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Phase equilibrium calculations in systems subject to chemical reactions are involved
in the design, synthesis and optimization of reactive separation processes. Until now,
several methods have been developed to perform simultaneously physical and chemical
equilibrium calculations. However, published methods may face numerical difficulties
such as variable initialization dependence, divergence and convergence to trivial solu-
tions or unstable equilibrium states. Besides, these methods generally use conventional
composition variables and reactions extents as unknowns which directly affect the nu-
merical implementation, reliability and efficiency of solving strategies. The objective of
this work is to introduce and test an alternative approach to perform Gibbs energy
minimization in phase equilibrium problems for reactive systems. Specifically, we have
employed the transformed composition variables of Ung and Doherty and the stochastic
optimization method Simulated Annealing for two-phase equilibrium calculations in re-
acting systems. Performance of this strategy has been tested using several benchmark
problems and results show that proposed approach is generally suitable for the global
minimization of transformed Gibbs energy in reactive systems with two-phase equilib-
rium.
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Introduction

Phase equilibrium calculations in reacting sys-
tems are often required for designing processes of
the chemical, petrochemical and metallurgical in-
dustries. During the last years, there has been a
growing interest for developing new numerical
tools to model the thermodynamic behavior of mix-
tures under physical and chemical equilibrium.1

Until now, several methods have been proposed to
perform reactive phase equilibrium calculations.1–12

Principally, these methods have been developed to
model reactive distillation process and they are
based on equilibrium constant (K-value) method or
Gibbs energy minimization techniques.11 Also, they
can be classed as either stoichiometric or nonstoichio-
metric, depending on the way in which the elemen-
tal abundance constraints are used in the algo-
rithm.13

Strong interactions among components, phases
and reactions may cause that this thermodynamic
problem exhibits highly nonlinear behavior. By

consequence, there are frequently computational
difficulties in these calculations and published
methods could not be reliable generally. Specifi-
cally, there are initialization troubles, the presence
of trivial solutions or local minimums of Gibbs en-
ergy and numerical methods may also present slow
convergence or divergence. It is important to note
that few global solving methods have been pro-
posed for this area.2,7,9,10 Specifically, McDonald
and Floudas2 proposed a deterministic global opti-
mization method which guarantees the global
minimization of Gibbs energy in reacting mixtures
using solution models. Also, Jalali and Seader7

have successfully applied a nonlinear optimization
based on homotopy continuation and Lagrange
function while Burgos-Solórzano et al.10 have used
a reliable stability analysis, based on interval math-
ematics, to validate the results of phase and chemi-
cal equilibrium calculations.

The stochastic optimization methods such as
Simulated Annealing (SA), Tabu Search (TS) or
Genetic Algorithm (GA) have not been extensively
studied in thermodynamic calculations for reacting
mixtures. These methods have a great potential in
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this area because they are reliable numerical tools
that can be applied for multivariable and nonconvex
problems and, by consequence, they are suitable for
performing phase equilibrium calculations in reac-
tive systems. For example, Reynolds et al.14 have
outlined a general procedure for the global mini-
mization of Gibbs energy in non-reactive and reac-
tive mixtures using SA method and a nonstoichio-
metric approach. Unfortunately, these authors have
reported results for only non-reactive systems.

On the other hand, we consider convenient to
remark that most of published methods use reaction
extents and mole fractions as independent variables.
For example, in this category the methods proposed
by McDonald and Floudas2 and Jalali and Seader7

are classed. A suitable choice to reduce the problem
dimensionality, and to favor the numerical perfor-
mance of solution algorithms, consists in using
techniques of variable transformation.4,15 Only a
few methods have used these transformed variables
with the aim of improving the numerical behavior
(efficiency and reliability) of solving strategies.3,4,8,9

These kinds of algorithms are very attractive for the
simulation of separation process and favor the study
of complex multireactive multicomponent systems.
Moreover, these approaches, in combination with
stochastic optimization techniques, can be used to
develop reliable strategies for phase equilibrium
calculations in reactive systems.

The objective of this work is to introduce an
alternative approach for performing two-phase
equilibrium calculations in reactive systems. We use
the transformed variables of Ung and Doherty3,15,16

and the stochastic optimization method Simulated
Annealing for the global minimization of Gibbs en-
ergy in reacting mixtures with two-phase equilib-
rium. Numerical performance of this strategy is
tested using several multicomponent reactive mix-
tures and our results show that it is generally a suit-
able method to perform this kind of thermodynamic
calculations.

Thermodynamic problem statement

Ung and Doherty3,15,16 proposed the use of
transformed composition variables with the objec-
tive of developing a simpler thermodynamic frame-
work for modeling reactive systems. These trans-
formed variables depend only on the initial compo-
sition of each independent chemical species and are
constant as the reactions proceed. They also restrict
the solution space to the compositions that satisfy
stoichiometry requirements and reduce the dimen-
sion of the composition space by the number of in-
dependent reactions. These characteristics allow
that all of the procedures used to obtain thermody-

namic properties of non reacting mixtures can be
extended to reacting systems and, by consequence,
the non-reactive phase equilibrium algorithms can
be easily modified to account for the equilibrium
reactions.9 Also, reactive phase diagrams in trans-
formed coordinates look very similar to the non-re-
active ones in the standard mole fraction coordi-
nates. The main difference is in the shape of the
composition space, which depends on the type of
reaction in the system and could change if different
reference components are selected.9 Transformed
amount fractions X i are defined as
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where c is the number of components, R is the num-
ber of independent reactions, x ref is the column
vector of R reference component mole fractions, v i
is the row vector of stoichiometric number of com-
ponent i for each reaction, v TOT is a row vector
where each element corresponds to the sum of the
stoichiometric coefficients for all components that
participate in reaction r, and N is a square matrix
formed from the stoichiometric coefficients of the
reference components in the R reactions.3,15 It is im-
portant to note that eq. (1) provides constant values
of tranformed mole fractions in single-phase reac-
tions, or constant overall mole fractions in hetero-
geneous reactions:
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In multiple-phase reactions, X i-values in coexistent
phases are variable and subject to phase equilibria
requirements.

The reference mole fractions x ref are calculated
using eq. (1) and the equilibrium constants for each
reaction K eq

r by solving a system of R nonlinear

equations given by

K a r Req
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where ai is the activity of component i and v i
r is the

stoichiometric number of component i in the reac-
tion r, respectively. When we know the R reference
mole fractions, for a set of c R� specified trans-
formed variables X i , the corresponding mole frac-
tions of c R� non-reference components are calcu-
lated using eq. (1). In this work, we used the bisec-
tion method to find the mole fraction of reference
component in all examples with only one reaction.
Our experience indicates that bisection method
works very well for this purpose.17 On the other
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hand, for multireactive mixtures, the Newton
method can be used to find the mole fractions of
reference components.3,15

Classical thermodynamics indicates that mini-
mization of Gibbs energy is a natural course for cal-
culating the equilibrium state of a system. Gibbs
energy minimization algorithm was introduced by
White et al.18 and, for reactive mixtures, minimiz-
ing Gibbs energy is equivalent to minimizing the
transformed Gibbs energy.19 In a multicomponent
multireaction mixture, with c components and R in-
dependent chemical reactions, the dimensionless
transformed molar Gibbs free energy of mixing can
be defined as9
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where Rg is the gas universal constant, T is the tem-

perature,
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g
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is the transformed

chemical potential of component i, �g 0 is the pure
component free energy, �g is the transformed molar
Gibbs free energy, � i is the fugacity coefficient of
pure component, �� i is the fugacity coefficient of
component i in the mixture and � i is the activity co-
efficient of component i, respectively. Note that �� i

and � i are functions of the transformed composition
variables X. Also, calculations of pure component
free energies are avoided, which do not influence
the equilibrium and stability calculations, if instead
of �g we use the transformed molar Gibbs energy of

mixing
� �

.
g
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For a feed with a global transformed composi-
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The equilibrium transformed mole fractions

X i

j
for all phases must satisfy the material balance
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where F
j is the transformed amount fraction for

phase j. All transformed variables are subject to the
following restrictions

F
j

j

�
�

� 1
�

�

(6)

X ji

j

i

c R

�

�

� � � �
1

1 � �, , (7)

We note that F
j is defined as
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being � j the mole fraction of phase j whose feasible

domain is (0, 1) and, in accordance with,16 is subject

to � �
�

�

j

j

TOTv
�

� � �1 where � is the column vector

of R extents of reaction and z ref is the column vector
of R reference component mole fractions associated
to the transformed feed Z, respectively.

At equilibrium,
� �g

R Tg
must be at the global

minimum which is a necessary and sufficient condi-
tion for a thermodynamically stable state.3,9,15,19

However, the global minimization of transformed
Gibbs energy is a challenging optimization problem
due to the objective function is nonconvex and may
have multiple local optimums even for two-phase re-
acting systems modeled with simple thermodynamic
equations. Considering this fact, local optimization
methods are not suitable to solve this problem and a
robust optimization strategy must be used. In the fol-
lowing section we describe the optimization proce-
dure used to perform the global minimization of
transformed Gibbs energy for two-phase equilibrium
calculations in reactive systems.

Optimization approach

In this paper we have extended the optimiza-
tion strategy proposed by Rangaiah,20 which was
originally developed to non-reactive mixtures, to
perform an unconstrained Gibbs energy minimiza-
tion in two-phase reactive systems. Using this ap-
proach, the transformed Gibbs energy minimization
problem can be simplified by using a set of new
variables instead of the transformed mole numbers
or fractions as decision variables in the optimiza-
tion strategy. The introduction of these variables
eliminates the restrictions imposed by material bal-
ances, reduces problem dimensionality and the opti-
mization problem is transformed to an uncon-
strained one. This approach is more suitable than
the Lagrange multiplier formulation due to the sig-
nificant reduction of problem dimensionality. So,
for two-phase reacting systems where all trans-
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formed mole fractions have values in the range
X i � ( , )0 1 or its phase equilibrium region satisfies
this restriction, real variables � i in the range [0, 1]
are defined and employed as optimization variables
using the next equations

� � , ,n n i c Ri i i
T� �� � � �1 (9)

� � � , ,n n n i c Ri i
T

i

� �� � � � �1 (10)

where � � �n n ni
T

i i� �� �
is the transformed mole number

of component i in the feed, �n n v N ni

j

i i
T

ref� � �1 is
the transformed mole number of component i at
phase j and � i is the optimization variable of the
unconstrained optimization problem, respectively.
The benefit of this modification is that all trial com-
positions will satisfy the material balance which al-
lows the easy application of optimization strategies.
It is important to note that this formulation can be
used if �ni

T �0 for all i c R� � �1, .

Transformed Gibbs energy function is mini-
mized using the simulated annealing (SA) stochas-
tic optimization method. SA is a robust numerical
tool that presents a reasonable computational effort
in the optimization of multivariable functions; it is
applicable to ill-structure or unknown structure
problems, it requires only calculations of the objec-
tive function and can be used with all thermody-
namic models.21,22 In fact, SA has the attributes of a
good numerical optimization method if is properly
implemented: generality, acceptable computational
time, reliability and ease of use.23–25 It is considered
as global optimization strategy and is one of the
most used stochastic methods in engineering appli-
cations.26 Specifically, in the field of thermodynam-
ics, this method has been successfully used in phase
stability and equilibrium calculations14,17,20–22,27 and
nonlinear parameter estimation.28,29 This work in-
troduces the application of this optimization strat-
egy in the minimization of transformed Gibbs en-
ergy in reactive mixtures.

SA is a generalization of a Monte Carlo
method and its concept is based on the thermody-
namic process of cooling of molten metals to
achieve the lowest energy state. Generally, it can lo-
cate the global optimum independently of initial
guesses if the values for its algorithm parameters
are properly selected. We have used the algorithm
proposed by Corana et al.30 because of its proved
reliability in thermodynamic calculations.17,20–22,29

In this algorithm, a trial point, randomly chosen
within the step length VM (a vector of length n op-
timization variables) is the starting point. The func-
tion evaluated at this trial point is compared to its
value at the initial point. The Metropolis criterion,31

with a parameter termed annealing temperature TSA ,
is used to accept or reject the trial point. If the trial

point is accepted, the algorithm moves on from that
point. If the trial is rejected, another point is chosen
for a trial evaluation. After having adjusted each el-
ement of VM periodically, half of all function eval-
uations in that direction are acceptable. The temper-
ature reduction factor RT is used to decrease TSA
employing T RT TSA

j

SA

j�
� �

1
where j is the iteration

counter. Thus, as TSA declines, downhill moves are
less likely to be accepted and the percentage of re-
jections rises. As TSA declines, VM falls and the
method focuses upon the most promising area for
optimization. If the final function values from the
last temperatures (NEPS = 4) differ from the corre-
sponding value at the current temperature by less
than a tolerance value (EPS) and the final function
value at the current temperature differs from the
current optimal function value by less than this tol-
erance value, algorithm execution terminates.
Corana et al.30 provide a full description of this al-
gorithm and we used the subroutine implemented
by Goffe et al.32 Fig. 1 shows the flow diagram of
this algorithm.
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F i g . 1 – Flow diagram of SA optimization algorithm29



Numerical performance (reliability and effi-
ciency) of SA method is significantly affected by
the cooling schedule which is linked to the parame-
ters T R TSA

0 , and NT. These parameters require

pre-calibration for new problems. We have tuned
these parameters by performing several flash cal-
culations for the reactive mixture: acetic acid
+ n-butanol � water + n-butyl acetate at 25 °C.
Thermodynamic properties of this mixture were
modeled with UNIQUAC equation using the model
parameters reported by Wasylkiewicz and Ung.9

Based on these calculations (not reported in this
paper) and our numerical experience in phase sta-
bility analysis for several reactive mixtures,17 we
have defined that SA works acceptably well using
the following conditions: TSA

0 = 10, RT = 0.85, NT =

5 · (c – R) where NT is the iteration number before
annealing temperature reduction.

Results and discussion

We have tested the numerical performance of
proposed method using several examples with dif-
ferent dimensionality and thermodynamic models.
Most of our examples are standard benchmark in
the literature of reactive distillation process, predic-
tion of reactive homogeneous and heterogeneous
azeotropes, multiple steady states in reactive sepa-
ration units and phase stability analysis. All exam-
ples were solved several times using different feed
conditions (temperature, pressure, chemical equilib-
rium constants or feed compositions). We have as-
sumed that all chemical reactions are reversible and
they occur in both phases. For variable transforma-
tion, in all examples we have selected arbitrarily the
reference components. Also, tested conditions were
arbitrary but we consider that they are sufficient to
demonstrate the numerical performance of pro-
posed strategy.

To determine the computational behavior of
our algorithm, 100 runs are performed for each ex-
ample using random initial values for decision vari-
ables � i and random number seeds for SA. We have
defined a tolerance value of ESP = 1 · 10–6 for the
convergence of SA method. Since stochastic opti-
mization methods do not provide an accurate solu-
tion of the global optimum,25,33 we have considered
that the global minimization of transformed Gibbs
energy is successful upon satisfying the condition

| | | |min minOBJ OBJ OBJcalc � � � �� �10 104 5 (11)

where OBJ min is the global minimum of the trans-
formed Gibbs energy and OBJ calc is the calculated
value for this thermodynamic function with the op-
timization method, respectively. Eq. (11) has been

used in several applications of other stochastic opti-
mization methods.33–35 We must remark that the
global optimumOBJ min for all examples was deter-
mined by solving the equality of transformed chem-
ical potentials using several initial estimations. The
stable two-phase solutions obtained by this proce-
dure were considered as the corresponding global
optimum OBJ min values.

On the other hand, the numerical performance
of our optimization strategy is characterized using
widespread criterions reported in the literature of
stochastic optimization methods;25,33,36,37 a) success
rate (SR) of finding the global minimum given as
percent of calculations performed that satisfies eq.
(11), b) mean total number of function evaluations
(NFEV) during the optimization procedure, c) mean
computational time and d) mean absolute percent-
age deviation of the calculated compositions from
the known compositions at global minimum

AAD
c R

X X
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ij ij
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ijj

c R
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100

2
11

2

( )

min

min
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where X ij
min is the global optimum value for the

transformed composition of component i at phase j

and X ij
Calc is the calculated value for the trans-

formed composition of component i at phase j using
the stochastic method, respectively. Criteria a) and
d) are used to characterize the reliability of optimi-
zation strategy while remaining ones are indicators
of algorithm efficiency.25 Mean values of NFEV,
AAD and computational time are calculated consid-
ering only the successful calculations. All calcula-
tions were performed on a Processor Intel Pentium
M 1.73 GHz with 504 MB of RAM using Fortran
4.0 software.

Phase stability analysis of calculated equilib-
rium compositions was performed using the Reac-
tive Tangent Plane Distance Function (RTPDF)
which is given by9,19

RTPDF X i i X i Z
i

c R

� �
�

�

� ( � � ) 
1

(13)

where the global minimum of RTPDF is � 0 for
stable mixtures. This function was globally mi-
nimized also using SA optimization method.
Bonilla-Petriciolet et al.17 have reported that SA is
robust to perform phase stability analysis in react-
ing and non-reacting mixtures. All reported solu-
tions in this work are thermodynamically stable.

Finally, the overall method is outlined as fol-
lows for a flash calculation in a multicomponent re-
active system:
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1. Input ni
0 , equilibrium constants and model

parameters.
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(1). Do a phase stability analysis using Z and eq.
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7. Define x i
j

as function of X i

j
and x ref

j
.

8. Introduce x i
j

in the equations of equilibrium

constants for each reaction K eq
r .

9. Determine x ref

j
by solving the system of R

nonlinear equations formed with K eq
r . This step is

performed for both phases to determine their com-
position in conventional mole fractions x.

10. Calculate transformed Gibbs energy using
eq. (4).

11. Check for minimum; proceed with SA
method with new � i � ( , )0 1 and repeat steps 5–11
until satisfy the convergence criterion of SA
method.

This algorithm has been applied for all calcula-
tions performed in this paper. In the following text,
we describe the results obtained for several reacting
systems using this strategy.

Example 1. Our first example is a hypothetical
reacting ternary mixture A A1 2� � A3 with liquid –
liquid equilibrium. This system was introduced by
Ung and Doherty15 in their series of publications re-
lated to their transformed variables for reacting
mixtures. Transformed mole fractions, considering
third component as reference component, are given
by

X
x x

x1

1 3

31
�

�

�
(14)

X
x x

x
X2

2 3

3
11

1�
�

�
� � (15)

where X i � ( , ).0 1 Margules solution model with the
data reported by Ung and Doherty15 is used to cal-
culate thermodynamic properties

G

R
A x x

ex

g
ij i j

ji

� ��
1

2
(16)

with A12 4786� . ,A13 1074 484� . and A23 6269� . , re-
spectively. We have studied this system at 323.15 K
and phase equilibrium calculations are performed
for different values of the reaction equilibrium con-
stant K eq� (2.25, 30) and feed compositions. Based
on our formulation, we have only two optimization
variables for this example. Table 1 shows the re-
sults of equilibrium calculations for this reacting
mixture. For all calculations performed, the pro-
posed optimization strategy is very reliable to find
the equilibrium compositions corresponding to
the global minimum of transformed Gibbs energy.
With respect to efficiency of SA method, mean
NFEV ranged from 40 068 to 41 489 where this
numerical effort is equivalent to 5 s of compu-
tational time. For this mixture, AAD is around
6.1 · 10–03 %.
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T a b l e 1 – Numerical performance of simulated annealing
in the unconstrained global minimization of Transformed

Gibbs energy for the reacting mixture A A1 2� � A3 at 323.15 K

(Margules solution model)

Feed
conditions

Equilibrium conditions
Numerical

performance1

Z1
Keq X 1

�
X 1

�

transformed
Gibbs
energy

� �g

R Tg

NFEV SR, %

0.408 2.25 0.3921 0.4239 –0.4918 40068 ± 1584 100

0.5 2.5 0.4863 0.7400 –0.5237 40785 ± 1458 100

0.7 3 0.4936 0.8069 –0.4267 40582 ± 1437 100

0.55 4 0.5000 0.8606 –0.6761 40977 ± 1381 100

0.776 5 0.5030 0.8851 –0.4343 40748 ± 1269 100

0.6329 7.5 0.5065 0.9124 –0.7844 41100 ± 1375 100

0.75 10 0.5080 0.9243 –0.6246 41073 ± 1225 100

0.887 15 0.5094 0.9354 –0.3576 41105 ± 1169 100

0.535 20 0.5101 0.9406 –1.4197 41489 ± 1238 100

0.706 30 0.5107 0.9457 –1.0340 40598 ± 1471 100

1 NFEV is the mean total number of function evaluations involved in
the global minimization of transformed Gibbs energy and SR is the suc-
cess rate to find the transformed phase equilibrium compositions. 100
trials performed with random initial values for optimization variables
and random number seeds.



Example 2. Butyl acetate is widely used as sol-
vent in coating, adhesives and paint industries and it
can be produced via the liquid-phase reaction of
butanol and acetic acid in the presence of a suitable
acidic catalyst.11 This reaction is given by acetic acid
(1) + n-butanol (2) � water (3) + n-butyl acetate (4).
Khaledi and Bishnoi11 have modeled the production
of butyl acetate via reactive distillation process. In
this work, we have calculated several tie-lines for
this mixture at 25 °C. UNIQUAC model is used
to predict thermodynamic properties with the pa-
rameters reported by Wasylkiewicz and Ung.9 The
chemical equilibrium constant is calculated using

ln .K
Teq � �

450
08 where T is given in K. Trans-

formed compositions are defined using n-butyl ace-
tate as reference component and are given by

X x x1 1 4� � (17)

X x x2 2 4� � (18)

X x x X X3 3 4 1 21� � � � � (19)

where X X1 2 0 1, ( , )� and X 3 1 1� �( , ). Trans-
formed Gibbs energy is minimized considering
three optimization variables. Calculated tie-lines for
this system are shown in Fig. 2 and the numerical
performance of optimization strategy appears in Ta-
ble 2. In this table, we also report the slopes of
tie-lines �X 12 which are calculated using

� �
�

�
� � �X

X X

X X
j c Rj

j j

1

1 1

2

� �

� � , , (20)

where � ��
�

�

�X j

j

c R

1

2

1. Our results show that proposed

algorithm is reliable to find the equilibrium compo-
sitions and it generally exhibits a 100 % success
rate. Only for two feeds, it shows a poor perfor-
mance. In these cases, SA method converged to
trivial solutions (local optimums) where its value of
transformed Gibbs energy is very near to the global
one. For example, at Z(0.394, 0.274, 0.332), the

trivial solution ( )Z X Xi i i� �� �
has a transformed

Gibbs energy value of –1.115 167 while the global
optimum is equal to –1.115 171. We note that these
local optimums satisfy the condition given by eq.
(11). However, the phase stability analysis helped
us to identify these failures of the proposed optimi-
zation method. As indicated by Burgos-Solozarno
et al.,10 phase stability analysis is a fundamental
procedure which must be used to validate the re-
sults of any phase equilibrium calculation. On the
other hand, for these difficult cases, it is convenient
to modify the cooling schedule of SA algorithm to
favor the convergence to the global optimum of

transformed Gibbs energy. Specifically, an incre-
ment on TSA

0 and NT provides a better performance,

of course, at the cost of a greater computational ef-
fort. Also, we can improve the performance of SA
method in these difficult problems using a proper
initialization strategy. For example, we can use the
results of phase stability as initial values for Gibbs
energy minimization.4 Finally, with respect to effi-
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T a b l e 2 – Numerical performance of simulated annealing in
the unconstrained global minimization of transformed Gibbs

energy for the reacting mixture (1) acetic acid + (2) n-butanol �
(3) water + (4) n-butyl acetate at 25 °C (UNIQUAC solution model)

Equilibrium
conditions

Numerical
performance1

Z �X 12

transformed
Gibbs energy

� �g

R Tg

NFEV SR, %

(0.01, 0.4, 0.59) 46.0948 –0.2217 93757 ± 2543 100

(0.1, 0.2, 0.7) 2.6796 –0.4533 94477 ± 2839 100

(0.15, 0.5, 0.35) 3.7574 –0.8034 94357 ± 2744 100

(0.2, 0.3, 0.5) 1.8920 –0.7867 94537 ± 2491 100

(0.3, 0.3, 0.4) 1.3410 –0.9934 94273 ± 2655 100

(0.3, 0.4, 0.3) 1.6227 –1.1063 93985 ± 2454 100

(0.397, 0.294,
0.309)

1.0649 –1.1496 91297 ± 3413 0

(0.394, 0.274,
0.332)

1.0323 –1.1152 91789 ± 3620 3

(0.3, 0.15, 0.55) 0.9692 –0.7847 94237 ± 2435 100

(0.27, 0.1, 0.63) 0.9176 –0.6617 93961 ± 2244 100

1 NFEV is the mean total number of function evaluations involved in
the global minimization of transformed Gibbs energy and SR is the suc-
cess rate to find the transformed phase equilibrium compositions. 100
trials performed with random initial values for optimization variables
and random number seeds.

F i g . 2 – Calculated tie-lines in transformed mole fractions
for the reaction (1) acetic acid + (2) n-butanol � (3) water +
(4) n-butyl acetate at 25 °C. UNIQUAC solution model.



ciency, the computational effort in terms of mean
function evaluations ranged from 91 297 to 94 537
while mean computation time is around 40 seconds
and AAD is lower than 4.5 · 10–02 % for all tested
conditions.

Example 3. Third example is the reaction of
isobutene (1), methanol (2) and methyl tert-butyl
ether (3) with n-butane (4) as an inert. MTBE is an
important industrial chemical and has been used an
anti-knock agent to replace tetra-ethyl lead in gaso-
line. Several simulation and experimental researches
have been performed to study the MTBE reactive
distillation process.38 For example, Okansinski and
Doherty39 have studied the effect of the reaction
equilibrium constant on the existence and location
of reactive homogeneous azeotropes in this mix-
ture. In this work, we have considered the vapor –
liquid equilibrium for this reaction at p = 10.1325
bar and � = 100 °C. Transformed mole fractions are
defined using MTBE as reference component and
are given by

X
x x

x1

1 3

31
�

�

�
(21)

X
x x

x2

2 3

31
�

�

�
(22)

X
x

x
X X4

4

3
1 21

1�
�

� � � (23)

where all transformed mole fractions ranged from 0
to 1. Wilson solution model and Antoine equation
are used to calculated thermodynamic properties.
Model parameters are taken from Maier et al.40 and
the reaction equilibrium constant is calculated using
�G R T T Trxs g

0 420505 100982 02667/ . . . ln�� � �
where T is given in K. For ideal gas behavior, trans-
formed Gibbs energy is given by41

� �
ln

g

R T
X

x p

pg
i

i

i
sat

i

c R

�
�

�
�
�

	



�
�

�

�

�
1

(24)

where pi
sat is the vapor pressure of pure component

i. For this reacting mixture, we also have three opti-
mization variables. Calculated tie-lines for this mix-
ture appear in Fig. 3 and details of equilibrium cal-
culations are reported in Table 3. For all calcula-
tions performed, SA method shows a 100 % reli-
ability where phase equilibrium compositions are
located without numerical problems. In the other
hand, mean value of NFEV ranged from 93 949 to
94 813 for all calculations performed while mean
computation time is around of 85 s. For this react-
ing mixture, ADD ranged from 6.2 · 10–03 to
7.48 · 10–02 %. It is important to note that some pub-

lished methods cannot handle the presence of inert
components.3 The inert components do not partici-
pate in any of the reactions, but have an influence
on the phase equilibrium. Based on these results, it
appears that proposed strategy is robust even when
inert components are considered.
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F i g . 3 – Calculated tie-lines in transformed mole fractions
for the reaction (1) isobutene + (2) methanol � (3) methyl
tert-butyl ether and (4) n-butane as inert at 100 °C and 10.13
bar. Wilson model and Antoine equation.

T a b l e 3 – Numerical performance of simulated annealing
in the unconstrained global minimization of transformed Gibbs

energy for the reacting mixture (1) isobutene + (2) methanol �
(3) methyl tert-butyl ether and (4) n-butane as inert at 100 °C
and 10.13 bar. (Wilson solution model and ideal gas).

Equilibrium
conditions

Numerical
performance1

Z �X 12

transformed
Gibbs energy

� �g

R Tg

NFEV SR, %

(0.278, 0.365,
0.357)

1.2106 –1.3846 94285 ± 2756 100

(0.3, 0.3, 0.4) 1.2028 –1.4343 94381 ± 2415 100

(0.35, 0.25, 0.4) 1.9706 –1.4894 94177 ± 2658 100

(0.4, 0.25, 0.35) 3.4749 –1.5332 93949 ± 2966 100

(0.5, 0.3, 0.2) –5.7654 –1.5961 94729 ± 2721 100

(0.7, 0.25, 0.05) –1.1764 –1.3969 94177 ± 2620 100

(0.6713, 0.316,
0.0127)

–1.0483 –1.3990 94201 ± 2499 100

(0.15, 0.6, 0.25) 10.7574 –0.9409 94429 ± 2519 100

(0.00251, 0.42965,
0.56784)

–11621.85 –0.4909 94813 ± 2360 100

(0.6, 0.3, 0.1) –1.5955 –1.5417 94141 ± 2888 100

1 NFEV is the mean total number of function evaluations involved in
the minimization of transformed Gibbs energy and SR is the success
rate to find the transformed phase equilibrium compositions. 100 trials
performed with random initial values for optimization variables and
random number seeds.



Example 4. This example is also a hypothetical
reacting ternary mixture A A1 2� � A3 with liquid –
liquid equilibrium. We have considered a reaction
equilibrium constant independent of temperature
and thermodynamic properties are calculated using
the Margules solution model where

g

R T
x x x x x x

E

g

� � �36 2 4 231 2 1 3 2 3. . . (25)

Considering third component as reference com-
ponent, transformed compositions are given by eqs.
(14) and (15). Iglesias-Silva et al.41 used this sys-
tem to introduce the concept of equal area rule for
multiphase equilibrium in reacting mixtures based
on transformed variables. Based on their paper, this
mixture shows three-phase equilibrium at K eq �
0.980019 and Z1 � (0.218336, 0.815122). We have
performed phase equilibrium calculations for differ-
ent values of K eq and feed compositions that show
a transformed Gibbs function with multiple local

minima. With illustrative purposes,
� �g

R Tg
-surface for

some tested conditions appears in Fig. 4 where the
tangent planes for stable and unstable equilibriums
are indicated. Fig. 4 shows that this mixture can
present unstable two-phase equilibrium states
where a local optimization method can be easily
trapped. For example, at Z(0.6, 0.4) and K eq =
0.9825 this system has two unstable phase equilib-
rium states: X � ( . , . ),03677 06323 X �( . , . )08104 01896

with
� �g

R Tg
= –0.1425 and X � ( . , . ),02197 0 7803

X �( . , . )08143 01857 with
� �g

R Tg
= –0.1442. So, this

example is a good choice to test the reliability of
the proposed optimization strategy. Two optimiza-
tion variables are considered in the minimization of
transformed Gibbs energy and results of phase
equilibrium calculations are reported in Table 4.
Again, for all tested conditions, SA method is capa-
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T a b l e 4 – Numerical performance of simulated annealing
in the unconstrained global minimization of transformed Gibbs

energy for the reacting mixture A A1 2� � A3 (Margules solu-

tion model
g

R T
x x x x x x

E

g

� � �3 6 2 4 2 31 2 1 3 2 3. . . )

Feed condi-
tions

Equilibrium conditions
Numerical

performance1

Z1
Keq X 1

�
X 1

�

transformed
Gibbs energy

� �g

R Tg

NFEV SR, %

0.6 0.9825 0.4845 0.8150 –0.1445 37772 ± 724 100

0.35 0.985 0.2184 0.4824 –0.1495 39857 ± 376 100

0.75 0.995 0.4891 0.8147 –0.1439 39996 ± 659 100

0.5 0.975 0.2156 0.8167 –0.1448 41105 ± 1202 100

0.63 0.95 0.2037 0.8240 –0.1389 41553 ± 723 100

0.559 1.0 0.4907 0.8146 –0.1507 39905 ± 1169 100

1 NFEV is the mean total number of function evaluations involved in
the minimization of transformed Gibbs energy and SR is the success
rate to find the transformed phase equilibrium compositions. 100 trials
performed with random initial values for optimization variables and
random number seeds.

F i g . 4 – Transformed Gibbs energy surface of a hypotheti-

cal reacting mixture A A1 2� � A3 (Margules solution model

g

R T
x x x x x x

E

g

� � �3 6 2 4 2 31 2 1 3 2 3. . . ) a) Keq = 0.95, b) Keq = 0.9825

and c) Keq = 1.0



ble of finding the global minimum of transformed
Gibbs energy without numerical problems. On the
other hand, NFEV ranged from 37 772 to 41 553
while computation time is around 2.5 s. ADD is
lower than 0.02 % for all cases.

Example 5. Tert-amyl methyl ether (TAME) is
an important chemical for gasoline and is produced
by liquid-phase synthesis from methanol and
iso-amylenes catalyzed by a sulfonic acid ion ex-
change resin.38 In this reaction, five components
take part: methanol, 2-methyl-1-butene, 2-methyl-
-2-butene, TAME and n-pentane as inert compo-
nent. In this work, we have considered the lumped
single reaction which can be written as: 2-methyl-
-1-butene (1) + 2-methyl-2-butene (2) + 2 methanol
(3) � 2 TAME (4) with n-pentane (5) as an inert
solvent.12,38 In first instance, VLE of this reaction
without n-pentane as inert is studied. Transformed
mole fractions, considering TAME as reference
component, are given by

X
x x

x1

1 4

4

05

1
�

�

�

.
(26)

X
x x

x2

2 4

4

05

1
�

�

�

.
(27)

X
x x

x
X X3

3 4

4
1 21

1�
�

�
� � � (28)

All transformed fractions ranged from 0 to 1.
Wilson and ideal gas models have been used to calcu-
late thermodynamic properties of this mixture where
thermodynamic parameters are taken from Chen et
al.38 Reaction equilibrium constant is calculated using
K eeq

T� � �1057 10 04 4273 5. . / where T is given in K.
Phase equilibrium calculations are performed for sev-
eral feeds at 335 K and 1.52 bar. Details of calcula-
tions are reported in Table 5 and calculated tie-lines
reported in transformed mole fractions appear in Fig.
5. Only for one feed, the SA method shows a success
rate lower than 100 %. For remaining calculations,
this method is very reliable to find the global mini-
mum of transformed Gibbs energy. With respect to ef-
ficiency, NFEV ranged from 93 781 to 94 873 where
mean computational time is around 83 s and AAD is
lower than 1.5 · 10–02 % for all tested conditions.

In our second scenario for this example, we
have considered the presence of n-pentane as inert.
Transformed mole fractions are defined by eqs. (26)
– (27) and

X
x x

x3

3 4

41
�

�

�
(29)

X
x

x
X X X5

5

4
1 2 31

1�
�

� � � � (30)

Transformed Gibbs energy is minimized con-
sidering four optimization variables. Phase equilib-
rium calculations are performed at 335 K and 1.52
bar where the details of calculations and numerical
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F i g . 5 – Calculated tie-lines in transformed mole fractions
for the reaction (1) 2-methyl-1-butene + (2) 2-methyl-2-butene +
+ (3) 2 methanol � (4) 2 tert-amyl methyl ether at 335 K and
1.52 bar. Wilson model and ideal gas.

T a b l e 5 – Numerical performance of simulated annealing
in the unconstrained global minimization of transformed Gibbs
energy for the reacting mixture (1) 2-methyl-1-butene + (2)

2-methyl-2-butene + (3) 2 methanol � (4) 2 tert-amyl methyl
ether at 335 K and 1.52 bar (Wilson model and ideal gas)

Equilibrium
conditions

Numerical
performance1

Z �X 12

transformed
Gibbs energy

� �g

R Tg

NFEV SR, %

(0.3, 0.15, 0.55) –0.2072 –1.0868 94453 ± 2354 100

(0.32, 0.2, 0.48) –0.2800 –1.2179 94393 ± 2554 100

(0.354, 0.183,
0.463)

–0.2856 –1.2264 93089 ± 2881 63

(0.2, 0.07, 0.73) –0.0076 –0.7003 94345 ± 2935 100

(0.15, 0.02, 0.83) 0.0064 –0.3950 94429 ± 2519 100

(0.27, 0.3, 0.43) 0.8089 –1.2913 93781 ± 2205 100

(0.2, 0.35, 0.45) –3.6767 –1.2218 94573 ± 2549 100

(0.1, 0.35, 0.5) –8.5301 –0.9623 94477 ± 2335 100

(0.05, 0.3, 0.65) –162.6184 –0.7089 94873 ± 2418 100

(0.025, 0.3,
0.675)

327.5080 –0.5787 94117 ± 2614 100

1 NFEV is the mean total number of function evaluations involved in
the global minimization of transformed Gibbs energy and SR is the suc-
cess rate to find the transformed phase equilibrium compositions. 100
trials performed with random initial values for optimization variables
and random number seeds.



performance of SA method for some feeds are re-
ported in Table 6. For all tested conditions, this
method is capable of finding the transformed equi-
librium compositions with 100 % reliability. We
note again that the presence of inert component
does not affect the performance of proposed
method. With respect to the efficiency NFEV
ranged from 169 518 to 170 412, which is equiva-
lent to 199 s of computational time. Finally, AAD is
lower than 3.0 · 10–02 % for all feeds.

Example 6. In this example we have consid-
ered the reacting mixture of propene (1) + water (2)
� 2-propanol (3) which has been studied by Castier

et al. 42 and Stateva and Wakeham.5 Equilibrium
constant is considered independent of temperature
and flash calculations are performed using K eq � 23
at 353.15 K.5 We have used the SRK EoS with con-
ventional mixing rules and all interaction para-
meters equal to zero. Parameters of pure compo-
nents are taken from Smith and Van Ness.43 For this
reaction, transformed mole fractions are defined
using 2-propanol as reference component and are
given by eqs. (14) – (15). Equilibrium calculations
are performed for different pressures and feed com-
positions. Numerical results of calculations per-
formed are reported in Table 7. With the exception
of one feed, the SA method showed a 100 %
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T a b l e 6 – Numerical performance of simulated annealing in the unconstrained global minimization of transformed Gibbs energy

for the reacting mixture (1) 2-methyl-1-butene + (2) 2-methyl-2-butene + (3) 2 methanol � (4) 2 tert-amyl methyl ether with (5)
n-pentane as inert at 335 K and 1.52 bar (Wilson model and ideal gas)

Equilibrium conditions Numerical performance1

Z ( �X 12, �X 13)

transformed Gibbs energy

� �g

R Tg

NFEV SR, %

(0.15, 0.02, 0.8, 0.183) (0.0099, –1.2428) –0.5104 170006 ± 4526 100

(0.1, 0.1, 0.6, 0.2) (0.9406, –5.8340) –1.0432 170412 ± 4236 100

(0.05, 0.05, 0.85, 0.05) (0.8069, –6.2438) –0.4882 169857 ± 4033 100

(0.1, 0.15, 0.7, 0.05) (6.0243, –13.4445) –0.8726 170177 ± 3726 100

(0.15, 0.15, 0.6, 0.1) (0.8465, –4.0396) –1.1136 170091 ± 4150 100

(0.07, 0.17, 0.64, 0.12) (7.9130, –18.0152) –0.9581 169558 ± 3937 100

1 NFEV is the mean total number of function evaluations involved in the global minimization of transformed Gibbs energy and SR is the success rate to find
the transformed phase equilibrium compositions. 100 trials performed with random initial values for optimization variables and random number seeds.

T a b l e 7 – Numerical performance of simulated annealing in the unconstrained global minimization of transformed Gibbs energy

for the reacting mixture (1) propene + (2) water � (3) 2-propanol at 353.15 K (SRK EoS)

Equilibrium conditions Numerical performance1

p/kPa Z1 X 1
�

X 1

�

transformed Gibbs energy

� �g

R Tg

NFEV SR, %

100 0.025 0.0002 0.3745 –0.0912 40982 ± 1437 100

0.001 –0.0038 41035 ± 1256 100

0.370 –1.3479 39089 ± 1802 41

1000 0.8 0.5663 0.9149 –0.7365 41025 ± 1370 100

0.621 –1.3089 41057 ± 1254 100

0.840 –0.5766 40977 ± 1420 100

3000 0.934 0.8649 0.9800 –0.3125 41377 ± 1291 100

0.942 –0.2771 40881 ± 1156 100

0.959 –0.2018 40646 ± 1230 100

1 NFEV is the mean total number of function evaluations involved in the global minimization of transformed Gibbs energy and SR is the success rate to find
the transformed phase equilibrium compositions. 100 trials performed with random initial values for optimization variables and random number seeds.



success rate to find the global optimum of trans-
formed Gibbs energy. For all calculations per-
formed, mean value of NFEV ranged from 39 089
to 41 377 and computational time is around 30 s.
This computational time is very reasonable consid-
ering that an EoS model is used. With respect to so-
lution accuracy, AAD is lower than 0.4 % for all
cases.

Example 7. Our final example is a hypothetical
quaternary system that follows the two reactions:
A1+A2 � A3 and 2A3 � A4+A2. We have consid-
ered ideal behavior for both liquid and vapor
phases, where the Antoine equation is used to cal-
culate the vapor pressures of pure components with
the parameters reported by Ung and Doherty.3 The
transformed mole fractions are defined using A3

and A4 as reference components and they are given
by

X
x x x

x x1

1 3 4

3 4

2

1 2
�

� �

� �
(31)

X
x x x

x x
X2

2 3 4

3 4
11 2

1�
� �

� �
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where X 1 and X 2 0 1� ( , ). The chemical equilibrium

constants are calculated using K
Teq

1 2257
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T T
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2
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7 0265

68441 1391790
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�

�
�

	



�exp .

.
where

T is given in K. Two optimization variables are con-
sidered for the global minimization of transformed
Gibbs energy. So, flash calculations are performed
for five arbitrary feeds at 1.01325 bar and 310 K,
and our results are reported in Table 8. In general,
the Simulated Annealing is robust to minimize the
transformed Gibbs energy for the performed calcu-

lations. Specifically, for only one feed, the success
rate of SA method is lower than 100 %. On the
other hand, the computational time is around 12 s
and the mean value of NFEV ranged from 40 753 to
41 041, respectively. We note that this computa-
tional time is lower than that obtained for other ex-
amples with the same dimensionality. This result is
due to the use of algebraic approach to find the ref-
erence mole fractions inside the stage of variable
transformation. Finally, ADD is lower than 0.03 %
for all calculations performed.

For all systems with only one reaction, we note
that the computational time involved in the stage of
variable transformation can be reduced significantly
by using Newton method for finding the mole frac-
tion of reference component. Unfortunately, the
Newton method is highly sensitive to initial values
while bisection method is more reliable for this pur-
pose.

Conclusions

In this paper, we have introduced and tested an
alternative approach for performing two-phase
equilibrium calculation in reactive systems based
on transformed Gibbs energy minimization using
Simulated Annealing optimization method. In fact,
this work introduces the use of a stochastic optimi-
zation strategy for the global minimization of Gibbs
energy in reactive systems using transformed vari-
ables. Our results show that the SA method gener-
ally can locate the global optimum of Gibbs energy
in two-phase systems; it can be applied with
multicomponent reactive systems (with or without
inert components) using many thermodynamic
model without problem reformulations and requires
a reasonable computational time. Although we can
not offer a theoretical guarantee for the global
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T a b l e 8 – Numerical performance of simulated annealing in the unconstrained global minimization of transformed Gibbs energy

for the reacting mixture A1+A2 � A3 and 2A3 � A4+A2 at 310 K and 1.01325 bar (Ideal Gas and Ideal Solution)

Equilibrium conditions Numerical performance1

Z1 X 1
�

X 1

�

transformed Gibbs energy

� �g

R Tg

NFEV SR, %

0.7 0.4399 0.9541 –1.6283 41041 ± 1407 100

0.445 –1.2980 40933 ± 1536 79

0.56 –1.4470 40809 ± 1240 100

0.92 –1.9133 40753 ± 1395 100

0.63 –1.5376 40833 ± 1619 100

1 NFEV is the mean total number of function evaluations involved in the global minimization of transformed Gibbs energy and SR is the success rate to find
the transformed phase equilibrium compositions. 100 trials performed with random initial values for optimization variables and random number seeds.



minimization of transformed Gibbs energy using
SA method, it appears that this strategy is a suitable
numerical tool for the analysis and study of phase
equilibrium behavior of multicomponent reacting
systems.

In future work, we will test and compare the
numerical performance of SA method with respect
to others stochastic optimization methods, as Ge-
netic Algorithm or Tabu search, in this kind of ther-
modynamic calculations.
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N o m e n c l a t u r e

a – activity, mol dm–3

Aij – parameter of Margules solution model

AAD – mean absolute percentage deviation

c – number of components

�g – transformed molar Gibbs free energy, J mol–1

K eq – chemical equilibrium constant

n – mole number

N – square matrix formed for all components that
participate in reaction r

NT – iteration number of Simulated Annealing optimi-
zation method

OBJ – objective function value

p – pressure, bar

ref – reference component

R – reaction number

Rg – universal gas constant, J mol–1 K–1

RT – temperature reduction factor of Simulated An-
nealing optimization method

T – thermodynamic temperature, K

TSA – temperature of Simulated Annealing optimization
method

vi
r

– stoichiometric number of component i

X – transformed mole fraction

�X 12 – slope of tie-line

x – mole fraction

Z – transformed feed composition

z – feed mole composition

G r e e k l e t t e r s

�, � – phase at equilibrium

� – phase mole fraction

� – activity coefficient

� – fugacity coefficient

� – optimization variable

 – chemical potential, J mol–1

� – adimensional extent of reaction

F – transformed phase mole fraction

� – temperature, °C
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