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Abstract – Low Probability of Intercept (LPI) radars are developed on an advanced architecture by making use of coded waveforms. 
Detection and classification of radar waveforms are important in many critical applications like electronic warfare, threat to radar 
and surveillance. Precise estimation of parameter and classification of the type of waveform will provide information about the threat 
to the radar and also helps to develop sophisticated intercept receiver. The present work is on classification of modulation waveforms 
of LPI radar using multilayer perceptron neural (MLPN) network. The classification approach is based on the following two steps. In 
the first step, the waveforms are analysed using cyclstationary technique which models the signal in bi-frequency (BF) plane. Using 
this algorithm, the BF images of the signals are obtained. In the second step, the BF images are fed to a feature extraction unit to get 
the salient features of the waveform and then to the multilayer perceptron neural (MLPN) network for classification. Nine types of 
noise free modulation waveforms (Frank, four polyphase codes and four poly time codes) are classified using the images obtained in 
the first step.  The success rate achieved is 100 % for noise free signals. The experiment is repeated for various noise levels up to -12dB 
SNR. The noisy signals, before feeding to the MLPN network, are denoised using two types of denoising filters connected in cascade 
and the classification success rate achieved is 93.3% for signals up to -12dB SNR.

Keywords: LPI radar, signal recognition, cyclostationary (CS), cyclic autocorrelation function (CACF), spectral correlation density (SCD), 
Bi-frequency (BF), contour plot, denoising, multilayer perceptron neural (MLPN) network, confusion matrix, Artificial Neural Networks.

1. INTRODUCTION

Low Probability of Intercept (LPI) radars are devel-
oped on an advanced architecture by making use of 
specially designed coded waveforms which results in 
low power. The low power levels of LPI radars yield low 
probability as a synergetic by product. The detection of 
LPI radars by hostile intercept receivers is highly chal-
lenging owing to wide frequency bands and very low 
peak power. The interception and measurement of LPI 
signals in hostile radiometric receivers is a difficult task. 
Recent work has been focused on the early detection 
of LPI radar signals to defend against an eventual at-
tack [1, 2]. Unfortunately, interception alone cannot 

resolve the issue. It is crucial to classify the type of ra-
dar and link this radar class to such a platform and/or a 
weapon system in order to completely detect the radar. 
LPI radars use special type of waveforms and inhibit 
the non-cooperative receiver from signal interception 
and detection. The waveforms of LPI radar signals are 
challenging for standard electronic reconnaissance 
methods to differentiate precisely due to the charac-
teristics of low power, wide bandwidth, high resolu-
tion, frequency change, etc. Identification of LPI radar 
signals and improving the recognition ability of recon-
naissance equipment is the difficult task in electronic 
warfare [3]. 
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In order for the electronic attack (EA) or electronic 
support (ES) system to take immediate action against 
the attacker, precise estimation of parameters is very 
important. Also understanding the type of waveform 
will provide information about the threats to the radar. 
The ability to re-guide and re-transmit without affect-
ing the electronic system is made much easier by the 
identification of parameters [4]. Development of so-
phisticated receivers for interception, detection, and 
analysis of waveforms is possible only by the knowl-
edge of the parameters and the type of the waveform. 
Technologies like multi-input multi output (MIMO) ra-
dar, ES, and EA systems could also be developed with 
the help of the parameters [5, 6].

In [7], the authors have estimated the modulation 
parameters of LPI radar using cyclostationary (CS) tech-
nique. CS method is very good for the analysis of LPI 
radar waveforms as these waveforms are periodic. Poly-
time coded signals (T1-T4) are analysed and estimated 
the parameters of all the codes with an accuracy of 94%. 
It is presumed that the radar signals are free from noise. 
Initially, the time domain signals are transformed into 
bi-frequency (BF) domain using CS techniques and the 
spectral correlation density (SCD) function is computed. 
From the contour plot of the SCD function, the param-
eters of the radar signal are manually extracted and the 
results are found to be good. But generally, the received 
signal is corrupted with lot of noise, thereby decreasing 
the detection or measurement efficiency [8,9]. But by 
preprocessing the noisy signal using denoising filters, 
the measurement accuracy could be improved.

In [10], the authors have analysed the radar signals 
and assessed the parameters of noisy signals using CS 
techniques. Two different kinds of denoising filters are 
stacked in cascade to pre-process the noisy waveforms 
and to improve the signal quality. The denoised wave-
forms are analysed using CS algorithm and the coeffi-
cients of the SCD function are evaluated. Modulation 
parameters of 9 types of waveforms (Frank, P1-P4 and 
T1-T4 are extracted with an accuracy of 95% up to -12 
dB signal to noise ratio (SNR). The process of identify-
ing the radar type and related missiles can be made 
after classification and parameter extraction. Most of 
the existing classification techniques are based on time 
-frequency (TF) images. 

In [6], Choi-William’s distribution (CWD) is employed 
to analyse the signals, and the extracted features from 
TF images are fed to the Elman neural network (ENN) 
for classification. The overall success rate (SR) achieved 
is 94.7% at -2 dB SNR. The authors have analysed 8 
types of modulation signals (P1-P4, Frank, LFM, BPSK, 
and Costas). In [11], the authors used Alex net and clas-
sified 10 types of radar signals up to -6 dB SNR and 
achieved 92.5% success rate.

In [12], the authors have used improved MLPN net-
work on original radar signal and achieved the classi-
fication success rate of more than 90% when the SNR 
is 0 dB. The success rate decreases to about 80% when 

the SNR is - 5 dB. In [13], the authors employed multiple 
features images joint decision (MFIJD) model to extract 
the pixel feature and to get the feature image of the LPI 
radar signal. The model is created by fusing the original 
signal, double short-time autocorrelation feature im-
age, and short-time autocorrelation feature image. The 
TF images are simultaneously fed to the hybrid model 
classifier and achieved an overall SR of 87.7% at -6dB 
SNR for 11 types of radar signals.

In [14], the authors have proposed Choi-William’s dis-
tribution (CWD) to convert radar signals in to time- fre-
quency images. The TF images are simultaneously fed 
to the automatic modulation classification algorithm 
based on dense convolutional neural networks (AAMC-
DCNN) and achieved an overall success rate of 93.4% at 
-8dB SNR for 8 types of modulation signals.

In [15], the authors employed Cohen class time-fre-
quency distribution (CTFD) model to extract TF images. 
2-D Wiener filtering, bilinear interpolation, and Otsu 
methods are applied to remove the background noise. 
The pre-processed TF images are fed to the convolu-
tional neural network (CNN) and achieved an overall 
success rate of 96.1% at -6 dB SNR for 12 types of mod-
ulation signals.

In [9], the authors have developed a model for auto-
matic recognition of modulations of LPI radar signals. 
Smooth pseudo-Wigner-Ville distribution is used to 
transform the time-domain signals to TF images. In or-
der to create high dimensional matrices, the TF images 
are then fed into a triplet convolutional neural network 
(TCNN) which improves the NW's training process and 
hence the classifier's ability. Simulation studies showed 
that the recognition success rate is 94% at -10 dB SNR 
for 10 signals.

In this paper, a model is developed for automatic rec-
ognition of 9 types of radar signal modulations under 
high noisy conditions. The noisy radar signals are de-
noised first using two types of denoising filters and the 
denoised signals are converted into bi-frequency (BF) 
images using cyclostationary techniques and then the 
BF images are fed to an MLPN network for classification.

2. CyClOSTaTIONaRy (CS) algORITHm:

Non-stationary signals are effectively analysed us-
ing time-frequency algorithms, which can evaluate 
the signals simultaneously in both time and frequency 
domains. Many time-frequency (TF) algorithms are dis-
cussed in the literature [16]. But cyclostationary (CS) 
algorithm transforms the signal in to the cycle frequen-
cy-frequency domain or bi-frequency (BF) domain. CS 
method is used here as it is efficient for periodic signals 
like radar waveforms.

It offers additional properties which are not available 
in time–frequency domain. The main property of CS is 
that they have spectral correlation with frequency shift-
ed versions of itself at certain frequency shifts [7]. The 
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two most important metrics in CS analysis are the cyclic 
autocorrelation function (CACF) and the spectral corre-
lation density (SCD) functions. The SCD function accu-
rately captures the statistical behavior of the signal in 
the bi-frequency domain. Many useful characteristics 
of LPI radar signal can be determined from cyclic auto 
correlation and the SCD function. It finds applications 
in many areas like parameter estimation, array process-
ing, signal identification, direction estimation and time 
of arrival, signal detection [13]. CS is used in detection 
and identification of weak spread spectrum communi-
cation signals. It also offers additional capability in the 
detection and classification of LPI radar signals [1].

Let the signal to be analyzed be x(t). Eq. (1) is used to 
determine its CACF.

(1)

where 'α' represents cycle frequency. The SCD coeffi-
cients are computed using eq. (2)

(2)

The discrete SCD coefficients of finite signals are 
evaluated using eq. (3)

(3)

where,

(4)

and ‘N’ is the length of the signal, W(n) is the window 
and 'γ' is the discrete cycle frequency.

SCD is a function of two parameters-cycle frequency 
and frequency. Fig. 1 shows the block diagram to mea-
sure the parameters of noisy radar signals. The input 
signal is denoised first using two types of denoising 
filters. The SCD coefficients of the denoised signal, x(n) 
are estimated using eq. (3) and the bi-frequency (BF) 
image of the SCD function is plotted. Fig. 2 shows the 
BF image of noise free Frank code with a carrier fre-
quency of 1 GHz and the parameters are measured as 
shown in the Fig. 2. (a) [10].

Fig. 1. Block diagram of measurement of 
modulation parameters.

The parameters measured are carrier frequency (fC), 
bandwidth (BW) and code rate (RC). Contour plots of 
noise free, P1 code and T1 code is shown in Fig. 3 and 
4 respectively. From Fig. 2, 3 and 4, it may be observed 
that the shapes of BF images are different for different 
types of modulations and these images are the basis 
for classification of signals.

(a) Complete bi frequency plane

(b) Enlarged version of right most butterfly of Fig. 2 (a)

Fig. 2. Contour plot of noise free Frank code for 
carrier frequency, fC=1 GHz

Fig. 3. Contour plot of noise free P1Code for carrier 
frequency, fC =1 GHz
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Fig. 4. Contour plot of noise free T1 Codefor carrier 
frequency, fC =1 GHz

3.  FEaTURE ExTRaCTION USINg PRINCIPal 
COmPONENT aNalySIS (PCa):

PCA is one of the dimensionality reduction algo-
rithms used to reduce the class features. It reduces the 
size of the input data matrix using projection matrix to 
represent the data in mean square sense. Linear com-
bination of the eigenvectors obtained from the data 
covariance matrix is used to represent the data in PCA. 

The PCA maps an ensemble of P, N-dimensional 
vectors X=[x1 ,x2, x3,……xP ] onto an ensemble of P, D-
dimensional vectors Y=[y1 ,y2, y3,……yP ], where D<N. 
Using linear transformation one can show that 

Y=AH X
where A is a square matrix with i orthogonal column 

vectors, i=1, 2, ..., P and H is the Hermitian operation.

(5)

Fig. 5. Feature vector generation

The BF images of LPI signals obtained from the CS 
method are resized to 60 x 60 for all the input signals 
for pre-processing. In this work a total of P=135 input 
signals are taken for pre-processing followed by feature 
extraction process as shown in Fig. 5. Each input signal 
is represented in column vector and stacked together 

to get a matrix of size 3600 x 135. Later the mean of 
the training matrix is calculated column wise and the 
mean is subtracted from the training data set matrix 
giving the matrix ‘X’. P is the number of training signals 
and N=3600 is the length of the input vector. X is of di-
mension 3600×135. The number of features is reduced 
from 3600 to D=25. Hence Y is of dimension 25×135. 
Non-zero eigenvectors of X are obtained using singu-
lar value decomposition (SVD) method. SVD states that 
any N×P matrix X can be decomposed as

(6)

where U is the N×N unitary matrix, V is the P×P unitary 
matrix and Σ is the matrix of non-negative real singular 
values. Note that 

(7)

Equation (7) indicates that the eigenvectors of XHX 
are contained in the 'V' matrix and the eigenvectors of 
XXH are contained in the 'U' matrix where 'U' is given by

(8)

It can be shown that the non-zero eigen values of the 
higher dimensional covariance matrix XXH are computed 
by computing SVD of smaller dimensional covariance 
matrix XH X. After getting the eigenvector matrix 'U' and 
the eigen values from the input data matrix 'X' using 
SVD, the transformation matrix A is obtained from'U' us-
ing the largest eigen values as shown in Fig. 6. In order 
to find the largest eigen values a threshold Thλ is se-
lected and is named as eigenvalue threshold constant. 
The optimum value of Thλ is found to be 0.02. Training 
and testing signals are projected on to matrix A to get a 
lower dimensional feature vector with size DX1 for one 
signal. All such signals form a DXP matrix and given as 
input to MLP neural network for classification [17].

Fig. 6. Block diagram of PCA

4. ClaSSIFICaTION NETwORKS

Multilayer perceptron neural (MLPN) network is a 
feed forward network with an interconnection of non-
linear parallel individual computing units. The inputs 
are propagated layer upon layer in a forward direction 
resulting in a non-linear mapping of the inputs at the 
output layer [18].

MLPN network is efficient for small number of hidden 
layers and also require short training time than deep 
neural network. The main advantage of MLPN is that 
it can be used to solve complex non-linear problems 
and also it makes quick predictions after training. The 
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same accuracy ratio can be achieved even with smaller 
samples. Hence MLPN is used for classification of radar 
signals. 

An MLP has three distinctive characteristics:

1. The model of each neuron in the network includes 
a nonlinear activation function.

2. The network contains one or more layers of hidden 
neurons that are not part of the input or output of 
the network.

3. The network exhibits a high degree of connectivity, 
determined by the synapses of the network.

The MLPN network is represented as

(9)

where xi is the input,
yk is the output,
i is the number of input nodes,
l is the sample number,
k is the output index 
and h is the number of layers.
The weight values between neurons i and k and i and 

h are represented as wkh and whi respectively, and the 
activation function is represented as ∅. A single global 
training technique using supervised learning deter-
mines all weight values w in the MLP simultaneously 
[19]. For distinct layers of neurons, the activation func-
tions can change and is monotonic. As the number of 
network layers is relatively low, the activation function 
used is sigmoid function which is defined as:

(10)

A two-layer feed-forward neural network with one 
hidden layer and with nine neurons in the output layer, 
one for each type of modulation, as shown in Fig. 7 is 
developed for classification of images.

Fig. 7. Block diagram of Two-Layer Perceptron 
Neural Network

For each detection method, the feature vector di-
mension Dx1 is obtained using the principal compo-
nent analysis. The optimum number of neurons is cho-
sen after considering several different numbers for the 
hidden layer [20]. Supervised training of the MLP net-
work uses the gradient of the performance function to 
determine the weights. The gradients are determined 
using back propagation algorithm. 

To increase the network's convergence speed of the 
training algorithms, variable learning rate technique is 
used. The pace of learning is maintained constant dur-
ing training using typical steepest decent method. The 
correct learning rate setting is extremely important for 
best performance. Network regularization 𝑅 is used to 
improve the network generalization. The network reg-
ularization 𝑅 is calculated using eq. (11).

where MSE is the mean sum of square of the network 
errors and g is the performance ratio (g=0.0197). The 
regularization performance target was established at 
𝑅=0.9816. The best value is selected for each training 
set using a variety of training iterations (epochs). The 
size of the weight vector is 50×25 since the number of 
hidden layers are 50 and the number of features is 25. 

5.  SImUlaTION RESUlTS

The overall block diagram for estimation of param-
eters and classification of signals is shown in Fig. 8. The 
BF images obtained from the detector unit are fed to 
the feature extraction unit and then to the MLPN net-
work for classification.

Fig. 8. Parameter extraction and classification

Test signals with -6 dB SNR are used for optimization. 
The optimum selection is based on the highest average 
probability of correct classification. Nine types of modu-
lation signals (Frank, P1-P4 and T1-T4 are used for classifi-
cation. The experiment is carried out with three different 
carrier frequencies (0.8 GHz, 1 GHz and 1.2 GHz). The SNR 
of each signal is varied from noise free signal to -12 dB 
insteps of 3 dB. Thus, a total of 135 (9x3x5) signals are 
considered. For better training and testing of the two-
layer MLPN network, the signals are repeated 216 times. 
Thus, making the total number of signals to be 29,160. 
Out of 29,160 signals, 70% of them are used for training, 
15% for testing and the remaining 15% for validation. 
Ten test runs are used to build the classification statistics. 
To randomize the weight matrices of each test, the net-
works are reset using the ideal network parameters. The 
maximum number of epochs (iterations) is kept at 1000. 
The number of neurons in the hidden layer is varied from 
10 to 150 and the optimum number is found to be 50 for 
high noisy signals. The optimum eigen value threshold 
constant is found to be 0.02 for noisy signals. Confusion 

(11)
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matrices are generated for the classification test at each 
SNR level. The classification success rate (SR) is obtained 
from the confusion matrix.

Fig. 9. Confusion matrix of noise free signals

Fig. 10. Confusion matrix for signals up to -6dB

Fig.11. Confusion matrix for signals upto -12dB

Table 1. Classification results of various noisy signals

Noise level  
of the signal (1)

No. of hidden 
layers (2)

Success rate (SR) 
(3)

Noise free signals only 10 100%

Upto-3 dB SNR 10 96.3%

Upto-6 dB SNR 10 96.3%

Upto-9 dB SNR 10 94.4%

Upto-12 dB SNR 50 93.3%

Table 2. Comparison of the results with the literature values.

S. No 
(1)

Reference 
number (2) Type of TF/BF algorithm used (3) Type of Network used (4)

No. of 
modulation 

signals used (5)

max. noise 
level SNR 

(dB) (6)

Success 
rate (SR) (7)

1 [10], Oct. 2016 Choi–Williams distribution (CWD) Elman neural network (ENN) 8 -6 92.5%

2 [19], Aug. 2018 Cohen class time-frequency 
distribution (CTFD)

Convolutional neural 
networks (CNN) 12 -6 96.1%

3 [12], 2019 Original Radar signal Improved MLPN 7 0 90%

4 [6], Jan.2020 Multiple feature images joint 
decision (MFIJD) Hybrid model classifier 11 -6 87.7%

5 [18], Jan. 2021 Choi–Williams distribution (CWD) Dense convolutional neural 
networks (DCNN) 8 -8 93.4%

6 [9], Nov. 2021 Smooth pseudo-Wigner–Ville 
distribution (WVD)

Triplet convolutional neural 
network (TCNN) 10 -10 94.7%

7 Proposed method Cyclostati-onary technique Multilayer perceptron 
neural network (MLPN) 9 -12 93.3%

It is found that the classification success rate is 100% 
for noise free signals when the numbers of hidden lay-
ers are 10. Fig. 9 shows the confusion matrix of noise 
free signals. The experiment is repeated for various 
noise levels up to -12 dB in steps of 3 dB. Figs. 10 and 11 
show the confusion matrices of noisy signals up to -6 
dB and -12 dB respectively.
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Table. 1 shows the classification results for various 
noisy signals. Column 1 shows the maximum noise level. 
Column 2 shows the maximum number of hidden layers 
considered and the last column shows the classification 
success rate. The success rate achieved for signals up to 
-6 dB SNR is 96.3%. The maximum classification success 
rate achieved for signals up to -12 dB SNR is 93.3% and 
the number of hidden layers is 50. 

Table. 2 shows the comparison of the results with the 
literature values. Column 1 shows the serial number. Col-
umn 2 shows the reference number and month and year 
of publication. Column 3 shows the type of algorithm 
used to get the TF/BF image and column 4 gives the type 
of neural network used. Columns 5 and 6 show respec-
tively the maximum number of modulation signals and 
the maximum SNR considered. The last column shows the 
classification success rate achieved. For S. No. 2, though 
the success rate is the highest (96.1%), the noise level con-
sidered is only up to -6 dB SNR. The next highest success 
rate is 94.7% for S. No. 5 and the noise level considered 
is also less (-10 dB SNR). For the proposed method, the 
success rate achieved is 93.3% with the noise level consid-
ered up to -12 dB SNR. It means even for high noisy signals 
(compared to S. No. 5), the success rate achieved is nearly 
same. Hence the proposed method is superior.

6. CONClUSIONS

Detection and classification of radar waveforms are 
important in many critical applications like electronic 
warfare, threat to radar and surveillance. LPI radar wave-
forms are classified using cyclostationary techniques 
and multilayer perceptron neural (MLPN) network. The 
main advantage of MLPN is that it can be used to solve 
complex non-linear problems and also it makes quick 
predictions after training. The classification process is 
carried out in three steps. Firstly, the noisy signals are 
denoised using denoising filters. Later the signals are 
analysed using cyclostationary algorithm and the BF 
images are obtained. In the third step, the images are 
fed to the MLPN network for classification. Nine types 
of modulation waveforms are considered under various 
noise conditions up to -12 dB SNR. Before feeding to the 
MLPN network for classification, the BF images are fed to 
the feature extraction unit to reduce the number of fea-
tures to 25. With the proposed method, the classification 
success rate achieved is 100% for noise free signals. But 
as the noise level increases, the success rate decreases. 
The maximum success rate achieved is 93.3% for signals 
up to -12 dB SNR. When compared with literature values, 
the proposed method is better as the classification suc-
cess rate is good even in low SNR conditions.
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