the 
number of vertices at each decision level is limited to those that represent true (realizable) construction 
guidelines, then a graph can be constructed, extended 'deep' in a certain direction. In particular, there are 
numerous practical and implemented applications of machine system optimization using logical trees and 
dependency graphs [13, 14]. Parametric graphs used in the distribution of the contour graph of planetary 
gears [15] can be used in the analysis of the automatic gearboxes. 

 
2 Theoretical models of gears 
 

The advantage of modeling gears with graphs is that the problems considered with graph models can be 
solved in an algorithmic manner, which allows the easy use of computer programs and widely understood 
integrated decision-making systems. In the sense of graph theory, a graph is associated with many other 
algebraic structures, such as, for example, matrices, matroids, structural numbers, cut-off linear spaces. 
These objects enable the coding of the gear structure, which allows the use of advanced artificial intelligence 
algorithms: evolutionary, genetic or immunological. The goals of modeling gears with graphs were various - 
including: dynamic analysis, kinematic analysis, synthesis, structure analysis and enumeration [16, 17].  
Among the methods of planetary gear analysis, the following methods can be distinguished: Hsu [18, 19], 
Freudenstein [20, 21] and Marghitu [22]. In the case of Hsu principles, the graph is built according to the 
following rules: geometrical dimensions are ignored and kinematic pairs are considered: rotational, planet-
yoke and meshing. It is especially useful for considering mechanisms of different types (so-called planar, 
cross-hair, etc.). 

 

2.1 Graphical dependence graphs 
 

The directed dependency graph [13, 14] defines analytical expressions representing this graph, and thus 
constituting its analytical model. There are studies in the literature describing the use of dependency graphs 
and parametric structures in the study of dynamic properties of machine systems. A graph is defined by an 
ordered pair of sets. The first contains the graph's vertices, and the second contains the edges of the graph, 
i.e. an ordered pair of vertices. Figure 1 shows an example of the directed dependency graph G playing 
parametrically. 

 
 

Figure 1. An orientem dependence graph. 
 

A graph is called an ordered pair G = (V, E), in which V is a finie set of elements called the vertices of the 

graph, and E is a set of    i , j i , jv v v v V  pairs called the edges of the graph. To fully specify the graph, it 

must be also specify the relationship P formed by individual elements of the set of vertices V (G) and edges 
E (G). Then the graph can be called ordered three:  
 

                                                                         G  V,  E,  P                                                                   (1) 

where: V- set of graph vertices, E- set of edges (graph branches), P-   three -member relationship 

 G  V , E, P which meets the following conditions: There is such a pair of vertices x y V, for each 

branch e, such that x,e,y P . 
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If for branch e exist  x,e,y P  and w,e,z P  either x = w and y= z or x = y = z. A dependency 

graph is an ordered pair G=(X, R), in which X is a finie set of elements called vertices of a graph, and R is a 
set of pairs ( , )( , )i j i jx x x x X called the edges of the graph. In the case of parametric graphs, the notation 

introduced by [4] defines the signs: G=(Q, Z), where Z is a set of pairs ( , )( , )i j i jz z z z Z .  

The oriented dependency (game) graph is shown in Figure 1 is composed of a set of vertices Q: 

                                                                  1 2 3 4 5Q q ,q ,q ,q ,q                                                                (2) 

 
and of a set of edges Z, that is an ordered pair of vertices: 
 
                                                                         Z z ,z ,z ,z ,z ,z ,z ,z 1 2 3 4 5 6 7 8                                                      (3) 

 
The path in the G=(Q, Z) is the edge sequence 

1 2 2 3 1
( , ),( , ),...,( , )

k ki i i i i iz z z z z z in which for each 

 
1

2,3,..., ( , )


 
j ji ij k z z R and vertices 

1 2
, ,...,

ki i iq q q are different pairs. Vertex 
1i

q is called the beginning of 

the pat, and the top 
ki

q  - the end of the road. As a result of a graph distribution from the chosen vertex, a tree 

structure with cycles is obtained in the first step and then, a general game tree structure is obtained. Each of 
them has an appropriate analytical formulation iG and iG . The algorithm for the analysis, structuring and 

distribution of the dependency graph is presented, among others in the works [13]. For example, for the start 
vertices q3, q4 and q5 (Figure 1) the analytical expressions are obtained: Gq3

++ , Gq4
++ and Gq5

++ (3). 
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
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
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       (4) 

 
Figure 2 shows the parametric structures for the expression (4). 

 

 
 

Figure 2. Game- tree structures with initial vertices: q3, q4, q5. 
 

The analysis of any G dependency graph comes down to determining the appropriate structure and 
determining the number of optimal paths. Each structure can be written as an incident matrix or an 
information route matrix. 
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3 Analysis of the automatic gearboxes with game- tree structures 
 

The analysis of automatic gearboxes is similar to that of single planetary gears. The analysis is carried 
out for each run, separately introducing certain transformations of the appropriate graphs. Modern automatic 
transmissions are complex devices, consisting of several hundred elements of a mechanical- hydraulic 
system and another several hundred in the electronic module. Figure 3 shows an example of the construction 
scheme of a 5-speed. 

 

 
 

Figure 3. Construction scheme of an example 5-speed gearbox: 1- clutch shaft, 2- intermediate shaft, 3- 
main shaft, 4- permanent gear gears, 5- gear 1st gear, 6- gear 2nd gear, 7- gear 3rd gear, 8-gear V gear, 9- 

reverse gears, 10- steering mechanism guide, 11- fork, 12- gear clutch shift, 13- speedometer drive. 
 

When enumerating kinematic structures using graph theory, identifying isomorphisms in graphs is an 
important and complicated problem. There are many approaches to identify isomorphic graphs, and these 
approaches are largely algorithmic [23]. This path is formed by the corresponding edges of the gear graph. 
Input and output are additionally marked.  

This path allows the analysis of the sequence of transmission of rotational motion by subsequent 
elements of the transmission. In addition, it allows the detection of so-called redundant elements for a given 
gear currently under consideration. The main purpose of the kinematic analysis of the planetary gear is to 
determine the kinematic ratio and possibly detect oversized gears. One of the methods of analysis, based on 
the use of the Willis formula for any complex planetary gears, is described in detail in the textbook. In this 
article, the theory of contour graphs was used for kinematic analysis. In addition, redundant (oversized) 
wheels could be detected when plotting contour graphs. 

 
 
 
 
 
 
 

The general algorithm for gear modeling with graphs can be described as follows (Figure 4):  
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Figure 4. The general algorithm for gear modeling with graphs. 
 

This method allowed not only to determine the kinematic ratio, i.e. the angular velocities of all wheels and 
gear yokes, but also to determine the angular accelerations of rotating gear elements. In addition, redundant 
(oversized) wheels could be detected when plotting contour graphs. The object of analysis is a complex four- 
speed automatic transmission with overdrive type A4LD [24].  Individual gears are implemented using brakes, 
clutches and backstops (free wheels) as shown in Table 1[13, 24]. 

 
Table 1. Functional matrix of the A4 ALD gearbox. 

 

Position DE (1 2 3 4) 1st gear 2nd gear Reverse 

cl1 ( )  X X X 
b1 ( X)  - - - 

Fw1 (X X X )  X X X 
cl2 ( X X)  - - X 
cl3 (X X X X)  X X - 
b2 ( X )  X - - 
b3 ( X)  - X X 

Fw2 (X )  - - - 
 

The diagram of the analyzed gear is shown on Figure 5. 

 
 

Figure 5. General diagram of the analyzed gearbox. 
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3.1 Generating graphs and parametric structures 
 

Power is transmitted through the torque converter, h1 yoke, free wheel Fw1, Cl3 and Cl2 clutches, gears 6, 5, 
4 and yoke h2 and in parallel through wheels 7, 8, 9 on output shaft II (thanks to the Fw2 backstop activated) – 
Figure 5. Following the rules of building according to the contour graph methods, the dependency graph shown 
in Figure 6 is built for the transmission. 

 

 
 

Figure 6. Signal dependency graph for DE1. 
 

For the above graph (Figure 6), observing the appropriate algorithm, it is possible to generate a set of 
parametric trees:  
 

                               
 

0 4 5 6 8 9(q ) (q ) (q ) (q ) (q ) (q )
DE1 G ,G ,G ,G ,G ,G                             (5) 
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Tree structures are shown in Figure 7. 
 

 
 

Figure 7. Game- tree structures for the dependency graph in the Figure 6. 
 

Each of the structures has an appropriate analytical formula ( iG  and iG , where i denotes the vertex from 
which the decomposition of the graph was made), that clearly defines the way of transition from a 
dependency graph to a tree structure. The structures in Figure 7 are defined by the formulas (6- 8). 

 

a

0 1 0 2 6 3 5 4 8 5 8 5 5 7 6 8 7 9 8 h 8 7 8 6 5 4
Z0 0 6 6 5 5 4 4 4 8 0 0 4 7 8 8b 9 9 8 8 9 2 0 0 0 0

5 3 2 0 1 0
h 2 h

G ( g ( g ( g ( g ( g ( g ) ,g g ( g ( g ( g ,g h ( g ) ) , g ) ) ) ,

h ) ) , h) )

           

                 (6) 

a

0 1 9 2 8 3 0 4 6 5 5 6 7 7 7 8 7 8 7 6 5 6 h 6 5 4
Z9 9 8 8 0 0 6 6 5 5 4 4 4 7 8 8b 4 8 0 0 h 2 2 9 0 0

0 3 8 2 1 0
h 2 9 9 2 9

G ( g ( g ( g ( g ( g ( g ( g g ( g ) , g ( g ) ) , h ( h g , g ) ) ) ,

h ) , g ) ,h g ) )

           

 
                  (7) 

a b b

0 1 8 2 0 3 6 4 5 5 8 6 7 7 8 8 8 9 h 8 9 7 6 5
Z8 8 0 0 6 6 5 5 4 4 4 8 4 7 8 8 0 0 9 9 2 9 o 0 8 8

5 4 3 0 2 1 0 2
h 2 h 2

G ( g ( g ( g ( g ( g ( g ,g g ( g ( g , g ( h g ( g ) , g ) ) ) ,

h ) ) , h ) ) ) )

           

 
                 (8) 

 

a a

0 1 7 2 8 3 0 4 6 5 5 6 8 7 8 7 6 5 6 h 7 9 7 6 5 4
Z7 7 8 8 0 0 6 6 5 5 4 4 4 7 4 8b 0 0 h 2 0 0 2 9 8 8

0 3 2 1 0
h 2 4 7

G ( g ( g ( g ( g ( g ( g ( g g , g ( g ) ) , h ( g ,h g ( g ) ) ) ) ,

h ) ) ,g g ) )

           


    (9) 
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a b

b

0 1 6 2 5 3 8 4 8 5 0 0 6 7 9 8 8 8 8 7 h 6 5 4
Z6 6 5 5 4 4 4 8 0 0 6 6 h 2 9 8 8 0 0 9 9 0 0

4 7 4 3 5 2 1
4 7 8 8 h 2

G ( g ( g ( g ( g ( g ( g , h( h g ( g ( g , g ) ) , g ) ) ) ,a

g g ( g ) ) , h ) )

           

 
             (10) 

a b

b

0 1 5 2 8 3 8 4 0 5 6 5 0 5 6 9 7 8 8 7 6 h 5 4 3
Z5 5 4 4 4 8 0 0 6 6 5 5 h 2 9 8 8 0 0 9 9 0 0

3 7 3 2 5 1 0
4 7 8 8 h 2

G ( g ( g ( g ( g ( g ( g ) , h( h g ( g ( g , g ) ) , g ) ) ) ,

g g ( g ) ) , h ) )

           

 
       (11) 

 
For the graph model from the drawing, a system of contour equations of velocity , 1i i , peripheral velocities 

, 1i i Air   , angular accelerations , 1i i  , and tangential , 1i i Air    and centripetal accelerations 2
, 1i Ai Air   was 

generated (12- 15): 
 

                                                    

i,i 1(i)

6 ,0 5,6 h2,5 0 ,h2

6 ,0 5,6 4 ,5 8 ,7 0 ,8

4 ,5 8 ,7 9 ,8 5,h2

6 ,0 5,6 h2,5 8 ,9 0 ,8

Ai i,i 1(i)

0

0

0

0

0

r 0





  

       

         

       
         

  





                                                    (12) 

                                                   

Ai i,i 1(i)

6 5,6 4 5 h2,5

6 5,6 4 4,5 7 8,7 9 9,8

4 4,5 7 8,7 9 9,8 4 5 5,h2

6 5,6 4 5 h2,5 9 8,9

r 0

r (r r ) 0

r r r r 0

r r r (r r ) 0

r (r r ) r 0

  

     


       
         
       




                                    (13) 

                                                    

i,i 1(i)

6,0 5,6 h2,5 0,h2

6,0 5,6 4,5 8,7 0,8

4,5 8,7 9,8 5,h2

6,0 5,6 h2,5 8,9 0,8

0

0

0

0

0

  

       

         
       
         




                                                       (14) 

 

                                                  

2
, 1 , 1( )

6 5,6 4 5 2,5

6 5,6 4 4,5 7 8,7 9 9,8

4 4,5 7 8,7 9 9,8 4 5 5, 2

6,9 6,0 9,0

6 5,6 4 5 2,5 9 8,9

0

( ) 0

0

( ) 0

/

( ) 0

Ai i j i Ai Aii

h

h

h

r r

r r r

r r r r

r r r r r

i

r r r r

 

 

   

   

 

  

     

     


       


        
  
       



                                 (15) 

Where, in the equations, the designations mean successively: , 1i i  - relative angular velocity vector of the 

element i relative to the previous element i-1, ,0i - vector of the absolute angular velocity vector of the element 

(relative to the fixed base), Ai OAir r  - the radius of the vector of point Ai (point A on element i), - 
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, 1 1  Ai Ai Ai Air r r , , 1i j  - vector of relative angular acceleration of the element relative to the previous element 

i-1. 
 

4 Game- tree structures in determining the optimal number of teeth 
 

In the computer program, searching of parametric game trees takes place as a combination of graph 
searching. Parametric game structures represent iterative depth search. They combine effective use of space in 
Depth First Traversal or Search and fast Breadth First Search (for nodes closer to the root), taking account of 
cycles (returns) [25]. The search of parametric game structures calls a DFS (Depth First Search or Traversal) 
algorithm for different depths, beginning from the initial value. At each call, DFS cannot exceed a specified 
depth. Thus in effect we perform DFS in the style of BFT (Breadth First Traversal or Search). 

 
Preliminary algorithm: 
 

/ Returns the value of z and if the target is reachable z 
// src within the bounds of max_depth 
bool IDDFS(src, target, max_depth) 
    for limit from 0 to max_depth //take into account the initial and design 
conditions 
       if DLS(src, target, limit) == true 
           return true 
    return false    
bool DLS(src, target, limit) 
    if (src == target) 
        return true; 
    // If reached the maximum depth,  
    // stop recursing. 
    if (limit <= 0) 
        return false;    
    foreach adjacent i of src 
        if DLS(i, target, limit?1)              
            return true 

 
An important point is that the lowest-level nodes are visited multiple times through return cycles. The last level 
(or maximum depth) is visited once, the next-to-last level is visited twice, and so on. Two cases may occur: 
a) When the graph has no cycle; this case is simple [26]. We can use DFS multiple times with different height 
limits. Most frequently at the initial levels of the structure. 
b) When the graph has cycles. Most frequently at the end nodes of the structure. 
The algorithm operates parametrically. The initial number of teeth is input: 
The input attributes (we) are the numbers of teeth z1, z2, z3, z4, z5, z6, z7, …, zk 

The values h1, h1,... hm are respectively hypotheses represented by the constraints.  These are the output values 
(out) that determine the tooth values. 
For searching, ranges of values for the number of teeth searched are assumed: z1, z2, z3, z4, z5, z6, z7, z8, z9: 

1 (0,1,2,...,100),z 2 (0,1,2,...,100),z 9... (0,1,2,...,100).z  

The values h1, h1, ... hm are determined at the output of the parametric structure. Each structure corresponds to 

a gear wheel and determines the optimal number of teeth. In general, there are sets of generated teeth for each 

of the structures: 
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 1 1 11

2 2 22

1 ( 1), 1( 1),..., j( 1) 2 ( 2), 1( 2),..., j( 2) ( ), 1( ),..., j( )( )

1 ( 1), 1( 1),..., j( 1) 2 ( 2), 1( 2),..., j( 2) ( ),( )

( ), ( ),..., ( )

( ), ( ),..., (





  

 





q i h i h h q i h i h h jq i hj i hj hjq

q i h i h h q i h i h h jq i hjq

G h z z z h z z z h z z z

G h z z z h z z z h z 
 3 3 33

3 38

1( ),..., j( )

1 ( 1), 1( 1),..., j( 1) 2 ( 2), 1( 2),..., j( 2) ( ), 1( ),..., j( )( )

1 ( 1), 1( 1),..., j( 1) 2 ( 2), 1( 2),..., j(( )

)

( ), ( ),..., ( )

( ), (







  

 







i hj hj

q i h i h h q i h i h h jq i hj i hj hjq

q i h i h h q i h i hq

z z

G h z z z h z z z h z z z

G h z z z h z z z 32) ( ), 1( ),..., j( )),..., ( )













h jq i hj i hj hjh z z z

    (16)
 

 
Figure 8 shows an example of searching the optimal number of teeth for a game trees structure 0


qG . 

 

 
 

Figure 8. An example of searching of the optimal number of teeth for a game- tree structure 
iG . 

 
For a given gear design, there are groups of three gears with the same number of 
teeth: 1 4 7 2 5 8 3 6 9: ; : ; III :     I z z z II z z z z z z . 

For group I, the optimal number of teeth: n= 18 
For group I, the optimal number of teeth: n= 27 
For group I, the optimal number of teeth: n= 36 
 
 For the module value: m = 2 and: 

 input angular speed (after commissioning): 6,0 377 /rad s  . 

 input angular acceleration (during 8 s start-up):  Ԑ6.0 = 47.1 rad / s2 the output angular velocity 

9,0 153, 2 /rad s  and  Ԑ9,0=19,15rad/s2. 

 
The analysis and calculations should be carried out for the other DE1, DE2, DE3, DE4 gears and for 

reverse gear.  In the general notation, the algorithm for generating the optimal number of teeth is presented in 
Figure 9. 
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Figure 9. Concept of general algorithm for optimisation of transmission system with selection of 
appropriate number of teeth. 

 
5 Results and discussion   

 

Unlike traditional relation diagrams and tree classifiers, game trees parametrically link the importance of 
nodes (states) to the height of the tree structure. This approach differs from previous literature on parametric 
automata and their applications in terms of control systems, operating systems, natural language level 
knowledge representation, programming the behavior of cybernetic systems, etc. In the previous literature 
studies, considering graphical methods and game automata, the following parameters have been considered  
- knowledge base using graphs,  
- finite automaton operations based on symbolic expressions,  
- dendrites representing the prognostic game,  
- paths in the game dendrite describing the future system development forecast, semaphores.  
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The advantages of graph methods are: algorithmic approach to problems and the ability to perform other 
tasks, e.g. algorithmic finding of redundant wheels or enumeration of design solutions. In the above 
approach, parametric structures can better reflect the algorithmic capabilities of a given gear. Therefore, the 
overall transmission optimization process should take into account all conditions. Currently, only the optimal 
number of teeth has been focused. Most of these rigid parameters that characterize gears best, including 
planetary gears, can be virtually entirely reduced to an absolutely dimensionless, extensive form.  

The number of teeth belongs to rigid, specific parameters used in computer aided design. Graph in the 
sense of substantive graph theory is associated with many other separate algebraic structures such as 
matrices, matroids and structural numbers, linear spaces of cut-offs. These objects enable coding of the 
transmission structure, which of course allows the use of highly advanced algorithms, the so-called artificial 
intelligence: evolutionary, genetic or immunological. 

 
6 Conclusion 

 

The graph- based methods of analysis and synthesis of planetary gears provide an alternative for the 
accomplishing of the tasks in question.  The automatic transmission presented in the article was modeled 
with the use of signal flow graphs. Due to the use of the new modelling method, there is a need to analyze 
the technical risk of such a solution.  An element necessary in the risk assessment process is to take into 
account the requirements of the engineering design methodology. In this regard, it is worth choosing a design 
methodology that meets the following criteria: 
 

- Completeness of technical criteria, 
- Adequacy of a set of parameters describing the designed object. 

The criteria formulated for assessment should be synthetic because it increases the objectivity of 
assessment of a given solution. Designing facilities involves increasing efficiency (to some extent) while 
reducing the efficiency of another team. Determining effectiveness consists in comparing the effects of a 
given measure with its expenditure. Particularly in this respect, it should be ensured that the risk of adopted 
boundary standards in the scope of e.g. costs is not exceeded. The article presents the application of 
dependency graphs to determine the optimal number of gear teeth for an automatic transmission. Each 
gearbox (automatic or manual planetary gear) can be additionally modeled with Hsu graphs [19].  
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