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Abstract 
In recent years many different biomedical implants have been created for prolonged usage 
within the human body. The number of these implants has been steadily expanding. 
Mechanical characteristics of biomaterials, such as elastic modulus, hardness, tensile 
strength, and scratch resistance, are essential for implants. Biomechanical incompatibility 
is associated with implant fracture brought on by mechanical failure. The materials utilized 
to replace bone must have mechanical qualities comparable to those of bone. Metallic 
implants deteriorate due to wear, electrochemical breakdown, or a synergistic mix of the 
two. Biocompatible materials are used to repair or replace joints, fractured, or otherwise 
damaged bone. Corrosion is the main factor in hip implant failure. These characteristics also 
contain several other factors, such as solution factors, geometric factors, metallurgical 
factors, and mechanical factors. The mechanical properties of the implant materials were 
most important and had a considerable impact on the process of bone restoration. Metals 
have the highest tensile strength compared to other materials, followed by polymers and 
ceramics (except for zirconia). There are several issues with the metallic biomaterial that 
need to be fixed, including the release of harmful substances during metallic corrosion. 
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Introduction 

In the modern world, millions of individuals experience a wide range of diseases and injuries, 

including tissue damage, cancer, and problems with the teeth, hips, and eyes, among others [1]. 

Additionally, road accidents kill about 1.3 million people annually and damage another 20-50 million 

people. The majority of traffic accidents worldwide occur in India [2]. In India, road accidents are a 

major source of mortality and illness. Additionally, there has been an increase in vehicle accidents 
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in India over the past 20 years, with six million non-hospitalized visits and 1.2 million hospital-

lizations. In addition, millions of individuals worldwide suffer from musculoskeletal ailments, 

including osteoarthritis, bone cancer, and spine issues [3]. 

The Indian Osteoporosis Society predicts that by 2013, there will be 36 million osteoporosis 

sufferers in India, up from an estimated 26 million in 2003. In India, it is estimated that there are 3 

million hip fractures, 20 lacs broken wrists, 5 million spinal fractures, and another 300,000 bone 

fractures each year. By 2050, it is predicted that osteoporosis will cost the global economy $131 

billion [4]. Every year, orthopedic-related issues cost society more than $250 billion. The American 

Academy of Orthopedic Surgeons (AAOS) classified musculoskeletal conditions as the leading cause 

of patient visits to the doctor due to their significant impact. Therefore, the years 2000 to 2010 have 

been designated as the global "decade of the bone and joint" in an effort to raise awareness of 

musculoskeletal illnesses via the prevention, research, and education. The techniques to address 

such problems have been a focus of concern for the modern healthcare industry due to the 

prevalence of musculoskeletal ailments and the lack of a cure. Another potential strategy for 

treating these problems is the use of artificial biomaterials. Such synthetic biomaterials are 

implanted clinically to restore often physically injured tissues [5]. The market for biomaterials is 

thought to be worth more than $300 billion globally and is predicted to grow by 20 % annually. 

Millions of people receive implants every year from doctors, including hip joints, breast and dental 

implants, hearing aids, etc. Most of these implants are used to replace hips, knees, and spinal discs. 

By the end of 2030, there will have been an increase in hip joint implantation of 174 %. According 

to projections, the total number of knee arthroplasties will increase by 67.3 % (348 million 

operations) from the current pace [6]. By 2020, the market for orthopaedic products will be worth 

close to $47 billion worldwide. Several variables, including the aging population, changes in 

technology and lifestyle, enhanced aesthetics, and the desire for better functioning, are projected 

to cause an increase in the sale of orthopaedic items. The goal of current orthopaedic research is to 

create multifunctional biomaterials that will perform flawlessly for a lifetime. Accidents are a 

significant cause of death and morbidity in India hence the development of appropriate biomaterials 

with high durability and outstanding mechanical, biocompatibility and cytotoxicity qualities is 

extremely vital. Additionally, there has been an increase in vehicle accidents in India over the past 

20 years, with six million non-hospitalized visits and 1.2 million hospitalizations. In addition, millions 

of individuals worldwide are also affected by musculoskeletal problems, including osteoarthritis, 

bone cancer, and spine issues. Around 26 million people in India have osteoporosis, according to 

the Indian Osteoporosis Society [7]. 

Biomaterials 

Following the first biomaterials conference held in 1969 at Clemson University (South Carolina)  

[8], biomaterials acquired notoriety. Biomaterials are substances, whether natural or artificial, 

that can come into touch with living tissues and not react negatively. It can be used to take the 

place of, improve upon, or aid in the operations of a particular organ piece or the complete organ 

system. As shown in (Figure 1), biomaterials science focuses on the investigation of their physical 

and biological interactions with the biological environment. [9]. Any biomaterial must meet the 

essential requirement of being biocompatible with human tissues. Additionally, exceptional 

mechanical qualities and resistance to corrosion and wear are crucial.  
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Biocompatibility 

A substance's biocompatibility is defined as its capacity to carry out the desired function for a 

medical therapy without causing any unfavourable local or systemic effects in the recipient while 

still inducing the necessary beneficial cellular response and enhancing the therapeutic effect in a 

clinical setting. [10]. Three kinds of biocompatibility are categorized based on tissue response 

phenomena (Figure 2). 

 
Figure 1. Application of biomaterials 

 
Figure 2. Classification of biocompatibility as per tissue response phenomena 

Biomaterial mechanical properties  

Particularly for load and bearing applications, the mechanical characteristics of biomaterials are 

crucial. Implants' modulus, elasticity, hardness, scratch resistance, and tensile strength are essential 

mechanical characteristics. Biomechanical incompatibility is associated with implant fracture 

brought on by mechanical failure. The materials utilized to replace bone must, for this reason, have 

mechanical qualities comparable to those of bone. NaOH-treated Ti substrates were calcined by Kim 
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et al. [11]. They observed that heat treatment at  600 °C has found maximum mechanical  stability 

from other heat treatments. Piveteau et al. [12] looked into the adherence power of 

TiO2/hydroxyapatite (HAp) films on Ti substrate utilizing rotating-bending test and tensile bond test 

techniques. In order to examine the mechanical characteristics and stiffness of cervical plates under 

static and dynamic loading scenarios, Brodke et al. [13] developed a simulated cervical corpectomy 

model. The flexural strength of hydrothermally produced HAP nanoparticles was reported by 

Kothapalli et al. [14] to be 78 MPa. The effect of the porosity of HAP coatings on the development 

of osteoblast-like cells was examined by Spriano et al. [15]. Microhardness and compressive 

strength of HAp whiskers were determined by Bose et al. [16]. Using nano-indentation and AFM 

methods, Nathanael et al. [17] investigated the surface roughness and strength of sol-gel dip 

HAP/TiO2 coatings. Scratch testing was done on calcium phosphate (CaP) coatings that were 

magnetron sputtered onto stainless steel 316L substrates by Toque et al. [18]. Hardness, elastic 

modulus, surface roughness, and toughness of the sol-gel generated HAP coatings applied to 

commercially pure Ti (CP-Ti) and Ti6Al4V alloys were determined by Roest et al. [19]. Using the 

indentation technique, Souza et al. [20] examined the tribo-mechanical behaviour of films. 

Corrosion resistance 

The metallic implants must communicate with the human body's aggressive bodily fluid, which 

contains chlorides and proteins. Therefore, corrosion resistance is essential for implants. During the 

corrosion cycle, the alloy's metallic components oxidize, turning dissolved oxygen into hydroxide ions. 

It has certain drawbacks, including (a) the degradation process lowering the structure's quality and (b) 

the possibility of unfavourable host tissue reactions to the waste products. Metallic implants 

deteriorate due to wear, electrochemical breakdown, or a synergistic mix of the two [21]. The strength 

of oxidation/reduction processes and physical barriers that prevent corrosion kinetics control the 

corrosion of metallic implants. These characteristics also contain a number of other factors, such as 

solution factors, geometric factors (such as taperness), metallurgical factors (such as microstructure 

and composition), mechanical factors (such as stress and relative motion), and others (e.g., pH and 

solution composition). Corrosion, according to Spector [22], was the main factor in hip implant failure. 

A review of electrochemical corrosion processes, implant responses to host environments, and host 

tissue responses to implant corrosion products was made by Jacobs et al. [23]. The effects of different 

forms of corrosion on the lifespan and use of orthopaedic devices were reviewed by Kamachimudali 

et al. [24] and discussed. Using a potentiodynamic polarisation test, Kim et al. [25] assessed 

corrosion resistance after HAp/TiO2 coatings were applied to Ti6Al4V substrates. They came to the 

conclusion that the TiO2 coatings' deposition increases the substrate's corrosion resistance. 

According to Spriano et al. [15], the bioactive layer applied to Ti6Al7Nb substrates had outstanding 

corrosion resistance. According to Balamurugan et al. [26], HAp/SS 316L exhibits greater corrosion 

resistance than bare surfaces. The electrochemical behaviour of HAp/TiO2 coatings applied to SS 

316L by dip coating was assessed by Balamurugan et al. [27]. In simulated bodily fluids, 

electrochemical experiments revealed good corrosion resistance and minimal metal ion leaching 

(SBF). Many authors claimed that adding double-layer HAp coatings on SS alloy substrates and 

electrochemically depositing increased corrosion resistance. Tantalum oxide bilayer coatings that 

had been altered by organophosphate acids were investigated by Arnould et al. [28] for their impact 

on corrosion resistance. 
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Implant materials 

Over the past 20 years, the usage of biocompatible materials in medicine has increased 

significantly. Gold, silver, and iron are the most often utilized metals in the creation of lengthy bone 

fracture pins and spinal cables. In orthopaedics, biocompatible materials are mostly used to repair 

or replace joints, fractured, or otherwise damaged bone [29]. Through examination, these materials 

are used as long-term implants, screws, and pins through inspection. 

Alternative biomaterials are expected to have an impact on key burden areas, such as spinal 

components, tumor bones, orthopaedic joints, and dental components [30]. Because of this, it is 

crucial to consider both performance and mechanical strength. Implants can affect cellular responses 

like differentiation and mineralization because the bone is so sensitive to changes in its mechanical 

characteristics down to the smallest level. The mechanical characteristics of the implant materials 

were critical and had a significant influence on the bone repair process. A substance should have both 

mechanical strength and fracture resistance when used as a transplant material. Metals have the 

highest tensile strength of all materials, followed by polymers and ceramics. (except for zirconia) [31]. 

Tensile strength and corrosion resistance are all areas in which metals outperform ceramics. There 

are several issues with the metallic biomaterial that need to be fixed. The most significant is the 

release of toxic chemicals from metals during metallic corrosion. Some of the most common examples 

include cobalt alloys, stainless steel alloys, titanium alloys, and a variety of other forms of metallic 

biomaterials. Ninety percent of osteosynthesis devices have been constructed of austenitic stainless 

steel since the 1930s. The material's mechanical strength and biocompatibility were both exceptional 

qualities. The exceptional strength-to-weight ratio of Co-based alloys makes them a popular choice 

for anatomical research. The inherent strength and wear resistance of these materials are greatly 

enhanced by the presence of chromium, which is present in concentrations of more than 18%. When 

titanium was first used, it was in the aircraft sector in the 1950s. The substance has now been altered 

to allow its usage in human medical implants [28]. 

Implant-grade stainless steel was created in 1926 by T. Krupp. It was 18-8 because it had 18 % Cr 

and 8 % Ni (type 302 in the present-day arrangement). Tools for surgery and dentistry are made of 

commercial-grade stainless steel in the biomedical industry. Vacuum melting (VM), and other 

stainless-steel implant-specific manufacturing techniques, such as vacuum arc re-melting (VAR) or 

electro-slag refining (ESR), provide resistance to pitting and crevice corrosion as well as a reduction 

in the amount of nonmetallic additives. Austenitic stainless steels are widely utilised due to their 

flexibility. On the open market, vacuum-melted 316L stainless steel implants with cheap cost, good 

strength and ductility, machinability, and easily adjustable mechanical qualities are available [32-

37]. Since the 1930s, titanium alloy has been used in alloying and thermo-mechanically 

advantageous to considerably strengthened and low-density (4.5 g/cm3) titanium alloy implants. 

The biomedical industries first used titanium implants in the 1930s. A high temperature was 

required for vacuum processing in order to prevent the creation of an oxygen reaction. The only 

version of the four grades that is commercially accessible is pure titanium (Cp-Ti). 

The existence of porosity on the implant's surface is one of the most critical elements influencing 

osseointegration [38]. These holes considerably aid in the creation of connective tissues between 

the implant and the bone, as well as osteoblastic cell penetration. By applying biodegradable 

polymers to the surfaces of the implants, it may be possible to create in vivo porosities. Mg can be 

studied as a biodegradable phase, making it one of the most biodegradable materials in use today. 

A double-layer coating of HAp and Mg was deposited using cold spray (CS), with the PS method 

applied to the HAp layer in the middle to increase corrosion resistance. The HAp layer was applied 
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using the PS method. Potentiodynamic polarization curves are produced by HAp and HAp-Mg two-

layer coatings (Figure 3). The HAp with 10 wt.% of Mg has the best corrosion resistance due to the 

intermediate dense HAp layer. This is due to the HAp layer's contribution to corrosion prevention. 

Porosities will form if the Mg phase is dissolved at the surface of coated samples. These porosities 

provide ideal conditions for bone formation [39]. Because of the porous nature of the HAp-Mg layers 

on top, it is impossible to increase the substrate's corrosion resistance. 

 
Figure 3. Potentiodynamic polarization curves 

HAp as a bioactive bone substitute 

The main mineral components of teeth and vertebral bone are CaP salts. The biominerals incor-

porated in the protein matrix that make up bone tissues are regarded as anisotropic composites [40]. 

The biomineral phase, which is made up of several CaPs types, comprises 65-70 % bone, 5-8 % water, 

and 5-8 % organic matter [40]. The collagen provides elastic resistance and acts as a mineral deposition 

and growth [39]. Among the several CaP salts, HAP is a superb biocompatible substance and a crucial 

biomaterial for applications in the bone and dentistry sectors. About 95 % of HAp is found in the 

enamel of human teeth. In the human body, CaP exists in a stable crystalline phase known as 92 HAP 

[39]. Natural bone is composed of nanostructured, nonstoichiometric HAp with dimensions of 20 nm 

in width and 50 nm in length. There are also a few minor levels of certain substituent ions, such as 

magnesium, fluoride, and carbonate. The Ca/P molar ratio of natural HAp is often less than 1. Due to 

synthetic's superior biocompatibility [41] and strong osteogenic potential. For many years, HAP has 

piqued the attention of the medical community. 

Surface modification 

Biomaterials and the biological environment communicate at the surface. Therefore, a 

biomaterial's surface characteristics ultimately determine whether it will be accepted or rejected by 

the human body. Although the bulk properties of biomaterials regulate their mechanical properties, 

the surface features govern tissue-biomaterial interactions. Such interactions are projected to occur 

in a zone no bigger than one nm. [42]. Numerous studies have related surface features such as 

surface topography and chemical composition to bone implant clinical efficacy. [42]. It is feasible to 
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improve material and biological reactions while maintaining bulk properties constant. Surface 

modification falls into three broad categories: (a) introducing materials with desirable functionalities 

to the surface, (b) changing an existing surface to have more desirable compositions and 

topographies, and (c) removing material from an existing surface to achieve specific topographies. 

Because just the surface layer must be changed, surface modification is seen as a low-cost strategy 

from an economic aspect, as illustrated in (Figure 4). Its main goal is to increase biocompatibility, 

bioadhesion, antimicrobial characteristics, corrosion resistance, and wear resistance. There are 

several ways to modify surfaces, including the plasma spraying technique is frequently used to cover 

Ti6Al4V implants with HAP or other CaP minerals in an effort to promote bone bonding. 

 
Figure 4. Through alterations to the chemistry, topography, energy, and charge of the surface of 

biomaterials 

Lasers and thermal sprays aiding in medicine 

Claddings are widely used for the protection of bioimplant materials against corrosion [43-55]. 

Thin and thick coatings are also applied to bioimplant for protection against corrosion and erosion 

[56-59]. Corrosion and erosion severely affect the life and durability of the different materials 

[32,33,60-73]. Coatings techniques such as HVOF/HVAF [32,37,62,68,71-81], plasma spray [82-84], 

chemical vapor deposition (CVD) [85-88], sputtering [35,58,79,89-95], plasma vacuum deposition, 

i.e. PVD [54,58,96-101], electrochemical vapor deposition (EVD) of yttria‐stabilized zirconia films, 

[102] etc. Thin coatings are generally preferred compared to thick coatings in biomedical 

applications of different alloys [35,95]. Surface modification techniques can be an asset in protecting 

the alloy bioimplant. Due to its cost-effectiveness, plasma spray has been one of the most popular 

methods for increasing the bioactivity of substrate material by coating it with HAp. The US Food and 

Drug Administration has also approved this method. However, this technique creates coatings with a 

rapid rate of deposition and a uniformly thick layer. However, this procedure needed pricey machinery 

and a high temperature for the coating to be deposited on the substrate. This approach produces 

coatings that have poor coating-substrate adhesion. Additionally, the interface between the deposited 

coatings and the substrate surface is noticeable, which is normally not desired for long-term 

applications [103,104]. The inherent flaws in the plasma spray approach have been solved using laser 

energy. In this method, the surface of the implants was modified using a laser by creating a composite 

layer with HAP that was diffusion-bonded to the surface of the substrate. Balla et al. [105] presented 

the procedure for using laser energy to create a coating of HAp powder onto SS-316L. The surface 

layer of the bioactive HAP powder on substrate SS-316L may be altered by varying the laser energy 

input parameters, according to the authors' findings. However, there are significant downsides to the 

laser processing of materials, such as greater running and installation costs, interface cracking, and 

thermal distortion [106]. 
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Recent years have seen a significant increase in microwave heating (MH) as a cutting-edge method 

for treating a wide range of materials, including metals, ceramics, and composites [107]. Depending 

on the dielectric characteristics of the target material, electromagnetic energy is transformed into 

heat energy in MH. Depending on the dielectric and magnetic characteristics of the target material, 

both fields (electric and magnetic) interact with the substance during microwave irradiation. Both 

electric and magnetic field components interact with the substance during microwave irradiation, 

depending on the magnetic and dielectric properties of the target material. The target material is 

heated uniformly by absorbing electromagnetic energy at the atomic or molecule level via polarisation 

by dipole rotation and ionic conduction. Because heat transfer in traditional heating depends on the 

target material's thermal conductivity, MH differs substantially from traditional material heating. Due 

to prolonged heat exposure, the component exterior may be injured during conventional heating of 

thick materials with restricted thermal conductivity. Furthermore, there is a considerable temperature 

difference between the core and surface of these materials during conventional heating, which affects 

the mechanical properties of treated materials. During microwave irradiation, on the other hand, the 

target material's core rapidly warms up as a result of heat created within the material itself, and the 

heat is subsequently transmitted to the surface. As a result, the heating profile is reversed, as opposed 

to typical heating, which is "outside-in." This one-of-a-kind heating phenomenon associated with MH 

has advantages in terms of an improved diffusion process, low thermal gradient, reduced residual 

stresses due to less variation in a temperature gradient, and significantly shorter processing time due 

to the volumetric and uniform heating caused by microwave interaction with the target material [107]. 

According to Agarwal [108], microwave energy has far greater potential for material processing than 

conventional methods due to benefits such as shorter processing times, which result in significant 

energy and cost savings, and finer microstructures, which improve the mechanical properties of the 

target material. 

Applications of microwave radiation as a surface engineering tool in biomaterials 

Because they are good microwave absorbers at room temperature, ceramics, polymers, 

composites, and semiconductors were the main materials that could be processed using microwaves 

up until 1999. However, today, all powdered metals can be processed using microwave energy just as 

effectively and efficiently as ceramics. Microwave (MHH) is also used to treat bulk metallic materials 

utilizing microwave radiation [109]. This has created a new area for research into the challenging and 

expanding demand of many metallurgical applications as well as to take full advantage of the benefits 

of microwave processing of materials. Cladding, coating, and glazing are the three categories under 

which microwave technology is most commonly used in surface engineering. 

Microwave cladding 

Depending on the demands, an overlay of acceptable materials on a substrate can be created using 

the surface engineering approach known as microwave cladding. In general, cladding is used to 

provide the surface of a substrate with certain qualities, increase wear resistance, or both. It entails 

total melting of the clad material and partial melting of the substrate material in terms of the top 

layer. There are several different cladding methods available today. Better mechanical characteristics 

can be found in the fine microstructure. Despite these benefits, laser cladding has certain inherent 

drawbacks, such as the creation of high thermal stress that might result in clad layer breaking and 

thermal distortion. Furthermore, when covering huge regions, laser cladding is not a particularly cost-

effective technology. Due to its unique benefits, microwave processing of materials has recently 
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become more common. Gupta and Sharma were the first to disclose the use of microwave technology 

for altering a material's surface properties in the form of cladding in a patent [110]. With the aid of 

MHH, the authors have effectively established the cladding of metallic and composite powders on 

metallic substrates. Figure 5 schematically depicts the irradiation process used for cladding. The 

scientists employed charcoal powder as a susceptor in this approach, which easily absorbs microwave 

radiation and heats to a high temperature. Later, the heated system uses a standard way of heat 

transmission to warm the coated powder particles. As a result, the metallic powder particles begin to 

absorb the microwaves at greater temperatures. To prevent any contamination of the powder with 

charcoal powder, a solid layer of graphite was utilized as a separator. According to the authors, chro-

mium carbides and other intermetallic compounds have formed, increasing the hardness of the clad 

area. Therefore, this changed surface could be an excellent defense against functional surface wear. 

 
Figure 5. (a,b) Surface modifications using hybrid MH were performed on SS-316L alloy, and this schematic 

depicts the experimental setup used. (c) Initially, the susceptor heats up because of an increase in 
microwave energy (d) As the HAp powder melts, it mixes with the surface layer of the substrate 

 to form a composite, modified layer 

An appropriate hard material particle (such as SiC, Al2O3, or diamond) is added to the metal-

based matrix used in composite cladding to improve wear and abrasion resistance. The additive 

reinforcement phase may additionally contain a dry lubricant (such as MoS2, PTFE, and graphite) to 

impart lubricating qualities and decrease the coefficient of friction [111]. It has been discovered that 

adding extra hard phase(s) to composite cladding has a significant influence on the mechanical 

characteristics of the material, such as hardness, strength, and elastic modulus. Cladding hard 

particles with a metallic binder in the form of a metal-matrix composite improve the surface's wear 

properties, according to Huang et al. [112]. Thermal spraying, arc welding, and laser cladding are all 

methods for generating composite cladding on metallic substrates. Heat spraying, while effective, 

cannot produce diffusion bonding between the hard phase particle and the substrate. Flexural 

strength is minimal because of the produced clad's poor bonding with the substrate. Due to the 

tremendous heat created during arc welding, a melt pool develops on the surface of the substrate, 

resulting in strong metallurgical bonding. The substrate may become severely distorted due to the 

high dilution of the composite coating (due to the high energy input). Furthermore, arc welding and 

laser cladding commonly exhibit the creation of heat-affected zones (HAZ). On the other hand, 

microwave cladding only causes the surface layer of the substrate - between 10 and 15 m - to melt. 

According to Gupta and Sharma [113], the overlaid particle to completely melt. Because the clad 

powder particles effectively pair with the microwave, this is feasible (due to better skin depth). 
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While the molten powder layer's traditional conductive heating causes the substrate to melt to a 

few microns (just the skin depth, 10-15 m) thicknesses. The metal-based substrate's main body 

reflects the microwave. Minimizing the heating caused by microwave contact as a result. This 

cladding has the benefit that the metallic reinforcement produces improved hardness and hence 

greater wear resistance, while the metallic matrix demonstrates the superior toughness. Microwave 

cladding has been developed and in-depth characterized by Sharma and Gupta [114]. In cermet 

cladding, scientists have reported a skeleton-like reinforcing (hard carbide) structure in the Ni-based 

matrix. Additionally, they show how evenly dispersed the hard particles are in the soft matrix; the 

clad shows a markedly superior wear resistance [115]. Table 1 is an overview of the outcomes from 

the microwave clads as reported by different sources. It is important to highlight that microwave 

cladding significantly reduces porosity as a result of the uniform heating brought on by MHH [116]. 

Furthermore, it was noted that the microwave clads did not exhibit the stress corrosion cracking 

often seen in laser clads.  

Table 1. Results after cladding of metallic powder on metallic substrate developed through MHH heating 
mechanism in multimode microwave oven 

Microwave cladding of biomaterials 

Research describes employing the hybrid microwave heating (MH) procedure to reinforce 

hydroxyapatite (HAp) powder on the surface layer of stainless steel (SS-316L) to boost the metal's 

bioactivity [110]. The modified substrates were post-heated for one hour at 400 and 700 degrees 

Celsius. The microstructural study of the layer revealed the presence of HAp particles as well as 

certain reaction-induced products in the iron-based austenite dendritic matrix of the modified 

composite layer. Heat-treated substrates showed a higher microhardness value than freshly 

deposited substrates due to densification of the modified layer after heat treatment. Porosity, 

surface imperfections, and faults were reduced after heat treatment. SEM images of the modified 

and unmodified SS-316L after immersion testing in simulated body fluid demonstrated quick apatite 

production capabilities on the modified substrates. The amorphous phase and porosity contents of 

the modified substrates reduced after heat treatment at 700 °C, lowering their ability to form 

apatite. A superalloy substrate with strong glass-ceramic coatings that are nickel-based has been 

reported. The MgO-Al2O3-TiO2 system, which is based on glass, was used to create the ceramic 

Sr. Author Substrate Coating Cladding results 

1 
Gupta and Sharma 

[113] 
ASS-316 WC10Co2Ni powder 

Average microhardness: 1064 ± 99 HV 
Porosity: 0.89 %. 

2 
Gupta and Sharma 

[114] 
ASS-316 

EWAC + 20 % composite 
powder 

Flexural strength: 629 ± 8 N 
Average microhardness: 416 ± 20 HV 

3 
Gupta and Sharma 

[117] 
ASS-316 

Cu powder of size 5 µm and 
a purity of 99.5 % 

Mean hardness: 270 ± 30 HV 

4 
Gupta and Sharma 

[118] 
ASS-316 

EWAC powder (Ni-based 
having a size of 40 µm) 

Average microhardness: 304 ± 48 HV. 

5 
Gupta and Sharma 

[115] 
ASS-316 WC10Co2Ni powder Average microhardness: 1064 ± 99 HV 

6 
Gupta and Sharma 

[116] 
ASS-316 

EWAC (Ni-based +  
20 % Cr23C6 powder) 

Phases: FeNi3, NiSi, and Cr23C6 phases 
average microhardness: 425 ± 140 HV 

7 Kaushal et al. [119] ASS-316 L Ni-WC-Cr3C2 powder 
Phases: Cr7Ni3, NiC, Fe6W6C, Co3W3C4, FeNi3, 

and NiW; average Vicker's microhardness: 503 
± 34 HV (1.6 times that of substrate's HV) 

8 Singh et al. [120] Mild Steel Inconel-625 Average microhardness: 550 ± 15 HV 
9 Singh et al. [121] SS-316 Inconel-625 Microhardness increases at 980 STA 
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coatings. The authors have compared the coating produced by both traditional and microwave 

techniques. The findings demonstrate that coatings produced by microwave processing have finer 

microstructure than crystallites made using more traditional methods. When compared to 

traditionally treated coatings, the hardness of the coating produced by microwave processing was 

much greater (6 GPa), as determined by the depth-sensitive indentation method. It has been proven 

that coatings produced using microwave technology exhibit lower surface roughness (Ra) values 

than coatings prepared using more traditional methods. 

In the work, authors applied microwave radiation to alumina-reinforced hydroxyapatite clad UNS 

S31254 stainless steel to change the surface layer to enhance its bioactivity [122]. An industrial 

microwave oven that operated at 1.1 kW and 2.45 GHz and was accompanied by an infrared 

pyrometer was used for the microwave surface modification procedure. Additionally, the surface-

modified samples underwent a 1-hour thermal heat treatment at 400, 600 and 800 °C in a muffle 

furnace. SEM, energy-dispersive spectroscopy, an X-ray diffractometer, and simulated physiological 

fluid tests were used to investigate the metallographic, compositional, phase analysis, and bio-

activity of microwave surface-modified materials. The samples with microwave surface modifi-

cations included alumina, according to the X-ray diffractometer analysis. The microwave-assisted 

surface modification layer is largely composed of iron (Ni-Fe)-based austenite dendrites, together 

with hydroxyapatite and specific reaction products, notably in the interdendritic areas, according to 

the microstructural investigation. The results reveal that heat-treated samples exhibit lower 

porosity and higher hardness when compared to samples with surface changes made when they 

were deposited. Furthermore, the 800 °C heat-treated samples showed the lowest porosity (about 

56 % less than the as-deposited sample) and maximum hardness (roughly 23.5 % greater than the 

as-deposited sample). The loss of pores and amorphous phase as a result of heat treatment reduced 

the surface-modified materials' ability to bind bone. In another work, the authors employed 

microwave hybrid heating (MHH) to enhance the biocompatibility of implants composed of 

austenitic stainless steel (SS-316L) by changing the surface chemistry and shape [123]. Bioactive 

hydroxyapatite (HAP) powder was added to the polished SS-316L alloy surface layer using an 

industrial microwave oven operating at 2.45 GHz and 1.1 kW. The altered layer of SS-316L alloy was 

characterised using phase analysis, microstructure inspection, porosity analysis, and the ability to 

generate apatite. According to the microstructural examination, the inter-dendritic parts of the 

modified layer of SS-316L alloy contained austenite dendrites with HAP as well as numerous 

reaction-induced phases such as Fe3P, FeP, and Fe2P. The modified layer of the SS-316L alloy 

outperforms the unmodified layer in terms of microhardness. The altered layer has a porosity of 2 % 

to 3 %. In an in-vitro study using simulated bodily fluid (SBF), the microwave-assisted surface-

modified layer of SS-316L alloy demonstrated improved bioactivity. The SEM images demonstrate 

that an appetite layer has developed in the modified layer of the SS-316L alloy. The observed 

biological improvements in the microwave-assisted modified layer were caused by changes in the 

surface morphology and chemistry of the SS-316L substrate material caused by cladding. 

Conclusions 

The primary objective of this review is to compile a substantial body of knowledge regarding HAp 

coatings and coating methods for the purpose of the production of biomedical implants. It has been 

reported that a superalloy substrate has nickel-based coatings that are robust glass-ceramic 

coatings. Ceramic coatings were manufactured by employing the MgO-Al2O3-TiO2 system, founded 

on the glass as its primary component. When compared to coatings that had been subjected to 
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conventional treatment, the coating that had been produced by microwave processing had a 

significantly greater degree of hardness (6 GPa). A higher microhardness rating can be found in the 

modified layer of the SS-316L alloy in comparison to the layer that has not been modified. The 

altered layer had a porosity of between 2 and 3 % throughout its entirety. According to an in-vitro 

investigation that was carried out in a solution that was meant to mimic bodily fluid, the modified 

layer demonstrated an increased level of bioactivity. 
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