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Abstract 
Recently, magnesium alloys have garnered a lot of interest as a potentially useful material 
for applications involving biodegradable implants. Cracking or fracture of metal-based 
implants under the combined action of corrosion and mechanical stresses, namely stress 
corrosion cracking (SCC) is an obviously critical criterion before any new material might be 
deployed as implants. Cracking or fracture of metal-based implants occurs under the 
simultaneous action of corrosion and mechanical stresses. This article gives a review of the 
existing literature on the SCC of magnesium alloys in corrosive environments, including 
simulated body fluid and the accompanying fracture process. It also indicates the 
knowledge gap that exists in this area of research. In addition, a high-level review of the 
preventative measures that may be taken to avoid potential corrosion fatigue failures in 
magnesium alloys is provided. 
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Introduction 

It is one of the most difficult tasks of our day to find solutions to the health problems faced by an 

ageing population. The usage of magnesium alloys to implant devices is emerging as an innovative 

method. The temporary implants are made out of classic materials that are still regularly used, such as 

stainless steel, Ti-alloys, Co-alloys, and other similar materials, it is usual practice to remove them by 

the use of a surgical procedure. This second operation results in more stress for patients and additional 

expenses, in addition to the potential for consequences such as patient morbidity and infection. 

Mg boasts finest biocompatibilities with human body, making it one of the most desirable 

materials for use in metallurgical engineering. Additionally, magnesium alloys have the highest 

level of mechanical agreement with bones. Therefore, the compatibility of the alloys based on 

magnesium with human implants draws attention of researchers [1,2]. To be suitable for this 

application, the alloys must be resistant to cracking or fracture when subjected to both mechanical 
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stresses as well as corrosive fluid. Magnesium alloys as a result of loading in the human body is an 

important study area, such as: 

• When using implants made of conventional materials, one of the primary concerns [3] always 

involves the possibility of breakage caused by human bodily fluids. This kind of fracture of 

magnesium alloys used as bio-implants is a study field that is severely underexplored [4,5]. 

• Recent research [6-9] has shown that simulated-body-fluid aided stress corrosion cracking (SCC) 

may occur in magnesium alloys.  

• In-vivo testing of a few different magnesium alloys designed specifically for use as body 

implants [10-12] revealed that these particular alloys had the unique property of harmlessly 

melting away as shattered bone heals (Figure 1). However, the resistance of alloys to human 

body fluid-assisted fracture is still a key problem, and it is a study area that has been woefully 

underexplored. 

The main aim of this article is to facilitate a specific study of corrosion fatigue (CF) and fracture 

processes of magnesium alloys when exposed to corrosive. 

 
Figure 1. After six months of implantation, 2D histology slides of Mg-10Gd, Mg-4Y-3RE, and Mg-2Ag that 

were stained with toluidine blue were examined. For every kind of screw, there is visible residual metal 
indicated by the red arrows in the black regions [18]. Permissions under CC NY 4.0 International Attribution 

Mg alloys as bio-degradable orthopedic implants 

Bio-degradable orthopedic implants are medical devices that are designed to be absorbed by the 

body over time. They are typically made from polymers that are designed to break down into smaller 

particles and be eliminated from the body. These implants are used for a variety of orthopedic appli-

cations, such as joint replacement, fracture repair, and tendon repair. They offer several advantages 

over traditional implants, such as reduced inflammation and scarring, faster recovery time, and redu-

ced risk of infection. Bio-degradable implants also reduce the need for revision surgery, as the implant 
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will eventually break down and be eliminated from the body. Magnesium has lower elasticity modulus 

and specific density i.e. 42-45 GPa and 1.74-2.0 g/cm3 respectively, both material properties of Mg 

resembles with human bones [13,14]. The use of magnesium alloys in the orthopedics implants rapidly 

increase the attention in research [13-15]. As a result, in contrast to the implant materials used in past, 

the Mg based biodegradable products are non-toxic to human body. In point of fact, it has been 

reported that the Mg2+ ions released due to degradation helps in the healing and growth of tissues 

[16]. However any excess Mg2+ is safely eliminated through the urine [15]. Additionally, the price of Mg 

alloys is significantly lower than the price of traditional implant alloys. 

In spite of the fact that magnesium and its alloys possess a number of characteristics that are 

highly desirable in human implants; the use of these materials is extremely uncommon. Magnesium 

orthopedic implants are a type of implantable device used in orthopedic surgery to treat a variety of 

bone-related conditions. These implants are made from magnesium alloys, which are lightweight 

and biocompatible materials. They are designed to be used in place of traditional metal implants, 

such as titanium or stainless steel, due to their superior mechanical properties. Magnesium implants 

are often used to repair fractures or to replace missing or damaged bones. They can also be used to 

support artificial joints and to treat osteoporosis-related bone fractures. Additionally, they are being 

investigated for use in drug delivery and regenerative medicine applications. The most significant 

barrier is low corrosive nature of magnesium alloys in the physiological environment, which has a pH 

range from 7.4 to 7.6 [17]. Mg alloys may witness loss of their mechanical integrity in physiological 

environment because of body fluids in the degradation process. This might occur before the tissues 

have adequate time to restore. Despite the fact that these limitations have reduced use of 

Magnesium based alloys especially for the permanent implants. However, still for temporary 

implants Mg alloys are used due to their desirable characteristics. Therefore, it is possible to make 

use of non-toxic elements based Mg alloys in the human body. As a result, it is of the utmost 

importance to evaluate this type of fracture in the more recent magnesium alloys that have been 

developed specifically for use in body implants. 

Corrosion of Mg alloys 

Magnesium orthopedic implants are biodegradable and are becoming increasingly popular for 

orthopaedic and trauma surgeries. However, their use is limited due to the potential for corrosion. 

Magnesium is highly reactive and can corrode in the body, releasing toxic ions into the surrounding 

tissue. This can lead to local inflammation, infection, and tissue damage. Additionally, the corroded 

magnesium can accumulate in the body, leading to systemic toxicity. To prevent corrosion, 

magnesium implants should be coated with a protective layer such as titanium, hydroxyapatite, or 

polymers. Additionally, the implants should be designed to minimize the contact between the 

magnesium and the body fluids. Even in a medium that is only moderately corrosive, such as SBF, 

magnesium alloys corrode at an alarming rate. Magnesium corrosion always involves the release of a 

substantial amount of hydrogen. Hydrogen gas should be avoided in large quantities because it can 

cause subcutaneous gas bubbles to form, which can cause tissue layers to separate and potentially 

impede blood flow [19-21]. It has been revealed from the In-vivo and In-vitro analysis that due to 

HBF pitting is observed on the alloys mainly derived from Magnesium [22]. The existence of 

Mg6Zn3Ca2 particle has also been reported that an alloy that was developed specifically for tem-

porary implant applications, known as ZX50 [12]. This finding was made possible by the study of the 

alloy. When considering the use of magnesium alloy as a possible implant material, it is essential that 

the material decay slowly and uniformly rather than experiencing any localized deterioration. The 
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pits results into the formation of brittle surface as atomic hydrogen enters into the Mg matrix due to 

bare and film free surface [5]. A newly developed ZX10 Mg alloy has showed remarkable resistance 

to pitting in addition to exhibiting the desirable characteristics of gradual and homogenous dete-

rioration. This alloy does not produce any hydrogen bubbles and degrades in the intended manner. 

The Zn concentration was decreased, which resulted in the creation of the (Mg, Zn)2Ca phase. This 

phase is less noble than the Mg-matrix, which led to improved degrading performance [23]. 

Stress corrosion cracking and corrosion fatigue of Mg alloys 

Stress corrosion cracking (SCC) is a form of corrosion that occurs when a material is subjected to 

both a tensile stress and a corrosive environment. It is a form of localized corrosion that is especially 

hazardous because it can occur without any external signs of corrosion, such as pitting or 

discoloration. SCC can occur in metals such as stainless steel, aluminum alloys, and copper alloys, 

and is often more rapid than general corrosion. It is usually caused by a combination of chemical and 

mechanical factors, such as a combination of high tensile stress and a corrosive environment. SCC is 

often encountered in industries such as oil and gas, petrochemical, and aerospace, and can lead to 

catastrophic failures of components and structures if not addressed properly. Implant devices are 

subjected to significant mechanical loadings when they are in the presence of HBF. As an example, a 

spine may be subjected to a load that is more than 3500 N, while a cardiovascular stent is continually 

subjected to cyclic loading as a result of the beating of the heart [5,7]. The presence of CF and SCC is 

a real possibility because to the dynamic stress that occurs inside the human body, in addition to the 

corrosive physiological environment. Failures of this kind often take place at stresses that are far 

lower than the design stresses for an environment that does not cause corrosion.  

To prevent SCC in biomaterials, it is important to use corrosion resistant materials, properly 

clean and sterilize the material, use proper design considerations to reduce stresses on the 

material, and properly coat the material to protect it from corrosion. Additionally, material 

selection and design should be tailored to the specific environment the material will be exposed 

to, as different environments may have different levels of corrosive factors. 

This is due to the ductile nature of the material due to which it undergoes elongation before 

fracture in corrosive environment. There have been multiple examples of failures due to fatigue in 

the human body [24-26], despite the fact that conventional implants have excellent fatigue 

strength. These unexpected breakdowns of an implant may have major repercussions, such as the 

arduous process of removing the defective device and the excruciating irritation or inflammation 

of the tissues around the implant [27]. When it comes to the use of metallic implants, this 

particular aspect of high cycle fatigue (HCF) is of the utmost importance. The fatigue strength of 

various implant materials is compared with that of native bone after 107 cycles in corrosive bodily 

fluid. In light of the fact that magnesium alloys have a lower resistance to fatigue in comparison to 

traditional implant materials it is absolutely necessary to carry out a comprehensive categorization 

of the fatigue behavior of Mg alloys before implantation. 

CF and SCC will consider as a serious for implants made of Mg alloys due to the following 

reasons: (a) sharp shapes of temporary implant devices, and (b) Pitting of Mg alloys in chloride 

solutions [28] also in in HBF [5-9]. Implant devices made of Mg alloys will have a tendency to have 

sharp contours In point of fact, it has been documented that magnesium alloys are vulnerable to 

the occurrence of SCC in environments containing chlorides [29]. 

Even though research on the CF of magnesium alloys is very scarce, there is a respectable amount 

of published information on the SCC of these alloys in chloride solutions [29]. The mechanical and 
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fractographic analysis depicts that investigations have shown that magnesium alloys are typically 

vulnerable to stress corrosion cracking (SCC). This is a pressing necessity (i.e. resistance to CF and 

SCC). It's possible that rare earth elements (RE) alloys with magnesium will be appealing. On the 

other hand, there is a paucity of information about the CF and SCC of alloys that include rare earth 

elements when exposed to chloride [29]. In addition, there is just one paper on the topic of CF 

investigations conducted on biocompatible magnesium alloys in bodily fluid [30]. The Fatigue limit of 

the natural bone, conventional implants materials and Mg alloys in physiological environments at 

107 cycles were noticed. The fatigure strength ranges between 15-35 MPa for bones, 70-180 MPa 

for Mg alloys, 140-230 MPa for stainless steel, 250-280 MPa for Co-Cr alloys and 280-710 MPa for Ti-

alloys, respectively [31-33]. 

Corrosion fatigue of Mg alloys  

Corrosion fatigue is a type of fatigue failure in which a material suffers from both corrosion and 

fatigue. It occurs when repeated cyclic loading of a material leads to a combination of fatigue 

(mechanical) and corrosion (chemical) damage. In the case of biomaterials, corrosion fatigue is the 

process whereby repeated mechanical loading of a biomaterial leads to an increase in its suscep-

tibility to corrosion in the presence of an electrolyte. Commonly used biomaterials such as stainless 

steel and titanium alloys are highly susceptible to corrosion fatigue. The damage caused can result in 

decreased strength and increased risk of failure through fracture or fatigue. The most common 

methods of mitigation against corrosion fatigue in biomaterials involve surface treatments such as 

passivation, electrochemical treatments, and coatings. Cracks caused by fatigue often begin at stress 

concentration sites, such as those that are developed during the manufacturing process [34]. A 

relatively recent study conducted testing on an alloy in air and a modified simulated bodily fluid 

hypothesized that inclusions and corrosion pits were the places where cracks first started to form 

(m-SBF) [35]. Because of this, a significant decrease in fatigue strength was detected when the alloy 

was evaluated using the m-SBF method (Figure 2). In addition, the nucleation and propagation of 

pits were found to be influenced by electrochemical circumstances as well as the amounts of applied 

stress. The researchers concluded that increasing the pitting resistance of Mg alloys in m-SBF would 

enhance the CF life of these alloys. 

 
Figure 2. S-N curves for AZ91-T6 Mg alloy under corrosion fatigue at 150 °C [36].  

Permissions under CC NY 4.0 International Attribution 

http://dx.doi.org/10.5599/jese.1636


J. Electrochem. Sci. Eng. 13(1) (2023) 193-214 CORROSION CRACKING IN Mg ALLOYS BASED BIOIMPLANTS 

198  

Slip bands and twin limits are two more possible locations for the initiation of cracks [37,38]. 

Because magnesium and alloys of Mg undergoes twinning [38]. In corrosive settings, a sharp tip of 

the corrosion pit provides high stress intensity, and so acts as the starting location for fatigue 

cracks (Figure 3). Pits play a significant part in the acceleration of fatigue fracture propagation 

because they may strike the necessary balance among the electrochemical dissolution and cyclic 

stress [30] came to the conclusion that fatigue fractures developed from micropores when the 

alloys were tested in air. When the alloys were put through fatigue cracking tests in a corrosive 

environment, corrosion pits were found to be the cause. 

 
Figure 3. SEM images of fatigue crack initiation sites in AZ91-T6 Mg alloy at 150 °C [36].  

Permissions under CC NY 4.0 International Attribution 

The fatigue strength of a few different magnesium alloys is analyzed and compared in both air 

and many different corrosive conditions in Figure 4.  

 
            Fatigue strenght, MPa 

Figure 4. Fatigue strength comparison of different Mg alloys tested for 107 cycles in air and corrosive 
environments [30,42-46].  
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The most damaging effects are caused by aqueous solutions that include ions of chloride, 

phosphate, and nitrate. This is because these ions speed up the process of dissolving the corrosion 

layer of (Mg(OH)2) [34]. For fatigue strengths in a select number of settings, however, the 

hydroxide layer's inherent instability—even under benign conditions is readily apparent. This is 

shown by the fact that certain environments have higher fatigue strengths than others (Figure 4). 

Corrosion has been shown to have a part in the beginning stages of fatigue cracking as well as 

their progression, which means that surroundings that are corrosive tend to have a negative 

impact on the fatigue life of a material. 

The negative difference effect, magnesium can produce hydrogen even at anodic potentials 

[39]. In film surface may be caused by the regional growth of a less embedded integrated due to 

the undesirable microstructure of the underpinning alloy that cause anodic reaction (pitting), 

and/or the practices will help of the physical loading. Both of these factors can contribute to the 

deterioration of the exterior film's integrity [40,41]. It is commonly believed that a breach in the 

surface corrosion film provides a pathway for hydrogen to enter the matrix, and that a 

concentration of hydrogen in a specific area then accelerates the spread of the crack. The general 

public now agrees with this theory. 

They further believe that anodic dissolution plays a secondary role in the accelerated 

production of fatigue fractures, with hydrogen embrittlement playing the primary role [47-49]. 

Figure 3 further demonstrates that fatigue crack occurring in AZ91D Mg alloy is due to mechano-

chemical phenomenon. This is shown by the fact that fatigue cracking occurs at a faster rate. 

Under anodic charging conditions, there is a larger propensity for cracking, which may be expla-

ined by the evolution of hydrogen and the contemporaneous pitting. On the other hand, when the 

material was subjected to cathodic charging conditions, the fatigue life was significantly extended. 

This was owing to the fact that pit depths under cathode circumstances were insufficient to cause 

cracking at low stress amplitudes.  

Ripples and striations emerge on the cracked surface as a result of crack propagation during the 

second stage of fatigue. Figure 5(a) displays a striated pattern that serves as an example. Each 

striation is the result of a single cycle of stress, and it indicates the location of a fracture front that 

is progressing [48,49]. 

A comparison of fracture propagation rates in various conditions may be accomplished by 

measuring the inter-striation space between cracks. Even though the production of striations is a 

telltale sign of stress, it is possible for some materials to fail due to fatigue even in the absence of 

striations [48,50]. Striation may be difficult to see if the surface that was cracked has corroded, 

and if there is debris left behind from the products of corrosion. Also, before attributing striations 

to CF, one should exercise care since comparable characteristics may be formed by SCC of mag-

nesium alloys, as can be shown in Figure 5(a). This can be seen in Figure 5(b). The striation is the 

result of crack-tip sharpening and blunting that occurs repeatedly under fatigue loading. This is in 

contrast to the SCC characteristic of magnesium alloys, which can be entirely attributable to the 

hydrogen mechanism. It is possible that using fractography alone to differentiate between CF and 

SCC is not the most straightforward course of action to take. 
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Figure 5. (a) Fatigue striation and (b) parallel markings produced by stress corrosion cracking mechanism in 

AZ91 [36]. Permissions under CC NY 4.0 International Attribution 

HBF assisted cracking of Mg alloys 

There are some studies on the critical temperature (CF) of magnesium alloys [51]. Since these 

investigations are restricted to alloys that include aluminum (Al), however, they are at best only 

vaguely applicable to applications involving body implants. In spite of the fact that it protects 

against corrosion and strengthens, aluminum is often believed to be poisonous to the human body 

[6]. Because of this, the Aluminum-Zinc alloys that include Magnesium (AZ-series) are often 

disregarded as potential candidates for use in biodegradable implant applications. These research 

used testing conditions that were vastly different from those encountered in vivo, including 

atypical frequencies and methods of loading, as well as artificial test environments and geome-

trically constrained samples [52]. This is another reason why the CF studies that have been 

reported are not very relevant. 

Mode and frequency of loading 

When placed in a real body setting, implants may be subjected to complicated state of stresses 

at the same time, which leads to failures such as twisting and bending. The components of the 

bending are also involved in the failure mechanism [53]. On the other hand, the CF tests that are 

most typically used are conducted under straightforward uniaxial loading. It has been reported in 

the literature that CF testing of Mg alloys [54-56] has usually carried out under load of fixed 

amplitude. Therefore, it is necessary to perform testing using waveforms that are more represent-

tative of real-world settings in order to simulate the actual loading conditions. 

Even in the loading conditions, corrosion frequency is the dominant factor which controls the rate 

of corrosion. It's possible that a less range will provide ample time for corrosion, which would in turn 

encourage a synergistic interaction between corrosion and mechanical stress, which will, in a 
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nutshell, speed up the development of fatigue cracks [26]. On the other hand, this pattern may not 

always hold true. According to Rozali et al. [57] during the course of the investigation into the CF of 

AZ61 in NaCl solution, it was discovered that the influence of frequency was more apparent when 

the DK was low as shown in Table 1 [58,59]. In most cases, this frequency falls somewhere in the 

range of 1 to 3 Hz. 

Table 1. The noise figure for implants used in cardiac and bariatric practices [58,59]. 

S. No. Implants Frequency, Hz Activity 
1 Orthopedic 1-3 Normal walking (vertical direction) 
2 Orthopedic 0.5-1.5 Normal walking (lateral direction) 
2 Cardiovascular 0.8-2 0.5-1.5 Normal heart 

Chemistry of the corrosive environment 

Although the effect of inorganic components on the deterioration of magnesium alloys has been 

studied and documented extensively [60-62]. However, the function of the organic components of real 

blood plasma, such as glycogen, organic molecules, and enzymes, is only recorded in a few studies. 

Yamamoto et al. [61] studied that bio sorption promotes calcium breakdown longer progressive, but 

proteins make dissolution more rapid. Xin et al. [62] indicated the creation of a bilayer as a consequ-

ence of the absorption of albumin on magnesium alloys, which further enhances the corrosion of the 

material. However, the effectiveness of this shield decreases gradually over the course of period [63]. 

However, there is no existing study on the potential function of endogenous substances in corrosion-

assisted cracking phenomena like CF, hence this information is currently unavailable. As a result, it is of 

the highest importance to provide the appropriate state of the environment for conducting biological 

crack testing. 

Physical form and symmetry of the sample 

Sharp and smooth curves are often seen in the devices used in implant procedures. While CF and 

SCC cracks sometimes originate on clean metallic particles, pointed forms are frequently the sites 

where accelerated commencement occurs for the first time. The region of stress concentration may 

be found in fabricated components and devices like implants, for example, stents, screws, and plats 

(sharp contours). In addition, magnesium alloys are prone to pitting when exposed to chloride 

solutions, particularly HBF; pits are the most prevalent cause of corrosion fatigue (CF). This means 

that the CF and SCC data that are typically frequently used for layout causes need to be acquired but 

use the samples that have well before sharp deformation; to put it differently, it could be completely 

essential to use before the samples. To study a biomaterial’s response to deformation, scientists use 

a variety of testing methods. These include tensile testing, compression testing, fatigue testing, and 

creep testing. Each of these tests measures different aspects of the material’s properties. 

Corrosion fatigue-stress corrosion cracking interaction 

It's possible for localized corrosion, such pitting, to offer starting sites for fatigue cracks. The crack 

tip may also experience localized corrosion, which can further accelerate crack growth. Additionally, 

if the material is prone to SCC, the fracture propagation rate may be further accelerated, as stated 

in [3]. Thus, comprehending that CF and SCC affect the crack progression (da/dN) in three circum-

stances is crucial. Figure 6 shows how such stress distribution (Kmax) and stress corrosion crack limit 

(KIscc) define these circumstances [64-66]. KIscc always exceeds Kmax which measures fatigue. It is clear 

from looking at Figure 6(a) that the corrosive liquid lowered the threshold for the fatigue fracture to 

start propagating (Kmax). Even when Kmax exceeds KIscc, the surroundings still cause fatigue cracks, 
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rendering this realistic CF performance. When it comes to the second kind (shown in Figure 6(b), 

moderate fracture production levels have minimal environmental impact. The SCC framework 

reaches a peak; however, when Kmax is greater than KIscc, a superposition of the SCC and CF mecha-

nisms takes place. This suggests that the process is stress dependent. The third kind of behavior, 

seen in Figure 6(c), is a mix of time-dependent and externally induced stress mechanisms. Never-

theless, load ratio effects are not taken into consideration in this classification. Recent research [67] 

has suggested developing a more comprehensive version of this classification. Very little research 

has been done on the role that SCC plays in the progression of CF cracks in magnesium alloys. 

 
Figure 6. The genesis of a fracture as depicted in a schematic under a variety of conditions, including 

concurrent cyclic and tensile loads, in addition to an innocuous and hostile environment. 

Reducing Mg alloy transplant body-fluid-assisted corrosive failure 

CF and SCC originate from just a dynamic relationship among surface properties and enhanced 

localized stress. The prevention of such cracking requires the implementation of strategies that are 

suited to address each of these elements or any combination of them. 

Procedure of composites making and structure of metals 

This is necessary in order to use these alloys for implant applications. A few important alloying 

components are covered in this section. Aluminum, which offers resistance to corrosion in 

addition to strengthening, is the primary alloying element in the most prevalent types of 

magnesium alloys (i.e. AZ series). However, due to the fact that aluminium is known to be harmful 

to the human body, alloys of magnesium that include aluminium. 

Nutrients are an essential component of skeletal tissue, particularly in bone fragments [68]. Ca 

is also necessary for the transmission of chemical signals across the human cytosystem [68]. 

Additionally, the incorporation of Ca into bone was discovered to be aided by the incorporation of 

Mg. Ca helps to reduce the grain size of magnesium alloys, which enhances both the mechanical 

characteristics and the corrosion resistance of the alloys. However, when present at a weight 
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percentage of P 1 %, calcium causes the precipitation of magnesium calcium along grain 

boundaries, which results in embrittlement [68]. Zinc (Zn) in the amount of 15 mg per day is 

needed by the human body [69]. A solid solution of magnesium may be strengthened via alloying 

with zinc. However, if the percentage of P reaches 6.3 wt.%, Zinc will begin to form secondary 

phases, which will again result in brittlement. 

Rare earth elements, often known as REs, are regarded not only be poisonous. [68], but they 

are also said to 'display anti-carcinogenic qualities [70]. This is the broad consensus among 

scientists. Mg alloys with an adequate amount of RE content may generate a surface film that is 

resistant to corrosion. 

For example, the Elektron 31 alloy, which contains 2.3 % neodymium and 1.6 % gadolinium, 

produces a mixed oxide film. These intermetallics can cause localized corrosion as well as 

embrittlement. It has also been noted that adding a very little amount of RE may increase the 

fatigue strength [71]. 

The function of alloying additives in CF of magnesium alloys in SBF has received very little 

research attention. Refining the microstructure of Mg alloys is a potent method that may signifi-

cantly improve the materials' resistance to corrosion as well as fatigue, in addition to the positive 

benefits that can be achieved by appropriate alloying [72]. In addition to this, there are claims of 

improvements in both tiredness and corrosion characteristics of magnesium alloys that were 

produced by these techniques [73].  

Mechanical surface treatment 

It is well knowledge that the application of compressive pressures may enhance fatigue strength 

and life. According to Zhang et al. [74], Shot peening compressed residual stresses increased AZ80 

alloy fatigue life. Khan et al. [75] Shot blasting also strengthens AM60 alloy. Roller burnishing AZ80's 

clean surface and residual stress improved CF endurance in solvent [75]. However, physical 

imperfections, such as quick zones, formed by such procedures may make CF cracks easier to begin 

and progress. Biomaterials can be treated with various techniques to render them more biocom-

patible. This can include surface treatments such as chemical modification, deposition of thin films, 

and thermal treatments. Chemical modification involves treating the surface of the biomaterial with 

a chemical agent such as an acid or alkali. This can be done to alter the surface energy, which can 

make the material more hydrophilic or hydrophobic. It can also be used to create a functionalized 

surface that can interact with biological molecules such as proteins or cells. Thin film deposition 

involves depositing a thin protective layer of material onto the surface of the biomaterial. This can 

be done by different methods. This layer can be used to create a more inert surface that is resistant 

to corrosion and wear. Thermal treatments such as plasma etching, annealing, and laser ablation can 

also be used to modify the surface of the biomaterial. These treatments can be used to alter the 

surface roughness and morphology of the material, which can affect its biocompatibility. 

Biocompatible surface chemical treatment 

Biocompatible surface chemical treatments involve the use of a variety of chemicals and 

processes to modify the surface properties of a material to make it more compatible with living 

tissue. These treatments can include deposition of proteins, polymers, and other molecules, as well 

as modification of the surface energy of the material through etching, plasma treatments, or other 

methods. The ultimate goal of these treatments is to create a surface that is non-toxic, non-fouling, 

and promotes cell adhesion and proliferation. The best approach to avoiding corrosion and highly 

corrosive cracking is to apply a surface coating. This is because magnesium has a high chemical 
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reactivity, making it one of the most reactive elements. According to Bhuiyan and colleagues [43] 

findings, many different coating techniques that are able to increase the fatigue life of magnesium 

alloys when exposed to corrosive conditions [76]. Surface engineering methods provides a safeguard 

against the corrosion, biodegradation, and erosion [77-93]. Various coating methods are employed 

to protect the surface of different biomedical materials [94-97]. Spray pyrolisis deposition [98], 

Electroplating [99], electrodeposition [100], hot dipping [98-104], physical vapor deposition (PVD) & 

chemical vapor deposition (CVD) [105-117], electrochemical vapor deposition (EVD) [118], cold spray 

[119], thermal spraying [120-125], sputtering [126], claddings [64-75], plasma spraying [79,80,88,91-

93,127-150], and electrophoretic deposition are all methods used to deposit coatings onto metals 

(EPD). However, the coatings that were used in these trials were not always biocompatible since the 

focus of the coatings was on addressing the CF resistance in settings that were not biological [88]. It 

has been observed that such coatings not only increase the implant's biocompatibility but also 

improve its resistance to corrosion. Calcium orthophosphates were shown to increase the corrosion 

resistance and surface biocompatibility of magnesium-based metallic biomaterials, as reported by 

Dorozhkin [151]. There are several findings that demonstrate an increase in corrosion resistance as a 

result of electro-deposited Ca-P coatings on a variety of magnesium alloys [152]. 

It is possible that referring to a research by Srinivasan and colleagues [153] on the impact of 

silica-based plasma electrolytic oxidation (PEO) coating on the surface-corrosion-corrosion (SCC) of 

magnesium alloy in a chloride solution is not completely out of place. Although the PEO coating 

made the alloy more resistant to general corrosion and pitting corrosion, it did not make a 

significant difference in the alloy's resistance to SCC. When the AZ61 Mg alloy was tested in 

chloride solution, a recent research reveals that PEO coating resulted in about a 56 % drop in the 

fatigue strength of the material [154]. 

Conclusion and future prospective 

In order for a material to be considered suitable for use as an implant, it must first satisfy a 

number of criteria, including those pertaining to its mechanical, electrochemical, and biological 

properties. Alloys made of magnesium provide a favorable balance of ductility and strength. Since 

magnesium is both biocompatible and biodegradable, it is a strong contender for use in 

applications involving temporary implants. When it comes to implants, however, the resistance to 

cracking might occur because of the synergistic action. 

However, the existing studies are mostly inappropriate for body implants for the reasons listed: 

(a) the alloys involved in the earlier research typically include Al, which is known to be poisonous 

to humans; and (b) the lab testing variables adopted in the in vitro tests, such as the regularity and 

mode of loads, testing process, and specimen geometries, were distinct in the preclinical studies 

from those in the real in vivo execution of the tests. Both issues may be traced back to the fact 

that the alloys used in the earlier research were, for the most part, generic. 

Recent research has unequivocally shown that separate corrosion films form in in vivo 

circumstances as opposed to the in vitro conditions that are often used, with in vivo corrosion 

rates being much lower than in vitro rates. Therefore, it is of the greatest priority to first ascertain 

the in vivo model, such as the solubility and maximum load spectral response, and then to conduct 

virtual crack experiments on the Mg alloys that have been primarily designed for use as body 

implantable devices under conditions that imitate the in vivo solubility and loading spectral range 

on the Mg alloys that have been developed specifically for use as body implants.  
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