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Summary 

At the beginning of the naval architecture theory, in the 18th century, Bouguer and Euler 

set the foundations of naval architecture with the centre of buoyancy and metacentric curve 

definition. After that, in 20th century, it is determined from bifurcation and catastrophe theory 

developed by Thom, and its application for ships in works of Zeeman, Stewart and others, that 

the centre of buoyancy curve for the rectangular cross section consists of parabola and 

hyperbola equations, but no exact equations are given for the hyperbola segment of that curve. 

Therefore, the hyperbola segment of the centre of the buoyancy curve is re-examined in this 

paper with emphasis on belonging metacentric locus curve as the evolute of the centre of the 

buoyancy curve. The observed metacentric curve consists of semi-cubic parabolas and Lamé 

curves with 2/3 exponent and negative sign, resulting in the cusp discontinuities in the 

symmetry of functions definition. Belonging swallowtail discontinuity in the hyperbola range 

between two heel angles of the rectangular cross section deck immersion/bottom emersion 

angles is examined, depending on existence of extremes of belonging hyperbola curve. After 

that, the single condition for hyperbola extreme the existence is given with the belonging new 

lower and upper non-dimensional bounds of rectangle cross section dimensions. 

Keywords:  metacentric curve; rectangular cross section; cuspidal Lamé curve, cusp 

discontinuity; swallowtail; bounds 

1 Introduction 

1.1 Basic theory about metacentric locus curve 

One of the most important hydrostatic properties for the determination of a ship's 

equilibrium is the centre of the buoyancy locus curve, i.e. the centre of buoyancy evolute or 

metacentric M-curve, representing the distances between the ship's coordinate system origin 

K and the actual metacentre M position for different longitudinal and transversal inclination 

angles. Its characteristics were examined by many naval architecture researchers from the 

beginning of the naval architecture theory development with a focus on initial stability 

characteristics (Bouguer, [1], Euler, [2]), while today whole metacentric curve characteristics 

are examined using modern bifurcation/catastrophe/singularity theory (Thom, [3], Zeeman, 
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[4], Poston and Stewart, [5], Arnold, [6]) and as a part of singularity theory or control theory, 

by many other papers and researches like in Senjanović & Fan Yin, [7], [8], Neves et al., [9], 

[10], Makai et al., [11], and Zhang et al., [12]. Recently, in naval architecture theory, various 

works are done on theoretical and practical aspects of the ship’s equilibrium and stability by 

Spyrou, [13], Nowacki, [14], Francescutto & Papanikolau, [15], Francescutto, [16], Megel et 

al., [17], Hantoro et al., [18], Karolius et al., [19], Santos et al., [20], and others, with 

metacentric locus and metacentric height as one of the main variables in stability evaluation, 

in general. 

In this paper, the existence of swallowtail discontinuity of metacentric locus curve for 

rectangular cross section, defined in the works of Zeeman, [4], and Poston & Stewart, [5], is 

re-examined, to set new bounds for its occurrence based on non-dimensional ratios of 

rectangle’s floatation properties. For rectangular cross section with breadth B, height D and 

draught d, the centre of buoyancy B-curve consists of eight quadratic function segments in 

general, four parabolas and four hyperbolas as shown in Fig. 1 below, depending on ratios     

 = d/D and w = B/(2D), and immersed rectangle diagonal angle , as set in [4] and [5] with 

definitions:  

Definition 1: Centre of buoyancy B-curve properties for rectangular cross section  

The centre of buoyancy B-curve for rectangular cross section consists of eight 

quadratic function segments in general, four parabolas and four hyperbolas. This 

is valid in the general case for d/D  [0, 1]\{1/2}, i.e. except in the special case 

for d/D = 1/2 where hyperbolas vanish and only four parabolas remain. 

Definition 2: Metacentric locus M-curve properties for rectangular cross section 

The rectangular cross section has twelve cusp discontinuities of its metacentric 

locus M-curve in the case where condition d/D  D/(2B) (  1/(4w)) is valid, in 

[5], or d/D < 1/2tan, in [4], where  is the angle of the diagonal. For the case 

where condition d/D < D/(2B) ( < 1/(4w)) or d/D  1/2tan is valid, hyperbolic 

part of the metacentric curve has minimum or maximum on the line y = x, and 

the metacentric locus has sixteen cusps with swallowtail type discontinuities. 

 
Fig. 1  Rectangular cross shape centre of buoyancy segments with cusp discontinuities 

 

The B-curve quadratic functions segments from the Definition 1 are divided by eight 

points V, representing geometry vertices intersection points with waterline WL, where 

rectangular cross section vertices v and its sides s immerse in liquid fluid or emerge from it, 
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with corresponding deck immersion/bottom emersion of a pontoon. Those V points are eight 

evolute M-curve cusp discontinuities also, with four more point S coming from semi-cubic 

parabola cusp discontinuities in their symmetry line, where belonging to B-curve has local 

extreme. Besides those twelve cusp points C, additional four E points can occur for 

hyperbola’s parts of B-curve when extremes of those curves exist, giving a total of sixteen 

cusp points C for heel angles i, i = 0, …, 15, as mentioned in Definition 2, which is all 

examined in detail in this paper. 

In the naval architecture theory, regarding ship stability, the goal is observing the centre 

of buoyancy B-curve and its evolute M-curve for heel angles , and therefore, in order to 

investigate the evolute of the centre of buoyancy B-curve for heel angle , three ranges, I) to 

III), are determined for the first coordinate system quadrant, as shown in Fig. 1, using 

horizontal and vertical symmetry of a rectangular cross section:  

Range I): From the first cusp discontinuity C1 to the second cusp discontinuity C2, i.e. from 

the heel angle 0 = 0° or the first parabola symmetry point S1 to the first vertex 

intersection point and belonging heel angle 1 = V1, 

Range II): From the second cusp discontinuity C2 to the third cusp discontinuity C3, i.e. from 

the first vertex intersection heel angle 1 = V1 to the second vertex intersection heel 

angle 2 = V2, 

Range III ): From the third cusp discontinuity C3 to the fourth cusp discontinuity C4, i.e. from 

the second vertex intersection heel angle 2 = V2 to the heel angle 3 = 90° or the 

second parabola symmetry point S2. 

Accordingly, by Definition 2, the metacentric M-curve, as the evolute of the centre of 

buoyancy B-curve, has twelve cusp discontinuities C, forming butterfly type discontinuity 

near vertical symmetry line, around heel angles  equal 0 and 180°, for the condition d/D  

D/(2B), or sixteen where d/D < D/(2B). The conditions for the existence of additional four 

extreme cusp discontinuities are then set; the first regarding the relation between rectangle 

particulars draught d, height D and breadth B, and the second regarding the existence of local 

extreme of metacentric M-curve in hyperbola segment, i.e. heel angle Range II). 

Condition 1: The rectangle particulars relation condition for hyperbola extreme existence  

d/D < D/(2B)  (1) 

Condition 2: The local centre of buoyancy B-curve extreme condition in the hyperbola 

segment 

X'B = 0  (2) 

where XB  {yB, zB} is the centre of buoyancy B-curve. 

Since the evolutes of parabola and hyperbola are semi-cubical parabola and Lamé curve 

with 2/3 exponent and negative sign, they both have cusp discontinuity in the horizontal 

symmetry at their z–axis, as shown in Fig. 2 and Fig. 3 in the Subchapter 1.2, below. 

Therefore, belonging metacentric M-curve has eight segments overall. Also, M-curve can 

have eight symmetry cusp discontinuities, S and E, plus eight vertex intersection cusp 

discontinuities V, i.e. sixteen cusp discontinuities overall as stated in Definition 2 above. It is 

examined in detail in this paper with the emphasis on non-dimensional bounds from 

Condition 1, while the detailed examination of belonging B-curve parabolas and hyperbola 

equations, together with M-curve equations for semi-cubical parabolas and above mentioned 

Lamé curve, are given in part two of this paper. 



Dario Ban                                                     Re-examination of centre of buoyancy curve and its evolute for 

rectangular cross section, Part 1: Swallowtail discontinuity bounds 

4 

 

The basics of the centre of buoyancy B-curve and metacentric M-curve equations are 

given in the introduction with belonging evolute graphs showing their cusp discontinuities in 

the symmetry of their abscissae definition. 

The equations for the determination of vertex cusp discontinuity heel angles V1 and V2 

for which rectangular geometry intersects with waterline WL depending on the A/AT criterion 

are given in Chapter 2, along with their values. After a detailed examination of the condition 

for the existence of extreme cusp discontinuity of metacentric M-curve for different non-

dimensional breadth to height B/D ratios, the new corrected bounds are given in Subchapter 

3.3 giving a single necessary existence condition tool for detecting this feature for the 

rectangular cross section.  

The example of an actual rectangular cross section centre of buoyancy B-curve and 

metacentric M-curve is then given in Chapter 4 for the situation of the existence of sixteen 

cusps, showing it graphically and explaining this feature of the swallowtail cusp discontinuity 

existence.  

Therefore, in order to investigate the additional cusp discontinuity occurrence for the 

rectangular cross section, a theoretical re-examination of the centre of buoyancy B-curve and 

its metacentric locus M-curve is performed in this paper to explain this additional hydrostatic 

feature. 

1.2 General quadratic functions and their evolutes 

The metacentric curve characteristics are well studied in the hydrostatic theory of the 

floating bodies, [21], [22], [23], as well as in the mathematical singularity theory, [5], [4]. 

This curve basically depends on the centre of buoyancy B-curve characteristics, as it 

analytically represents the metacentric locus or evolute M-curve of the centre of buoyancy B-

curve z = f(y) of a floating body, with the equation: 

  zz  /1M 2

3
2

 (3) 

In the naval architecture theory, the relation for the determination of the metacentre 

M(yM, zM) position for the known centre of buoyancy B(yB, zB) and for given heel angle , can 

be obtained using actual metacentric radius r = MB = I/ value with 

yM = yB + I()/sin (4) 

zM = zB + I()/cos (5) 

where I is the moment of inertia of waterline WL and  is volume displacement. 

Above parametric equations (4) and (5) are further used for metacentric M-curve 

determination in the paper, while the character of the curves is determined using exact 

equations from the Table 1 below, obtained using equation (3). 

 

Table 1  Evolutes of the centre of buoyancy curve equations for rectangle and isosceles triangle 

Cross section geometry Metacentric Curve Equation Description 

Rectangle 







 22

3
2 33

27

8
ppzz

p

z
y  

Semi-cubical Parabola 

p = b2/a 

Isosceles Triangle and 

Isosceles Trapezoid  
3

2

2
2

3

2

3

2

9

4

3

2

















 a

b
y

b
az  

Cuspidal Lamé curve             

a = 2/3d 
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The centre of buoyancy B-curve evolutes or metacentric M-curves for rectangular and 

triangular cross shapes are defined in theory explicitly, [1], with equations shown in Table 1, 

above. For parabola, it is semi-cubical parabola, and for hyperbola it is Lamé curve with 

exponent 2/3 and minus sign. Since this phrase for Lamé curve is long, it is shorted in some 

places during the text to the cuspidal Lamé curve, similar to the cuspidal cubic term for semi-

cubical parabola sometimes used in theory.  

Both of the functions in Table 1 are even functions, horizontally symmetrical, and 

therefore have cusp discontinuity for even keel or zero heel angle . While the semi-cubical 

parabola has the origin of her local coordinate system set to the initial rectangle centre of 

buoyancy B0, Lamé curve, as the evolute for triangle and trapezoid shape, has the origin in the 

keel point K in the centreline C.L. of the pontoon, as shown in Fig. 2 and Fig. 3, below. 

Semi-cubical parabola 

B0 y'

WL0

K

M0

M

B1

M1

y

z, z'

B

S

 
Fig. 2  Symmetric semi-cubical parabola M curve with butterfly type discontinuity 

It can be seen from Fig. 2 that the semi-cubical parabola forms butterfly discontinuity 

type for the parabolic centre of buoyancy B-curve, for rectangular cross section shape of the 

pontoon at zero heel angle  = 0°, with two symmetrical branches around the middle cusp 

discontinuity in initial metacentre point M0. The end of the left branch is then at a point M1, 

where inclined waterline WL intersects the first rectangle deck immersion/bottom emersion 

point coinciding with one of rectangle vertices v. 

Lamé curve with exponent 2/3 and the negative sign 

B0

WL0

K

M0

M

B1

M1

y

z

B

S

 
Fig. 3  Symmetric cuspidal Lamé M-curve, with butterfly type discontinuity 
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Similar to the semi-cubical parabola, it can be seen from Fig. 3 that the cuspidal Lamé 

curve forms butterfly discontinuity type for the hyperbolic centre of buoyancy B-curve 

segment obtained for isosceles triangle cross section shape of the pontoon, too. Two 

symmetrical branches around middle cusp discontinuity in initial metacentre point M0 of the 

pontoon, at zero heel angle .  

Therefore, the quadratic functions for the centre of buoyancy B-curve and metacentric 

M-curve are set here for regular cross section shapes, for heel angles until the first vertex 

intersection heel angle V1. But, of course, the metacentre curve continues after it and their 

analytical functions should be determined where possible to evaluate those values 

theoretically. Since both quadratic functions, parabola and hyperbola, and belonging 

metacentric curve segments have cusp discontinuity in their vertical symmetry line, the 

number of cusp discontinuities for the rectangle can be maximally eight S and E symmetry 

cusps plus eight vertex intersection points V, as mentioned before in Definition 2. 

2 Deck immersion/bottom emersion immersion angles 

Definition 2 from the introduction of this paper states that the metacentric curve for the 

rectangular cross section can have eight S and E cusp discontinuities coming from parabola 

and hyperbola evolute curves cuspidal characteristics, described in the previous Subchapter 

1.1, and eight from rectangle vertices intersection with waterline WL, i.e. deck 

immersion/bottom emersion vertex cusp discontinuities V. In order for one to determine deck 

immersion/bottom emersion angles for some general convex cross section shapes, it is 

necessary to find the immersion shape with the basic condition being that obtained volume 

displacement V equals initial one V0 for even keel, i.e. there is a condition of constant volume 

displacement: 

V = V0 (3) 

For a rectangular pontoon of unit length, i.e. for L = 1, the cross sectional area of rectangle A 

must satisfy the initial area A0 equation condition with 

Condition 3: Constant cross section area condition (displacement) 

A = A0 (4) 

By knowing rectangle sides equations s  {z = 0, y = –B/2, z = D, y = B/2}, and vertices 

positions v  {{–B/2, 0}, {–B/2, H},{B/2, 0}, {B/2, H}}, belonging rectangle vertices 

intersection heel angles V can be determined from the constant area condition and waterline 

WL equation as 

z = y tan V + l (5) 

I.e.: 













 

12

121

V tan
yy

zz
  (6) 

After that, one of the vertex positions v represents one point P1(y1, z1) in the above 

equation. Belonging vertices intersection heel angles V  V can then be  determined by 

finding the second WL intersection point P2(y2, z2) with general cross section sides which 

satisfies Condition 3 in (7). 

Depending on the pontoon’s immersed area A = A0 to total cross section area AT ratio 

A/AT, the next condition regarding rectangular cross section area can be set: 

Condition 4: The condition for the existence of the vertex heel angle 
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 For A/AT  = 1/2, one intersection heel angle V occurs in each coordinate system 

quadrant, four overall, with two vertices intersection angle coinciding with each 

other. 

 For A/AT = [0, 1]\{1/2}, two vertices intersection heel angles V occur in each 

coordinate system quadrant, eight overall. 

For above heel angles V, defined vertices cusp discontinuities V occur. Belonging deck 

immersion/bottom emersion immersion shapes for a rectangle are then perpendicular triangles 

or perpendicular trapezoids, as shown in Fig. 4 below. 

 
Fig. 4  Deck immersion/bottom emersion immersion shapes for rectangle 

2.1.1 Case A/AT >1/2 

In the case A/AT >1/2, for the first coordinate system quadrant heel angles , the resulted 

immersion shapes are rectangular trapezoids and belonging vertex intersection angles V are:  

– For the side s4  y1 = –B/2, V1: A = (D + z1)B/2  z1 = 2A/B – D 

By knowing the vertex v2  {B/2, D} position, y2 = B/2 and z2 = D, and from (9) it is 








 
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
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

 
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










 

2

1

V12
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V1

)(2
tan

)(2
tan

2/2/

/2
tan

B

BdBD

B
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  








 
 

B

dD )(2
tanV 1

V11   (7) 

– For the deck s3  z2 = D, V2: A=(B/2 + y2)D/2+(B/2 – y2)D  A = BD/4+y2D/2+BD/2–y2D  

 A = 3BD/4 – y2D/2  A = D/2(3B/2 – y2)  y2 = 3B/2 – 2A/D 

By knowing the vertex v4  {–B/2, 0} position, y1 = –B/2 and z1 = 0, from (9) it follows 







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
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




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


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






 

)(2
tan

/22
tan

2//22/3

0
tan

2
111

V2
BdBD

D

DAB

D

BDAB

D
  











 

)(2
tanV

2
1

V22
dDB

D
  (8) 

2.1.2 Case A/AT =1/2 

In the special case where A/AT =1/2, for the first coordinate system quadrant heel angles 

, the resulted immersion shapes are rectangular triangles and belonging vertex intersection 

V1 and V2 angles V coincide with each other as: 
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1

1 2 V1 V2V V tan
D

B
    

     
 

 (12) 

2.1.3 Case A/AT  < 1/2 

For the first coordinate system quadrant heel angles , and condition A0/AT   1/2, the 

resulted immersion shapes are triangles and belonging vertex intersection angles V are then: 

– For the side s2  y2 = B/2, V1: A = z2B/2  z2 = 2A/B 

By knowing the vertex v4  {–B/2, 0} position, y1 = –B/2 and z1 = 0, from (9) it follows 



















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















 

2
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2
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V1

2
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2
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/2
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/2
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B

Bd

B
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B
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BB

BA
  

1

1 V1

2
V tan

d

B
   

   
 

 (13) 

– For the bottom s1  z1 = 0, V2: A = H(B/2 – y1)/2  y1 = B/2 – 2A/D 

By knowing the vertex v2  {B/2, D} position, y2 = B/2 and z2 = D, from (9) it follows  































 

A

D

DA

D

DABB

D

2
tan

/2
tan

/22/2/

0
tan

2
111

2V  









 

Bd

D

2
tanV

2
1

2V2   (14) 

In this way, the heel angles of the vertex cusp discontinuities V1 and V2 are determined 

for the first coordinate system quadrant for all cases depending on the A/AT condition. The 

equations (10) to (14) are further used for the determination of Range II) heel angle region 

and possible occurrence of swallowtail extreme cusp discontinuity for the hyperbola segment 

of M-curve. 

3 Parametric Cartesian “Hydrostatic Particulars Centres Components”  

3.1 Parametric form of local extreme cusp discontinuity condition  

According to Definition 2, the condition for the existence of the swallowtail extreme 

type cusp discontinuity is set in (2), using the existence of the local extreme of the centre of 

buoyancy B-curve. For the first coordinate system quadrant, it means that if the local extreme 

of the centre of buoyancy B-curve function between two vertices heel angles V1 and V2 exists, 

then the extreme type cusp discontinuity of metacentric M-curve exists, too.  

This is more suitable in parametric form with 

y'M () = 0  (15) 

z'M () = 0 (16) 

Therefore, the condition for the existence of local extreme Condition 2 can be written 

as: 

Condition 5: The additional condition for the existence of extreme type cusp discontinuity of 

rectangular cross section metacentric M-curve 

If the local extreme heel value of the centre of buoyancy B-curve components 

exists in between two vertex heel angles, then its metacentric curve has 

swallowtail extreme cusp discontinuities between two vertex heel angles. 



Re-examination of centre of buoyancy curve and its evolute for  Dario Ban 

rectangular cross section, Part 1: Swallowtail discontinuity bounds 

9 

 

Condition 5 can be used further on to explore the existence of four additional extreme 

cusp discontinuities E in the hyperbola segments of the B-curve, in total. That is, a single one 

of them can be found in the Range II) of heel angles using quadratic functions evolutes of the 

metacentric M-curve, with graphical representation using parametric Cartesian “Hydrostatic 

Particulars Centres Components” diagram in the next subchapter. 

3.2 “Hydrostatic Particulars Centres Components” Diagram 

The extreme cusp discontinuities E can be also found graphically using the parametric 

Cartesian “Hydrostatic Particulars Centres Components” diagram for heel angles  with the 

distribution of components of hydrostatic centres of buoyancy B-curve, yB and zB, waterline 

F-curve, yF and zF, and metacentric M-curve, yM and zM, as shown in Fig. 5 below. 

 
Fig. 5  Hydrostatic particulars centres components for heel angles  for rectangle 

 

It can be seen from the diagram in Fig. 5, and Fig. 1, that there are twelve cusp 

discontinuity heel angles Ci, i = 0, …, 11; of metacentric M-curve, designated by small black 

dot points, with eight of them being vertex discontinuity heel angles V, two in every 

coordinate system quadrant. Four of them are symmetry cusp discontinuity angles S with one 

located in every quadrant of y – z coordinate system, as shown in Fig. 5, with heel angles 90°, 

180°, 270° and 360°. 

Yet, the “Hydrostatic Particulars Centres Components” diagram in Fig. 5 shows the 

situation where additional extreme cusp discontinuities of the extreme metacentric curve 

discontinuity type occur when metacentric curve components have an extreme value between 

two vertex heel angle values of the rectangle side. In other words, those are cusp 

discontinuities that occur for extreme heel angles Ej, j = 1, …, 4, between vertex cuspidal 

heel angles V, with one of them in every quadrant of the coordinate system. Namely, there 

are four of them, all together, with values E = {45°, 135°, 225°, 315°}, giving additional four 

cusp discontinuities Ci, i = 12, …, 15. Thus, it shows the existence of additional extreme cusp 

discontinuities that are expected for this rectangle draught according to Condition 2 and 

Condition 5. 

Therefore, cusp discontinuity heel angles C can be divided into two types:  

1. Extreme type, E, where metacentric locus M-curve components, yM and zM, have local 

extremes, for heel angles of rectangle symmetry: 0, 3, 6, 9, i.e. angles S = {0°, 90°, 

180°, 270°, 360°}  C; and hyperbola extreme angles E = {45°, 135°, 225°, 315°}. 
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2. Vertex type, V, where metacentric locus M-curve components, yM and zM, have cusp 

discontinuities, too, with two of them in every coordinate system quadrant, for heel 

angles of waterline intersection WL with rectangle vertices V: 1 and 2, 4 and 5, 7 and 

8, and 10 and 11, i.e. angles V = {17.176°, 57.756°, 122.244°, 162.824°, 197.176°, 

237.756°, 302.244°, 342.284°}  C. 

So, it can be concluded that cusp discontinuity occurs for the either local extreme of 

metacentric locus M-curve components or vertex heel angles V of pontoon sides s 

emersion/immersion. Additionally, since these angles occur for E = 45° + k90, k = 0, …, 3 

angles, the extremes of hyperbola occur on y’ = x’ lines, as defined in Definition 2 at the 

beginning of the paper, and therefore it is confirmed. 

3.3 The rectangle particulars ratios condition for the existence of extreme cusp 

discontinuity 

The existence of extreme cusp discontinuity in the Range II of  heel angles is examined 

here with the examples of hydrostatic particulars curves calculated for several draughts of 

rectangular cross section pontoons with unit length L = 1(m), in order to examine the 

influence of rectangular cross section pontoon B/D ratio on additional cusp discontinuity 

occurrence. The first one is from this paper calculation example with particulars: Breadth      

B = 2.2 (m) and Height D = 1.54 (m), or B/D = 2.2/1.54. After that, additional calculations are 

performed for pontoons with B/D = {0.5, 0.75, 1, 2, 3} with constant height D = 1.54 (m). 

The chosen draughts are d = {0.3, 0.6, 0.77, 1.0, 1.1, 1.2, 1.4} (m), and the example from this 

paper of d = 1.2 (m) and from the Uršić textbook, [23], of d = 1.1 (m) are used for 

comparison. The results are given in Table 2, with red colour showing the cases where 

Condition 1 with d/D <D/(2B) is satisfied, and a column showing the existence/absence of 

swallowtail cusp discontinuity with extreme cuspidal heel angle E1 = 45°. 

 

Table 2  The existence of additional cusp discontinuity for rectangular cross sections  

  d (m) 0.3 0.6 0.77 0.9 1 1.1 1.2 1.4 

B/D D/(2B) d/D 0.1948 0.3896 0.5 0.5844 0.6494 0.7143 0.7792 0.9091 

0.5 

 Cusp Yes No No No No No Yes Yes 

1 1 (°) 37.926 57.313 63.435 58.97 54.513 48.184 41.448 10.135 

 2 (°) 78.977 68.714 63.435 59.697 57.002 54.462 52.074 79.695 

0.75 

 Cusp Yes No No No Yes Yes Yes Yes 

6.0   1 (°) 27.451 46.095 53.13 47.939 43.078 37.304 30.487 13.627 

 2 (°) 73.711 59.697 53.13 58.062 62.257 66.801 71.677 82.235 

1.0 

 Cusp Yes Yes No Yes Yes Yes Yes Yes 

0.5 1 (°) 21.286 37.926 45 39.732 35.042 29.745 23.824 10.305 

 2 (°) 68.714 52.074 45 50.268 54.958 60.255 66.176 79.695 

2.2/1.54 

 Cusp Yes No No No No Yes Yes Yes 

1.54/4.4 1 (°) 15.255 28.61 34.992 30.192 26.147 21.801 17.176 7.253 

 2 (°) 60.9 41.934 34.992 40.104 44.947 50.774 57.756 75.44 

2.0 

 Cusp Yes No No No No No Yes Yes 

0.25 1 (°) 11.023 21.286 26.565 22.567 19.323 15.945 12.45 5.194 

 2 (°) 52.074 32.687 26.565 31.03 35.487 41.186 48.552 70.017 

3.0 

 Cusp No No No No No No No Yes 

61.0   1 (°) 7.4 14.56 18.435 15.486 13.158 10.784 8.373 3.468 

 2 (°) 40.549 23.16 18.435 21.853 25.422 30.256 37.049 61.39 
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It can be seen from Table 2 that the extreme cuspidal heel angles E in the first quadrant 

exist if the first vertex heel angle 1 is lower than 45° and the second vertex heel angle 2 is 

larger than 45°. Therefore, Condition 1 is not correct and should be replaced with a new 

condition for the existence of additional cusp discontinuity for the rectangular cross section in 

the first quadrant with: 

Condition 6:  The single necessary condition for the existence of extreme cusp discontinuity 

in the hyperbola segment of heel angles for rectangular cross section 

In order for extreme cusp discontinuity to exist in hyperbola segment of heel 

angles, the first vertex cuspidal heel angle must be lower than 45° and the second 

vertex cuspidal heel angle must be higher than 45°. 

Mathematically written, the necessary condition for the existence of extreme cusp 

discontinuity and its heel angle in the first coordinate system quadrant is: 

 

E1: 1  45° & 2  45° (17) 

 

If the existence Condition 6 in the equation (17) is satisfied, then the rectangular cross 

section pontoon has extreme cusp discontinuity heel angle E1 at 45° for actual loading 

condition with draught d, confirming Definition 2 of this paper, and it is on a line in a local 

coordinate system y' = x' with origin in the rectangle’s v1 vertex. 

Another meaning of Condition 6 is that there are lower and upper bounds for the 

existence of extreme cusp discontinuity in the hyperbola segment of heel angles, i.e. 

swallowtail discontinuity, and they are determined below. 

The limit draught ranges for B/D ratios can be then determined using basic equations 

(10) to (14), from Chapter 2, for the calculation of vertex heel angles V1 and V2, that depend 

on d/D i.e. A/AT value. Namely, there are two cases and they are: 1. d/D  1/2 (A/AT  1/2) 

and 2. d/D > 1/2 (A/AT > 1/2), with the first producing triangular and the second producing 

quadrilateral immersion shapes, as shown in Fig. 4. The results of the calculation are shown in 

Table 3 below, with steps for non-dimensional B/D and d/D ratios determination, and B/D 

ratio being chosen due to naval architecture practice in ship theory where this ratio is common 

non-dimensional variable. 

 
Table 3  Determination of additional cusp discontinuity occurrence limit curves 

Steps d/D  1/2 (A/AT  1/2) d/D > 1/2 (A/AT > 1/2) 

1 
tan1 = 2d/B tan1 = 2(D – d)/B 

tan2 = D2/(2Bd) tan2 = D2/[2B(D – d)] 

2 

tan1 = 2d/B = 2d/DD/B = 2y/x tan1 = 2 D/B(1 – d/D) = 2(1 – y)/x 

tan2 = D2/(2Bd) = 1/2D/dD/B 

tan2 = 1/(2xy) 

tan2 = D2/[2B(D – d)] = 1/[2B/D(1 – 

d/D)]     tan2 = 1/[2x(1 – y)] 

3 
1 = 2y/x  y = x/2 1 = 2(1 – y)/x  y = 1 – x/2 

1 = 1/(2xy)  y = 1/(2x) 1 = 1/[2x(1 – y)]  y = 1 – 1/(2x) 
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The equations for vertex heel angles V are determined first, in step 1; then non-

dimensional B/D and ratios d/D are introduced in step 2, and finally x = B/D and y = d/D are 

replaced by x and y, respectively, while tan1 and tan2 are set to tan(45°) = 1 according to 

equations (10) to (14), in step 3. 

Therefore we get two straight lines and two rectangular hyperbolas, as lower (d/D)L 

and upper limits (d/D)U. The lower limits (d/D)L are: y = x/2 for B/D < 1 and y = 1/(2x) for 

B/D > 1, while upper limits (d/D)U are: y = 1 – x/2 for B/D < 1 and y = 1 – 1/(2x) for B/D > 1. 

After drawing the above limit curves, the areas with and without additional extreme 

cusp discontinuity are shown in Fig. 6 below.  

 

 
Fig. 6  Additional extreme cusp discontinuity areas for B/D and d/D values 

Above diagram shows areas where additional extreme cusp discontinuity occurs for 

hyperbola segment heel angle region Range II). If an additional cusp exists, the swallowtail 

discontinuity exists and the metacentric M-curve has sixteen cusp discontinuities overall, thus 

proving Definition 2. It should be noted that the point {d/D = 0.5, B/D = 1} also belongs to 

the additional extreme cusp discontinuity according to Condition 6, i.e. the swallowtail 

discontinuity always exists for B/D = 1, as shown in Fig. 6 above. 

 Condition 6 differs from Condition 1 from Definition 2 set in the theory before and 

represents a single necessary condition for the existence of the extreme cusp discontinuity for 

rectangular cross sections. 

4 Example - metacentric curve cusp discontinuities in hyperbola segment 

In this chapter, the hydrostatic curves are calculated for the example of a rectangular 

cross section test pontoon with breadth B = 2.2 (m), height D = 1.54 (m), length L = 1 (m), for 

draughts d = 0.3 (m) with volume displacement  = 0.66 (m3) and draught d = 1.2 (m) with 

volume displacement  = 2.64 (m3) in order to show the range of swallowtail discontinuity 

existence. Similar calculations are done for different densities of icebergs in [24], but without 

bounds determination. The hydrostatic properties values for the above examples are 

rechecked using Ban’s polynomial radial basis functions, PRBF, [25], and then graphically 

represented with Biles like drawings, [26]. The curves shown are the centre of buoyancy B-

curve, with components XB  {yB, zB} and discrete points B, the centre of waterline F-curve, 
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with components XF  {yF, zF} and discrete points F, and the metacentric M-curve, with 

components XM  {yM, zM} and discrete points M.   

4.1 Swallowtail discontinuity between deck immersion/bottom emersion angles 

In this subchapter, the hydrostatic curves are calculated for the draughts d = 1.2 (m), 

with the corresponding centre of buoyancy B-curve and metacentric M-curve, shown in  7 and 

8, below. 

 
Fig. 7  Metacentric M-curve for rectangular cross section in the first quadrant 

 

Fig. 8  Metacentric M-curve with zoom of extreme cusp discontinuity for hyperbola 

 

As can be seen in  Fig. 7 and Fig. 8, above, the metacentric M-curve has four “regular“ 

cusp discontinuities in the first quadrant, designated by black points and cusp angles 0 to 3, 

with three curve ranges. Yet, Fig. 7 and Fig. 8 show the existence of extreme cusp 

discontinuity E1, too, for heel angle  = 45°, forming swallowtail discontinuity for hyperbola 

region of heel angles in Range II), as defined in Definition 2.  

Since extreme cusp discontinuity exists for heel angle  = 45°, it lays on the line y’= –x’ 

of the local coordinate system set to rectangle vertex point v1, and therefore partially proves 

Definition 2. But the correct statement for Definition 2 should be that above extreme cusp 

discontinuities for rectangle occur for 45° heel angles in every coordinate system quadrant, 
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i.e. in the middle of the arbitrary shape vertex angle v in general due to B-curve hyperbola 

segment evolute M-curve characteristics of cuspidal Lamé curve. 

4.2 Overall characteristics for whole 360° 

In order to show all features of the metacentric M-curve in total, the centres of 

hydrostatic properties for the test rectangular pontoon are calculated numerically with higher 

resolution from 0° to 360°, with heel angles distribution of 1°, for draughts d = 0.3 (m) and    

d = 1.2 (m), i.e. cases A/AT < 1/2 and A/AT > 1/2, respectively.    

4.2.1 Case A/AT > 1/2 

 

 

 
Fig. 9  Hydrostatic properties for rectangular cross section pontoon, case A/AT > 1/2 

 

It is obvious from the “Hydrostatic Particulars Centres” diagrams in Fig. 9, that there 

are twelve heel angles C, c = 0, ... m = 11, with values C = {0°, 17.176°, 57.756°, 90°, 

122.244°, 162.824°, 180°, 197.176°, 237.756°, 270°, 302.244°, 342.824°, 360°}, for which 

cusp discontinuities occur on metacentric M-curve for rectangular cross section pontoon. 

Among them, there are eight vertex heel angles V, v = 1, ... n = 8, with values V = 

{17.176°, 57.756°, 122.244°, 162.824°, 197.176°, 237.756°, 302.244°, 342.824°}, that dictate 

the areal characteristics of pontoon centre of waterline F-curve in a known way, where the 

centre of waterline curve is smooth between two vertex heel angles 1 and 2 for some 

quadrant and stands in a point for other angles. Apart from that, they influence corresponding 

moment of inertia of the waterline WL area, thus directly dictating the characteristics of the 

metacentric M-curve, too. Corresponding extreme cuspidal heel angles can be then found in 

the part of the centre of the waterline curve between vertex heel angle values V1 and V2, also, 

with all four extreme cuspidal heel angles Ei, i = 1, …, 4, with values E = {45°, 135°, 225°, 

315°}. 

Fig. 9, with Fig. 7 and Fig. 8, show that another metacentric curve cusp discontinuity 

exists in the range between the first and the second vertex heel angles in all coordinate system 

quadrants, from E1 to E4.  

And thus, Definition 2 of this paper is proven graphically.  
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4.2.2 Case A/AT < 1/2 

 
Fig. 10  Hydrostatic properties for rectangular cross section pontoon, case A/AT < 1/2 

 
Fig. 11  Zoom of swallowtail discontinuities for rectangular pontoon, case A/AT < 1/2 

 

Fig. 10 and Fig. 11 above, show two overlapping swallowtail discontinuities near E1 

and E2 extreme discontinuities, for case A/AT < 1/2, proving their existence below the 

condition d/D  D/(2B) from Definition 2.  

Therefore, this represents yet another proof of the need for correction of above 

mentioned bound in Condition 1 and the need for setting the bounds from Condition 6. 

4.3 Examples of real floating objects 

Several real floating objects are examined here theoretically for possible additional cusp 

discontinuity existence: near rectangle cross section pontoons, oil and chemical tankers with 

high block coefficients, large bulk carriers, general cargo ships and coastal oil tankers.  

The results in Table 4, below, show that some real floating objects should be checked 

for the existence of additional extreme cusp discontinuities since their corresponding hull 

forms slightly differ from the theoretically rectangular cross section. Among them, ships with 

higher block coefficients should be specially examined for flat deck cambers that can cause 

swallowtail cusp discontinuity heel angles of ship immersion, and thus influence the 

possibility of additional cusp discontinuity occurrence. 
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Table 4  Examples of additional cusp discontinuities for real objects 

 LOA (m) LPP (m) B (m) D (m) d (m) B/D d/D (d/D)U Cusp 

Pontoon 120.0 - 32.2 8.1 6.2 3.975 0.765 0.874 No 

Chemical Oil tanker 182.4 174.8 32.2 18.0 12.18 1.789 0.677 0.720 No 

Crude Oil Tanker 380.0 366.0 68.0 35.0 24.5 1.943 0.7 0.743 No 

Bulk Carrier 255.0 251.5 32.2 20 14.43 1.610 0.722 0.689 Yes 

General Cargo 118.19 115.31 13.35 9.1 6.1 1.467 0.67 0.659 Yes 

Coastal Oil Tanker 96 90.2 15.5 7 5.72 2.214 0.817 0.774 Yes 

 

It can be seen from Table 4, above, that some ships should be calculated for denser heel 

angle  values than usually distributed for 5 or 10°, in order to detect swallowtail type 

discontinuity. The objects with low B/D ratios near value one should also be specially 

examined since their whole range of d/D values can result in swallowtail cusp discontinuity 

occurrence. This will be further studied, as well, by the author in other papers. 

4.4 Transversal static stability particulars 

After the transversal metacentric curve is known, it is possible to calculate the ship's 

stability particulars directly, and evaluate the influence of additional metacentric curve cusp 

discontinuity on stability particulars, as well as on other ship characteristics.  

But first, it is necessary to calculate the metacentric height curve for one centre of 

gravity G position, with components XG  {yG, zG}. Corresponding actual metacentric height 

curve c represents the distance from the actual metacentre, M, to the centre of gravity, G, of 

the ship, for different heel angles . Corresponding transversal intact stability particulars are 

calculated for zero transversal centre of gravity, yG = 0 (m), and the vertical centre of gravity 

of the pontoon is set to zG = 0.77 (m), as shown in Fig. 12 below. 

 

 
Fig. 12  Elementary transversal stability functions for draught d = 1.2 (m) 

 

The results shown in Fig. 12 represent elementary stability functions: metacentric height 

curve c, transversal static stability righting lever curve h and transversal dynamic stability 

path curve e. 
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It is well known that elementary stability functions c, h and e are all interconnected by 

integration and derivation relations. Therefore, if one curve is known, it is possible to 

determine all others. One of their possible relations are 




cdh  (18) 

  
 

 dcdhde  (19) 

Obviously, metacentric height curve c has the same position of local extremes for vertex 

heel angles V1 and V2, as shown in Fig. 12, but a different position of local extreme than 

metacentric M-curve for extreme cuspidal heel angle E. Therefore, it should be calculated 

separately, by finding a local minimum of metacentric height c curve, using the same 

condition as for additional cusp discontinuity of metacentric M-curve.  

The heel angle value for which the metacentric height curve, c, has a local minimum 

angle in the above example is S = 47.918(°), which clearly differs from extreme cuspidal 

heel angle E = 45(°), and should be determined separately. For this angle, S, the static 

stability righting lever curve h also has a local inflection point, as shown in Fig. 12, and this is 

an expected feature determined by Zeeman, [4], also. The righting lever curve inflection heel 

angle value S differs for the different centres of gravity XG  {yG, zG} and should be 

calculated for the actual XG value. 

It can be concluded overall that if the swallowtail type discontinuity exists for some 

general cross section the intact stability calculations should be performed with denser heel 

angles  distribution, in order to detect this feature for righting lever curve. The conclusion 

about the qualitative effect of the swallowtail discontinuity cannot be given solely from this 

paper, but it can be seen from Fig. 12 that righting lever curve has a larger range and area 

under it, due to the existence of the inflection point in between of two vertex heel angles of 

deck immersion/bottom emersion.  

5 Conclusion 

As the first part of this paper, the centre of the buoyancy curve and metacentric curve of 

the rectangular cross section shape is re-examined, with correct upper and lower non-

dimensional bounds for swallowtail discontinuity existence given, thus enabling easy 

determination of the above metacentric curve feature. When those conditions are satisfied, 

additional cusp discontinuities of the metacentric curve for rectangular cross section floating 

body exists for heel angles equal to 45 degrees, i.e. in the symmetry of the rectangle vertex 

angles. Then, using the hydrostatic particulars centres components diagram, it is shown that 

cusp discontinuities for rectangle can be divided into extreme and vertex type discontinuities, 

with extreme one giving inflection of static stability righting lever curve when swallowtail 

type discontinuity exists in the hyperbola segment of the centre of buoyancy curve. Overall, 

the swallowtail discontinuity may be considered positive regarding stability particulars values 

of wall-sided ships, enlarging range and the area below righting lever curve, which should be 

further examined.  

In part 2 of this paper, the exact centre of buoyancy and metacentric locus curves for the 

whole first quadrant heel angles will be examined also using quadratic functions. 

Since, the above is examined for the regular rectangular shape of a floating body, in the 

future author’s work other regular shapes will be investigated, as well as for the cross-

sectional shapes of actual ship hull forms. 
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Finally, after all the centre of buoyancy and metacentric curves are known, the 

rectangle’s hydrostatic kinematics can be re-examined in detail which will be the future 

research topic of the author of this paper. 
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