
Design and Implementation of a Simulator
for Precise WCET Estimation of Multithreaded
Programs

217

Original Scientific Paper

P. Padma Priya Dharishini
Department of Computer Science and Engineering
Ramaiah University of Applied Sciences
Bangalore, India
padmapriya.cs.et@msruas.ac.in

P. V. R. Murthy
Department of Artificial Intelligence and Data Science
Nitte Meenakshi Institute of Technology
Bangalore, India
pvr.murthy@nmit.ac.in

Abstract – Significant attention is paid to static analysis methods for Worst Case Execution Time Analysis of programs. However, major
effort has been focused on WCET analysis of sequential programs and only a little work is performed on that of multithreaded programs.
Shared computer architectural units such as shared instruction cache pose a special challenge in WCET analysis of multithreaded
programs. The principle used to improve the precision of shared instruction cache analysis is to shrink the set of interferences, from
competing threads to an instruction in a thread that may be accessed from shared instruction cache, using static analysis extended to
barriers. An Algorithm that address barrier synchronization and used by the simulator is designed and benchmark programs consisting
of both barrier synchronization and computation task synchronization are presented. Improvements in precision upto 20 % are observed
while performing the proposed WCET analysis on benchmark programs.

Keywords: Worst Case Execution Time; Shared Instruction Cache Analysis; Multithreaded Program, Multicore Architecture

1. INTRODUCTION

Today Real Time Embedded Systems (RTES) are vastly
used in avionics, automotive and tele-communications
domains. In RTES, correctness of a system not only
depends on its logical behavior but also computation
time. In hard real time systems, missing deadlines can
cause catastrophic damage. Multicore architectures
are used in RTES domain due to their high processing
power and concurrency in applications. For example,
in night view assist multi-threaded in automotive envi-
ronment, reading data from sensors, processing video
streams and raising warning when an obstacle is de-
tected on road happen concurrently.

Schedulability analysis is used to verify the capa-
bilities of RTES to meet deadlines. All schedulabil-
ity analyses assume that upper bound of execution of
each program i.e., Worst Case Execution Time (WCET)
is known. However, deriving tight and safe WCET of a
program on multicore architecture is difficult because

of shared hardware resources such as cache memory,
buses and Input/Output. There may be unpredictable
delays in the execution of the program due to conten-
tion at shared resources. One of the main factors of un-
predictability is due to cache memory. There are two or
three levels of cache memory placed between core and
main memory to bridge the gap of high-speed proces-
sor with low-speed main memory. L1 cache memory is
the smallest cache memory close to the processor and
it is private for each core, while larger L2 is shared be-
tween cores. In the case of an L1 cache miss (requested
memory block not in L1 cache memory) then, memory
block may be fetched from higher level of memory
hierarchy(L2 cache). The memory access latency to be
computed due to conflicts from other cores resulting in
the removal of memory block from shared L2 instruc-
tion cache plays a critical role in the estimation of pre-
cise WCET of a multithreaded program. The problem of
estimating worst case latency in turn to estimate WCET
of a multithreaded program is motivated in this paper
for shared instruction caches.

Volume 14, Number 2, 2023

218 International Journal of Electrical and Computer Engineering Systems

A static analyzer is designed in [1] using Hoare’s Com-
municating Sequential Processes (CSP) [2] to compute
WCET of a multithreaded program and is based on syn-
chronized parallel processes arising from synchroniza-
tion calls to wait() and notify(). A reference thread is one
for which WCET is being estimated and instruction ac-
cesses in it encounter competition for shared instruction
cache from parallel processes in other threads. The con-
flicts for any instruction I in reference thread are encoun-
tered only from the identified parallel processes that run
parallel with I. A gap identified in the static analyzer
[1] is that it does not deal with barrier synchronization
processes. This paper extends Interference Partitioning
algorithm in [1] to address the class of programs using
barrier synchronization as well. User defined abstrac-
tions are linked to the program code using PragMatics
approach in [3]. The approach is based on an annota-
tion language comprising of all features to address indi-
vidual loops, application context and function calls with
optimization awareness. However, pragMatics does not
support recursive applications. The structure of parallel
program along with its target platform is considered to
obtain tight contention delays in [4]. The main drawback
of the approach is that it is limited to blocking commu-
nication. Fork-join parallel model is employed in [5], in
contrast, the proposed method employs fork-join, Single
Program Multiple Data (SPMD), Multiple Program Mul-
tiple Data (MPMD), producer - consumer model in paral-
lel programming. An Integer Linear Programming (ILP)
based approach is proposed in [6] that maximizes the
WCET of a program. It is also proposed that algorithmic
approaches scale better for larger programs than ILP
based approach. A parallel execution graph is employed
in [7] to explore all possible execution interleavings of
a parallel task and an exclusion criterion is proposed to
prove that certain interleavings can never occur to make
precise and feasible WCET analysis of parallel periodic
tasks. Communication between the tasks in concurrent
software is through message passing and life time es-
timates of concurrently executing tasks on multicore
are improved progressively in [8]. Automatic timing
analysis of parallel applications is performed in [9] by
considering synchronization stall time associated with
each instruction and each basic block in Control Flow
Graph (CFG) for WCET estimation process. The approach
considers a simple time predictable architecture to esti-
mate WCET. Loop bounds are provided as user annota-
tions to the WCET analyzer [10]. WCET computation of
a multithreaded program is proposed in [11] and com-
munication edges are introduced between threads in a
multithreaded program in micro architectural modelling
phase of WCET estimation.

The instructions that can cause or suffer from timing
interferences are extracted in [12]. Based on the extract-
ed instructions, the real time tasks are separated into a
sequence of time intervals. The ILP solver uses the time
intervals to minimize the WCET of the application. Con-
current execution of programs is simulated to cause con-
flicts resulting in the eviction of memory block from the

shared instruction cache, being accessed by program in
reference thread in [13]. A hardware mechanism is pro-
posed to reduce the number of interfering accesses by
forcing certain accesses to bypass shared cache. WCET
analysis of parallel code can be performed using UP-
PAAL model checker [14]. The approach in [14] considers
granularity at instruction level that increases the size of
the state space compared to the basic block level granu-
larity. Scheduling model for real-time tasks is presented
in [15] and concurrency during task execution is not con-
sidered explicitly. In contrast, in the proposed approach
in our paper, concurrency among the threads is consid-
ered explicitly. Interference Partition (IP) Algorithm [16],
computes WCET of a multithreaded program by consid-
ering partial order information [17] of the multithreaded
program based on wait and notify synchronization. IP
Algorithm partitions the Control Flow Graph (CFG) each
thread of a multithreaded program into parallel process-
es Pm_i (m is process id and i is thread id) based on partial
order information derived using wait/notify synchroni-
zation primitives. The partitioning enables computation
of a precise WCET of the multithreaded program. The re-
search question addressed in this paper are:

•	 What parameters need to be considered during
WCET analysis of a multithreaded program to pro-
vide precise estimates of WCET to designers of Re-
al-time embedded applications?

•	 How can shared instruction cache memory be
modelled by a WCET analyser for precise WCET es-
timation?

The main contributions are

•	 Extension of the interference partitioning algo-
rithm in [16] for multithreaded programs to incor-
porate barrier synchronization calls

•	 Investigation of the effectiveness of the extended
interference partitioning algorithm on benchmark
programs adapted from Malardalen [18] bench-
mark suite

•	 WCET estimates of multithreaded programs with
barrier synchronization calls and computation task
specific synchronization calls (using wait() and no-
tify())

•	 Parameters such as Number of conflicts, Conflict
ratio, Overestimation ratio, Precision Improvement
in Number of conflicts and Precision Improvement
in WCET are proposed for performance evaluations

2. WCET ESTIMATION OF MULTITHREADED
PROGRAMS

Typical WCET estimation framework of sequential
program mainly comprises of three phases [10]: pro-
gram flow analysis to obtain structural and functional
constraints from the control flow graph of the program,
micro-architectural modelling to obtain WCET of each ba-
sic block by considering underlying architectural features
like cache, pipeline, branch prediction etc. and WCET cal-
culation phase to obtain WCET of the program by maxi-

219Volume 14, Number 2, 2023

mizing the objective function comprises of execution
time and execution count of each basic block. The above
WCET estimation framework is not quite appropriate for
WCET estimation of a multithreaded program because of
complex interactions between threads in the program,
mapped to different cores. A novel method is proposed
and incorporated into simulator to obtain WCET of a mul-
tithreaded program implemented to run on a multicore
architecture with shared instruction cache, by reducing
the set of interferences to be considered to a minimal safe
subset, from an interacting thread during the execution of
an instruction in a reference thread.

Existing IP algorithm [16] does not deal with barrier syn-
chronization processes and it is extended to obtain mini-
mal safe subset of interferences from interacting threads
using barrier synchronization primitives. All the functions
from n threads of a multithreaded program have to reach
the barrier before they proceed and barrier node counts
the arrival of all the threads and once all the threads ar-
rived it issued the proceed messages [19]. Real time em-
bedded applications perform computation in k phases.
The requirement of the application is that all the threads
need to begin the computation of the ith phase, i<=k, only
if i-1th phase is completed by all threads. For such an ap-
plication typically barrier synchronization is used and all
K barriers will be designed and programmed. It may be
considered that the computation processes, in threads
following the i-1th barrier until the ith barrier, are parallel to
each other. In fact, the above-mentioned parallel process-
es are special kind of synchronized parallel processes [1].
The parallel processes inside a barrier may also perform a
computation task specific synchronization using wait and
notify synchronization primitives at a lower level while
there is higher level parallelism between threads using
barrier synchronization processes.

Definition of computation Processes

Computation processes arise when two threads inter-
act using wait() and notify() synchronization calls. We
refer to them as synchronization parallel processes in
the paper. There is an order between processes imposed
by the partial order wait<notify. There exist code regions
(synchronized parallel processes) in the two threads that
may be parallel to each other. Here synchronization calls
are used in threads simply to wait and notify and not for
barrier synchronization. What is important for the Inter-
ference Partitioning algorithm is that synchronized paral-
lel processes in two threads compete with each other for a
shared resource such as the shared instruction cache.

For example, BSP2_2 || BSP2_3 in Fig.1.b are identified as
computation processes because they interact using wait()
and notify() synchronization calls. There is order between
processes imposed by the partial order wait < notify.

Definition of computation task
specific synchronization calls

A computation task specific synchronization calls are
defined with respect to two interacting threads. The inter-
action is based on synchronization using calls to wait ()

and notify (). It is assumed that the there is no notification
loss as the program is validated before WCET analysis is
performed. Therefore, for corresponding synchroniza-
tion calls, wait < notify. Computation task specific syn-
chronization calls identify not only which computation
in a thread happens before the computation in another
thread but also which computations happen in parallel.

For example, BSP2_2 || BSP2_3 are identified as compu-
tation task specific synchronization calls in Fig.1.b. In
general, a multithreaded program may contain mul-
tiple barriers as shown in Fig.1.a. for a group of threads
to synchronize on completion of tasks one after the
other. When it comes to barrier synchronization paral-
lel processes, two or more threads may participate in
barrier synchronization and they cross the barrier for
further computation together irrespective of the rela-
tive speeds until they reach the barrier. From the per-
spective of the Interference Partitioning algorithm, if k
threads participate in the barrier, for a reference thread,
(k-1) barrier synchronization parallel processes com-
pete for the shared instruction cache along with the
reference thread.

Definition of barrier synchronization
parallel processes

Barrier synchronization parallel processes, two or more
threads may participate in barrier synchronization and
they cross the barrier for further computation together
irrespective of the relative speeds until they reach the bar-
rier. From the perspective of the Interference Partitioning
algorithm, if k threads participate in barrier synchroniza-
tion, for a reference thread participating in the barrier syn-
chronization, (k-1) barrier synchronization parallel pro-
cesses compete for the shared instruction cache.

For example, BSP2_1 ||BSP2_2 || BSP2_3 are identified as
barrier synchronization parallel processes in Fig.1.a. If
there are no task specific synchronization calls between
two barrier lines, entire code region between the two
barrier lines for each thread is a competing process that
can cause shared instruction cache interferences to
code of other threads in between the barrier lines. All
the functions from n threads of multithreaded program
need to reach the barrier before they proceed further.
The barrier nodes shall keep track of the arrival of all the
participating threads and once all the threads arrive at
the node or barrier line, the threads proceed beyond.

Definition of Parallel Processes

Parallelism may exist between threads that simply
arises out of no particular order between executions of re-
gions of code in the threads, which we in general term as
parallel processes. Parallel processes also compete for the
shared instruction cache.

Competing processes refer to barrier synchronized
parallel processes or synchronized parallel processes or
only computation processes that run parallel with a cor-
responding process in the reference thread Ti. Compet-
ing processes cause conflicts to an instruction I in the

220 International Journal of Electrical and Computer Engineering Systems

reference thread. The IP algorithm creates the mapping
of the competing processes for all barrier synchroniza-
tion parallel processes in Fig.1.a. as shown in Table 1.

Barrier Synchronization
Parallel Processes BSPm_i

Competing processes

BSP1_1 BSP1_2 ||BSP1_3 || BSP1_4

BSP2_1 BSP2_2 ||BSP2_3 || BSP1_4

BSP3_1 BSP3_2 ||BSP3_3 || BSP1_4

Table 1. Mapping of competing processes for each
Barrier Synchronization Parallel Processes BSPm_i

In general, a thread is a composition of computation
processes interacting using wait() and notify() calls,
barrier synchronization processes and simply parallel
processes. The interference partitioning algorithm ad-
dresses the problem of determining competing pro-
cesses for a reference thread for each of the three cate-
gories of processes. Micro-architectural modelling uses
competing processes to identify conflicts to any barrier
synchronization parallel processes BSPn_j to compute
WCET of each basic block referred as node in this paper.

Fig. 1. a. Identified barrier synchronization parallel
processes

Fig. 1. b. Task specific synchronization calls between
two barrier synchronization parallel processes

Fig.1. Multithreaded program with Barrier
Synchronization Parallel Processes

WCET calculation uses Implicit Path Enumeration
Technique (IPET) that combines program flow informa-
tion along with its execution time of each basic block
to compute WCET of each thread of multithreaded pro-
gram. The subsection 2.1 explains mathematical repre-
sentation of cache mapping function in detail.

2.1. CACHE MAPPING FUNCTION

The motivation for discussing Cache Mapping Func-
tion is to determine the instruction accesses, in shared
instruction cache, made by a thread for which WCET is
being estimated(reference thread) that are potentially
evicted due to interferences from competing threads.
The Cache Mapping Function is used by the Interfer-
ence Partitioning algorithm. In this paper, barrier syn-
chronization processes cause interferences that can
evict instructions in shared instruction cache required
by the reference thread. This paper extends Interfer-
ence Partitioning algorithm to multithreaded pro-
grams using barrier synchronization. The three com-
monly used cache architectures are direct mapped
cache, fully associative cache and A-way set associative
caches [20]. An A-way set associative mapping archi-
tecture contains A cache lines for all S cache sets. Each
cache line is capable of holding LS consecutive bytes
of a memory block. Direct mapped cache, is a 1-way
set associative cache where a cache block can appear
in only one place in cache memory. Fully associative
cache, is a A-way set associative cache where a cache
block can be placed anywhere in the cache memory
having only one set. A cache line may be valid (contain-
ing a memory block) or invalid (currently free).

This paper considers Harvard architecture i.e., L1 in-
struction cache is separated from L1 data cache and L2
shared instruction cache is a share resource for all cores.

•	 Cache size CS: Represents cache memory size in bytes

•	 Block size or Line Size LS: Represents number of bytes
to be loaded in to cache for each memory access

•	 LS_L1: Represents line size of level 1 cache memory

•	 LS_L2: Represents line size of level 2 cache memory

•	 Associativity A: Accessed memory block can be
placed in A cache lines in cache memory

•	 Cache Set S: S={ s1,s2,... ,s(CS/LS)/A) } A cache set si is a
sequence of cache lines where memory blocks are
stored

•	 S_L1: Represents number of cache sets in level 1
cache memory

•	 S_L2: Represents number of cache sets in level 2
cache memory

•	 Number of cache lines CL : CL = {l1,l2, ..., lA}

•	 Memory block: Sequence of consecutive instruc-
tions based on block or line size

The set of ages for A-way set associative caches are
A= {0,1,2,... ,A-1}. The block replacement method con-
siders only the age of the memory block.

221Volume 14, Number 2, 2023

The most recently used memory block is given age
0 and least recently used memory block is given maxi-
mal age A-1. For each cache miss, the accessed block is
placed in a particular cache set based on cache archi-
tecture with age as 0, age of all other memory blocks
in particular cache set is increased by 1 and memory
block with age A-1 is evicted from cache memory. For
access to a memory block that is currently in cache
memory with age a, its age is changed to 0 and the
ages of memory blocks lesser than a are increased by 1
and ages of memory blocks greater than a remains the
same. Instructions in each memory block are classified
as Always Hit (AH), Always Miss (AM) or Not Classified
(NC) based on Cache analysis using Abstract interpre-
tation (AI) [20]. Abstract Interpretation based cache
analysis does not require execution of the program to
study cache behavior of the program; through appro-
priate abstraction, cache behavior for a program can be
inferred using static analysis [20]. Each memory block is
mapped to a particular cache set in L1 cache memory
based on cache mapping function CMF_L1. The equa-
tion 1 and 2 shows the Cache Mapping Function of L1
and L2 cache memory respectively.

CMF_L1=((Memory address / LS_L1) % S_L1 (1)

Similarly, mapping function of shared L2 instruction
cache is,

CMF_L2=((Memory address / LS_L2) % S_L2 (2)

The Instruction I mapped to cache set si having
Cache Hit Miss Classification (CHMC) categorized as
AH for shared L2 instruction cache is affected by a set
of instructions { I1’, I2’,... ,Ik’ } from interacting threads
that mapped to same cache set si [20][21][22]. To com-
pute where to place the memory block in L1/L2 cache
memory, the following notations are used. Suppose
instruction I7_1: addiu $29,$29,-72 in Fig.3. of reference
thread is stored at the memory address 0x400220. Each
memory block is mapped to a particular cache set in L1
cache memory based on cache mapping function CMF_
L1 and it is used to compute the instruction’s location in
L1 cache memory having cache size CS as 256 bytes, line
size LS_L1 as 16 bytes and Associativity A as 1. Another
parameter in CMF_L1, which is number of cache sets
S_L1 in L1 cache memory, is computed using (CS/LS_
L1/A) of L1 cache memory. The instruction in memory
address 0x400220, is mapped to cache set number 2 of
L1 cache memory.

CMF_L1=((Memory address / LS_L1) % S_L1
CMF_L1=((0x400220 / 0x10) % 0x4

Interference Partition Algorithm
for Barrier Synchronization

Each reference thread Ti is viewed as a composition
of barrier synchronization parallel processes, commu-
nicating with other barrier synchronization parallel
processes in interacting threads Tj in Fig.1.a. In general,
a thread is a composition of computation processes
interacting using wait() and notify() calls, barrier syn-

chronization processes and simply parallel processes.
The interference partitioning algorithm addresses
the problem of determining competing processes for
a reference thread for each of the three categories of
processes. The Interference Partitioning Algorithm ac-
cepts as input a Message Sequence Chart (MSC) repre-
sentation of the Communicating Sequential Processes
(CSP) specification of the multithreaded program. An
MSC representation consists of lifelines for threads in
the program as shown in Fig1.a. Interactions between
threads are through computation task specific syn-
chronization calls (wait(), notify()) or barrier synchro-
nization calls. A partial order based on wait < notify
is constructed from the multithreaded program while
transforming it to an equivalent CSP specification. The
Interference Partitioning Algorithm (addressing Barrier
Synchronization) traverses through MSC representa-
tion looking for synchronization calls step by step. The
WCET analyser identifies computation task synchroni-
zation parallel processes based on synchronization calls
wait() and notify(). The WCET analyser identifies barrier
synchronization region in each thread using barrier
initialization and barrier related calls. Simply parallel
processes are identified by the WCET analyser based
on partial order through which neither less than nor
greater than relation is observed for parallel regions. It
may be noted that for uniformity, WCET analyser con-
siders a sequential process in a thread to be parallel to
an empty process in an interacting thread. In this way
all processes are considered to be parallel.

Algorithm for Interference Partitioning
identifying barrier synchronization processes

While there exists next set of syncCalls in Thread(T)

{
 listOfSyncCalls = getNextSetOfSynchronizationCalls(T);

 if listOfSyncCalls contains barrierSyncCalls

 barrierSyncProcesses=identifyNextBarrierSynchronizatio

 Processes(T);

 else if listOfSyncCalls contains computationTaskSyncCalls

 computationSyncProcesses=
 identifyNextSynchronizedParallelProcesses(T);

 else if (listOfSyncCalls is empty)

 onlyComputationProcesses=identifySolelyComputation

 Processes(T);

 CreateMappingOfCompetingProcessesToCurrentProcessIn

 Thread(T,barrierSyncProcesses,computationSyncProcesses,
 onlyComputationProcesses)

}
The Interference Partitioning Algorithm that identi-

fies competing Barrier Synchronization processes is an
extension of the basic Interference Partitioning Algo-
rithm [16] that deals only with Computation Task Syn-
chronization calls. The algorithm considers an abstract
view of the multithreaded program as a Message Se-
quence Chart(MSC) as shown in Fig.1.a. The first thread
T1 may be considered a reference thread T for which

222 International Journal of Electrical and Computer Engineering Systems

WCET is being estimated and with other threads com-
peting for shared resources such as the shared instruc-
tion cache. The same procedure is applicable for each
and every thread(as a reference thread). The Interfer-
ence Partitioning algorithm uses thread T as the argu-
ment or input and the competing process set is deter-
mined for each process in T. The algorithm is applied
on each thread to estimate the worst case latency in
accessing shared instruction cache with competition
of access from other threads. A benchmark program
is considered to explain the estimation of worst case
latency in accessing shared instruction cache which in
turn is used in WCET estimation of each thread. Fig.1.a.
shows generic structure of a benchmark multithreaded
program with functions from Malardalen benchmark
programs[18]. The Control Flow Graph (CFG) of each
thread is constructed from the assembly code of the
multithreaded program. After constructing individual
CFGs of threads, the procedural call graph of the pro-
gram is traversed to construct a global flow graph
called Transformed Control Flow Graph (TCFG).

The existing approaches to determining conflict set in
accessing shared instruction cache during the WCET
analysis of a multi-threaded program are not quite
exploiting the order and concurrency information be-
tween regions of code in threads [10] [13]. The Interfer-
ence Partitioning algorithm uses the order and concur-
rency information inferred from partial order of execu-
tion of threads. As a consequence, a larger conflict set
is used while accessing shared instruction cache when
partial order between threads is not used. On the con-
trary, conflict set that Interference Partitioning algo-
rithm uses, by exploiting partial order information be-
tween threads, is only a subset of the conflict set used
without partial order information.

The instruction sequence of BSP2_2 and BSP2_3 in Fig.1.b
is shown in Fig. 2. In the case of IP algorithm, conflicts
arising for any instruction Ii_2 in BSP2_2 are from any in-
struction in BSP2_3 ,mapped to the same cache set Sl. In
contrast, in existing approaches [10][13], conflicts are
from all the instructions in the entire program region.
In Fig. 2. the same is shown for instruction Ik_2 in BSP2_2.
The parallel process or code region BSP2_3 is a subset of
the entire code region and hence the conflict set gen-
erated using partial order information is smaller.

Let BSPm_1 is the region of code in T1 between barrier
sync lines i and i+1. Fig. 3. shows CFG of a simple bar-
rier synchronization parallel process BSPm_1 along with
Cache Hit and Miss Classification table (CHMC) of all
instructions in BSPm_1 following L2 cache analysis. The
instruction I2_1 in BSPm_1 is categorized as AH in L1 in-
struction cache memory. Therefore, I2_1 will never ac-
cess shared L2 instruction cache. The instruction I7_1
in BSPm_1 is categorized as AH in L2 instruction cache
memory. Therefore, I7_1 will be affected by accesses to
instructions made by threads running on other cores
referred to as conflicts. Let BSPm_1 is the region of code
in Ti between barrier sync lines i and i+1.

Fig. 2. Conflict Region for Existing approaches and
IP Algorithm

Definition of conflicts in IP Algorithm

The conflicts for an instruction I accessed by thread
Ti, mapped to cache set Sl, that belongs to any barrier
synchronization parallel process BSPm_1 are from the in-
struction set {I1’, I2’, ..., Ip’}, mapped to same cache set
Sl and that belongs to competing processes of BSPm_1.

Fig. 3. Control Flow Graph of BSPm_1

In the existing approaches, the conflicts for an in-
struction I in Ti mapped to cache set Sl is from entire
program region of Tj mapped to same cache set Sl.
For example, as shown in Table 2, the conflicts for in-
struction I13_1 in T1 mapped to cache set s1 in shared
L2 instruction cache are from all the instructions in T2
mapped to same cache set s1. In IP Algorithm, the con-
flicts for any instruction are obtained based on partial
order information derived using barrier synchroniza-
tion primitives. Let BSPm_1 and BSPn_2 are barrier syn-
chronization processes that belong to the same barrier
region in threads T1 and T2 respectively. Therefore, the
conflicts for instruction I13_1 in Fig.3. of barrier synchro-
nization parallel process BSPm_1 of T1 mapped to cache
set s1 in shared L2 instruction cache are from instruc-
tions {I1’, I2’, ..., Ip’} in BSPn_2 that belongs to competing
process in T2 mapped to same cache set s1.

IP algorithm performs inter thread shared instruction
cache analysis by considering conflicts only from the
instructions in barrier synchronization parallel process-
es BSPn_2 that run parallel with BSPm_1. Based on those
analyses, the age of each instruction is updated.

223Volume 14, Number 2, 2023

The Age Update Function (AUF) for any instruction I
in shared instruction cache analysis is

AUF:Age(I) = Age(I) + conflicts

If age of instruction I is greater than or equal to as-
sociativity of shared L2 instruction cache memory, then
instruction I that is currently in cache memory is catego-
rized as NC for shared L2 instruction cache accesses. For
example, the instruction I7_1 in Fig. 3. is categorized as
AH following the application of AUF and I9_1 is catego-
rized as Not Classified (NC) as shown in Table 2 for IP al-
gorithm. The reduction of conflicts for each instruction

leads to reduction in number of consolidated number
of conflicts for each node which in turn leads to reduc-
tion in number of consolidated conflicts for a parallel
process and finally leading to a reduction in consolidat-
ed number of conflicts of a thread in a multithreaded
program. The above leads to precision improvement
in statically estimating WCET for a multithreaded pro-
gram that may use barrier synchronization. This is made
possible as an abstract view of parallelism in threads is
not at whole thread level in our WCET analyser but at
smaller process level which is arising from code in bar-
rier synchronization regions in threads.

Table 2. Number of conflicts and worst case latency

Instruction:
Address

Cache Set
Number Age

Number of Conflicts Cache Hit/Miss Classification Worst Case Latency in Clock Cycles

IP
Algorithm

Existing
Approaches IP Algorithm Existing

Approaches IP Algorithm Existing Approaches

I7_1:400220 2 1 2 13 AH NC 7 37

I9_1:400230 3 1 3 13 NC NC 37 37

I11_1:400240 0 1 2 14 AH NC 7 37

I13_1:400250 1 1 3 14 NC NC 37 37

I15_1:400260 2 1 2 13 AH NC 7 37

I17_1:400270 3 1 3 14 NC NC 37 37

I19_1:400280 0 1 3 14 NC NC 37 37

I21_1:400290 1 1 3 14 NC NC 37 37

Number of Conflicts

As discussed, the conflicts for an instruction I in Ti,
mapped to cache set Sl that belongs to BSPm_i, are from
the set of instructions {I1’, I2’, ..., Ip’}, mapped to the same
cache set Sl, which belongs to BSPn_j (i.e. competing
process of BSPm_i in Tj.

Number of conflicts Caused
by a Competing Thread

The number of conflicts encountered by a node n
in a barrier synchronization parallel process BSPm_i is
the sum of number of conflicts encountered by each
instruction {I1’, I2’, ..., It’} in n. Therefore, the number of
conflicts of a barrier synchronization parallel process
BSPm_i is the sum of consolidated number of conflicts of
each node {B1, B2, ..., Bk} in BSPm_i. Hence, the consolidat-
ed number of conflicts of a thread Ti is the sum of num-
ber of conflicts of each barrier synchronization parallel
process {BSP1_i, BSP2_i,… BSPq_i} in Ti. It may however be
noted that precision improvement in Worst Case La-
tency in accessing shared instruction cache takes place
as the worst case execution time of each instruction,
as simulated, becomes more precise due to reduction
in conflicts. Thus, reduction in consolidated number of
conflicts caused by a competing thread using IP algo-
rithm is just an indication of the superiority of the ap-
proach even when barrier synchronization is used.

As a consequence of reduced number of conflicts for
instruction I, CHMC of I remains AH in shared L2 instruc-
tion cache that leads to reduced worst case latency of
instruction. There are a few instructions having reduced

number of conflicts with CHMC categorized as NC due to
its age in shared L2 instruction cache that leads to maxi-
mum worst case latency of instruction. Table 3 shows
the number of conflicts of an instruction I, node n con-
taining I, barrier synchronization parallel process BSPm_i
containing node n and instruction I, thread Ti of I associ-
ated with its WCET for both approaches.

Inst
Id Parameters IP

Algorithm
Existing

Approaches

I7_1

Number of
Conflicts

Instruction 2 13

Node 5 26

Barrier synchronization
parallel process 21 109

Thread 511 4365

WCET in
Clock Cycles

Instruction 7 37

Node 45 75

Barrier synchronization
parallel process 2571 15300

Thread 2910490 3506290

I9_1

Number of
Conflicts

Instruction 3 13

Node 5 26

Barrier synchronization
parallel process 21 109

Thread 511 4365

WCET in
Clock Cycles

Instruction 37 37

Node 45 75

Barrier synchronization
parallel process 2571 15300

Thread 2910490 3506290

Table 3. Number of Conflicts and WCET of I7_1 and I9_1

224 International Journal of Electrical and Computer Engineering Systems

Number of conflicts as is being talked about is only an
indirect pointer to precision improvement. WCET esti-
mate depends on better estimate of worst-case time for
each instruction. Number of consolidated reductions in
conflicts from a competing thread to shared instruction
cache is an indication and explanation on why WCET es-
timate for a thread improves. It is also evident from Table
3 that reduction in Number of conflicts of an instruction
I does not necessarily leads to reduction in WCET of I. In
this paper, L1 cache miss latency is assumed as 6 clock
cycles and 30 clock cycles for L2 cache miss latency.

Conflict ratio

The next parameter considered to evaluate the per-
formance of IP algorithm is Conflict ratio. Conflict ratio
of a node n in barrier synchronization parallel process
BSPm_i computed for IP algorithm is always lesser than
or equal to Conflict ratio of a node n in barrier synchro-
nization parallel process BSPm_i of existing approaches.

Definition of Conflict ratio

Conflict ratio of a node n in barrier synchronization par-
allel process BSPm_i is calculated by dividing number of con-
flicts of a node n by the total number of instructions in n.
Similarly, conflict ratio of a barrier synchronization parallel
process BSPm_i in thread Ti is calculated by dividing num-
ber of conflicts of a barrier synchronization parallel process
BSPm_i by the total number of instructions in barrier syn-
chronization parallel process BSPm_i. Likewise, conflict ratio
for a thread Ti is calculated by dividing number of conflicts
of a thread Ti by the total number of instructions in Ti.

Over Estimation Ratio of WCET

CMP-SIM simulator (a multi-core extension of simple
scalar tool set [23]), used to evaluate the accuracy of
the static analyzer experimentally. All the experiments
are performed in 2-cores with different architectural
parameters. The estimated WCET obtained using IP al-
gorithm is compared with the simulated WCET.

The simulated WCET of the program is highly un-
derestimated than actual WCET. The worst-case input
of some benchmarks is difficult to obtain because of
branching and other complex mathematical calcula-
tions. The over estimation ratio of existing approaches
is computed as WCETExisting Approaches/WCETObserved WCET sim-
ilarly, overestimation ratio of IP algorithm is computed
as WCET Interference Partition algorithm / WCET Observed WCET.

Precision Improvement in Number of conflicts

The reduction in number of conflicts is considered
as one of the major parameters of performance evalu-
ation. The precision improvement in Number of con-
flicts is computed as ((Number of conflicts Existing Approaches
- Number of conflicts Interference Partition algorithm) / Number
of conflicts Existing Approaches) *100. The precision improve-
ment in number of conflicts varies from 60-90%, this is
mainly due to minimal safe subset of conflicts from an
interacting thread during the execution of an instruc-
tion in a reference thread.

Precision Improvement in WCET

The precision improvement in WCET is computed
as ((WCET Existing Approaches - WCET Interference Partition algorithm) /
WCET Existing Approaches)*100. The precision improvement
in WCET varies from 15-20%, this is due to shared L2
instruction cache hits inside loops. Though there is a
huge precision improvement upto 90 % in number of
conflicts, the precision improvement in WCET is 20%
and the reason for the same is discussed in section 3.

3. RESULTS AND DISCUSSION

The simulator multi-core chronos [24] [25] is extend-
ed to incorporate Interference Partition Algorithm for
barrier synchronization. Multi-core chronos tool is ex-
tended to make it aware of threads with synchroniza-
tion information, that is, to identify barrier synchroniza-
tion parallel processes to be used by the IP algorithm.

Design of Simulator

Multi-core Chronos Simulator [24][25] is extended to
keep track of the code regions in other threads that com-
pete for shared instruction cache through conflicts or
interferences as an instruction in a thread T is being ac-
cessed from the shared instruction cache. WCET is being
estimated for thread T and hence simulator needs to con-
sider shared instruction cache misses encountered during
the simulation of execution of thread T due to competing
instruction accesses by other threads from shared instruc-
tion cache. The code regions in other threads that compete
for shared instruction cache are Barrier Synchronization
Processes, if the code regions along with the instruction
under access in T are engaged in barrier synchronization.
The code regions may be synchronizing processes(tasks)
in two or more threads using calls to wait() and notify().
The code regions along with the instruction under access
in thread T from shared instruction cache may be sim-
ply parallel processes without being engaged in any any
form of synchronization. The Control Flow Graphs along
with partial order information of the input multithreaded
program are transformed into Hoare's CSP from which a
Message Sequence Chart is visualized. Competing pro-
cesses for each instruction in a thread are computed by
the Interference Partitioning algorithm and are fed as in-
put to the extended simulator. The Interference Partition-
ing Algorithm aids the simulator determine an abstract
set of competing accesses to shared instruction cache as
an instruction in thread T is accessed. The simulator can
decide whether an access is a shared instruction cache
miss based on the abstract set of competing accesses. A
simulator that does not use Interference Partitioning al-
gorithm handling barrier synchronization processes can
only consider set of competing accesses to be the entire
code regions of competing threads. On the contrary, our
simulator based on Interference Partitioning Algorithm
uses a much more precise set of competing accesses to
shared instruction cache.

A simplified version of the typical multi-core architec-
ture is assumed where each core has a small private L1

225Volume 14, Number 2, 2023

cache and comparatively larger L2 instruction cache,
shared by all the cores. The access latency of shared L2
instruction cache is higher than that of L1 cache. The ex-
ecution time of a multithreaded program is increased by
the impact of the interfering shared cache accesses run-
ning on other cores. Performing cache analysis for a mul-
tithreaded program on a multicore architecture statically
is a non-trivial task. It is essential for a real-time embed-
ded application to obtain tighter WCET estimates pre-
cise analysis of latency due to accesses to shared cache.
To evaluate the performance of existing approaches and
IP algorithm, a few parameters are proposed and consid-
ered for analysis. The proposed parameters are

•	 Number of conflicts

•	 Conflict ratio
•	 Overestimation ratio
•	 Precision Improvement in number of conflicts
•	 Precision Improvement in WCET

Number of Conflicts

Fig. 4. shows number of conflicts of benchmark pro-
gram for both IP algorithm and existing approaches. It
is evident that number of conflicts in IP algorithm is al-
ways lesser than or equal to number of conflicts in the
existing approaches due to reduced minimal subset of
conflicting region. This leads to more precise latency
computation for an instruction accessing shared L2 in-
struction cache memory.

(a)

(b)

(c) (d)

Fig. 4. Number of conflicts of benchmark program; a) of each instruction, b) of each node, c) for each
Parallel Process, d) for various Approaches

Conflict Ratio

Consider that an instruction I in node n of barrier
synchronization parallel process BSPm_i in Ti can have a
maximum of x conflicts from interacting thread Tj for
IP algorithm and let it be y for existing approaches and

it is proved experimentally that x<=y. As shown in Fig.
5.b., the conflict ratio of BSP2_1 is slightly higher than
conflict ratio of other parallel process in T_i, this is due
to the fact that the conflicts for BSP2_1 are from paral-
lel process having long calculation sequence and more
number of branching statements.

(a)

(b)

226 International Journal of Electrical and Computer Engineering Systems

(c) (d)

Fig. 5. Conflict Ratio of multithreaded program; a) of a node, b) of a parallel process, c) of a multithreaded
program, d) WCET of overestimation ratio

Overestimation Ratio of WCET

The main reason for reduction in overestimation
ratio is due to impact of IP algorithm on architectural
parameters of cache memory. IP algorithm reduces the
number of conflicts that leads to a significant reduc-
tion in number of shared L2 instruction cache misses.
Compulsory misses remain misses even with an infinite
cache memory and possible way to reduce compulsory
misses is by larger block size, but larger block size in-
creases conflict misses due to fewer cache lines/blocks.

Fig. 6 .a. Block Size and Overestimation Ratio

Fig. 6. b. Associativity and overestimation ratio

Fig. 6. Impact of block size and associativity on
overestimation ratio

Fig. 6.a. shows the impact of various block sizes on
overestimation ratio of WCET. One possible way to
reduce conflict Misses is to have n-way set associative
mapping. In n-way where n>1, set associative mapping

cache memory, each set has n cache blocks so there
are less chances of conflict between two addresses
mapped to same cache set. It is evident from Fig. 6.b.
that for n-way set associative mapping where n>1,
overestimation ratio is same. It is also observed that
smaller block sizes do not take maximum advantage of
spatial locality that results in a greater number of com-
pulsory misses as shown in Fig. 6. a.

Precision Improvement
in Number of conflicts and WCET

Though there is a huge precision improvement up to
90 % in reduction in number of conflicts, the precision
improvement in WCET of a multithreaded program is
only up to 20% which is still significant but not com-
mensurate with the former. The reason for the same is
discussed in this subsection. Significant improvements
are observed when barrier synchronization parallel
process size is considerably greater than that of L1
cache size. This is because under the stated condition,
interferences to shared instruction cache from compet-
ing processes are significantly less than those from in-
teracting threads. This is a direct consequence of static
identification of barrier synchronization parallel pro-
cesses in interacting threads. If the size of a barrier syn-
chronization parallel process in a thread is similar to the
size of L1 instruction cache, then the need to use shared
instruction cache may be quite less for the execution
of the barrier synchronization parallel process in the
thread. WCET precision improvement varies based on
cache architectural parameters and benchmark charac-
teristics. In Table 4, a few more benchmark results are
shown by varying L1 cache size. Greater the number of
threads, higher the number of conflicts, causing more
cache misses, resulting in an increase in WCET estimate
with greater imprecision. In contrast, the increase in
WCET estimate using IP algorithm remains smaller by
a fraction when compared to existing approaches. For
the benchmarks when run on for 4-core architecture,
IP algorithm gave lower WCET estimate over existing
approaches, with the average precision improvement
of 10%. It is noticed that, as the degree of parallelism in
threads increases, there is reduction in percentage of
precision improvement.

227Volume 14, Number 2, 2023

Table 4. Precision Improvement in Number of conflicts and WCET

Test Cases Benchmarks Characteristics L1 cache Size Precision Improvement in
Number of Conflicts (%)

WCET (Precision
Improvement %)

TC1 Inner loop dependent on outer loop,
Array and Matrix calculation

256 bytes 65.89% 19.58%

512 bytes 60.1% 16.4%

1 KB 55.8% 15.7%

TC2
Input dependent loops, Nested IF statement,

Long calculation sequence, Automatically
generated code

256 bytes 91.38% 21.8718%

512 bytes 88.25% 18.1%

1 KB 80.1% 16.8718%

TC3 Input dependent loops,
Automatically generated code

256 bytes 92.69% 22.20%

512 bytes 88.6% 19.7%

1 KB 82.4% 16.8%

TC4 Multiple calls to same function,
Nested Function calls

256 bytes 88.57% 24.6%

512 bytes 83.9% 21.5%

1 KB 78.2% 20.12%

4. CONCLUSION

Worst Case Execution Time Analysis of real-time em-
bedded applications is a challenging task. In this paper,
Interference partitioning (IP) algorithm is extended to
obtain minimal safe subset of interferences from inter-
acting threads using barrier synchronization primitives.
Computation task specific synchronization inside bar-
rier synchronization processes is also identified by IP
algorithm. Investigation of the effectiveness of the ex-
tended interference partitioning algorithm on bench-
mark programs adapted from Malardalen benchmark
suite is performed. Parameters such as Number of
conflicts, Conflict ratio, Overestimation ratio, Precision
Improvement in Number of conflicts and Precision
Improvement in WCET are proposed for performance
evaluations. There is a huge precision improvement
upto 90 % in reduction in number of conflicts and the
precision improvement in WCET is upto 20% due to IP
algorithm.

5. REFERENCES:

[1] P. P. P. Dharishini, P. V. R. Murthy, “Static Analyzer

for Computing WCET of Multithreaded Programs

using Hoare's CSP”, Proceedings of the 15th Inno-

vations in Software Engineering Conference, Feb-

ruary 2022, pp. 1-12.

[2] C. A. R. Hoare, “Communicating sequential pro-

cesses”, Proceedings of the Communications of

the ACM, Vol. 21, No. 8, 1978, pp. 666-677.

[3] S. Schuster, P. Wägemann, P. Ulbrich, W. Schröder-

Preikschat, “Annotate once–analyze anywhere:

context-aware WCET analysis by user-defined ab-

stractions”, Proceedings of the 22nd ACM SIGPLAN/

SIGBED International Conference on Languages,

Compilers, and Tools for Embedded Systems,

2021, pp. 54-66.

[4] B. Rouxel, S. Derrien, I. Puaut, “Tightening conten-
tion delays while scheduling parallel applications
on multi-core architectures”, ACM Transactions on
Embedded Computing Systems, Vol. 16, No. 5s,
2017, pp.1-20.

[5] A. Alhammad, R. Pellizzoni, “Time-predictable exe-
cution of multithreaded applications on multicore
systems”, Proceedings of the Design, Automation
& Test in Europe Conference & Exhibition, 24-28
March 2014, pp. 1-6.

[6] K. Nagar, Y. N. Srikant, “Precise shared cache analy-
sis using optimal interference placement”, Pro-
ceedings of the IEEE 19th Real-Time and Embed-
ded Technology and Applications Symposium,
Berlin, Germany, 15-17 April 2014, pp. 125-134.

[7] T. Kelter, P. Marwedel, “Parallelism analysis: Precise
WCET values for complex multi-core systems”, Sci-
ence of Computer Programming, Vol. 133, 2017,
pp. 175-193.

[8] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li,
V. Suhendra, “Timing analysis of concurrent pro-
grams running on shared cache multi-cores”, Real-
Time Systems, Vol. 48, No. 6, 2012, pp. 638-680.

[9] H. Ozaktas, C. Rochange, P. Sainrat, “Automatic
WCET analysis of real-time parallel applications”,
Proceedings of the 13th International Workshop
on Worst-Case Execution Time Analysis. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[10] R. Wilhelm et al. "The worst-case execution-time
problem—overview of methods and survey of
tools", ACM Transactions on Embedded Comput-
ing Systems, Vol. 7, No. 3, 2008, pp. 1-53.

[11] D. Potop-Butucaru, I. Puaut, “Integrated worst-

case execution time estimation of multicore ap-

plications”, Proceedings of the 13th international

workshop on worst-case execution time analysis,

2013.

[12] T. Carle, H. Cassé, “Reducing timing interferences

in real-time applications running on multicore ar-

chitectures”, Proceedings of the 18th International

Workshop on Worst-Case Execution Time Analysis,

2018, pp. 1-11.

[13] D. Hardy, T. Piquet, I. Puaut, “Using bypass to tight-

en WCET estimates for multi-core processors with

shared instruction caches”, Proceedings of the

30th IEEE Real-Time Systems Symposium, Wash-

ington, DC, USA, 1-4 December 2009.

[14] A.Gustavsson, A. Ermedahl, B. Lisper, P. Petters-

son, “Towards WCET analysis of multicore archi-

tectures using UPPAAL”, Proceedings of the 10th

international workshop on worst-case execution

time analysis, Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik.

[15] D. Casini, A. Biondi, G. Buttazzo, “Analyzing par-

allel real-time tasks implemented with thread

pools”, In Proceedings of the 56th Annual Design

Automation Conference, Las Vegas, NV, USA, June

2019, pp. 1-6.

[16] P. P. P. Dharishini, P. V. R. Murthy, “Precise Shared

Instruction Cache Analysis to Estimate WCET of

Multithreaded Programs”, Proceedings of the IEEE

18th India Council International Conference, Gu-

wahati, India, December 2021, pp. 1-7.

[17] G. Coulouris, J. Dollimore, T. Kindberg, G. Blair, “In-

direct Communication”, Distributed systems: Con-

cepts and Design, Fifth Edition, Addison-Wesley,

2011.

[18] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper,
“The Mälardalen WCET benchmarks: Past, present
and future”, Proceedings of the 10th International
Workshop on Worst-Case Execution Time Analysis,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informa-
tik,2010.

[19] K. S. Namjoshi, “Are concurrent programs that are
easier to write also easier to check”, Proceedings
of the Workshop on Exploiting Concurrency Effi-
ciently and Correctly, 2008.

[20] H. Theiling, C. Ferdinand, R. Wilhelm, “Fast and
precise WCET prediction by separated cache and
path analyses”, Real-Time Systems, Vol. 18, No. 2,
2000, pp. 157-179.

[21] D. Hardy, I. Puaut, “WCET analysis of multi-level
non-inclusive set-associative instruction caches”,
In Proceedings of the 29th IEEE Real-Time Systems
Symposium, Barcelona, Spain, 30 November - 3
December 2008, pp. 456–466.

[22] M. Lv, N. Guan, J. Reineke, R. Wilhelm, W. Yi, “A sur-
vey on static cache analysis for real-time systems”,
Leibniz Transactions on Embedded Systems, Vol.
3, No. 1, 2016.

[23] T. Austin, E. Larson, D. Ernst, "SimpleScalar: an
infrastructure for computer system modeling",
Computer, Vol. 35, No. 2, 2002, pp. 59-67.

[24] S. Chattopadhyay, L. K. Chong, A. Roychoudhury,
T. Kelter, P. Marwedel, H. Falk, “A unified WCET
analysis framework for multicore platforms”, ACM
Transactions on Embedded Computing Systems,
Vol. 13, No. 4s, 2014.

[25] X. Li, Y. Liang, T. Mitra, A. Roychoudhury, “Chronos:
A timing analyzer for embedded 72 software”, Sci-
ence of Computer Programming, Vol. 69, No. 1,
2007, pp. 56-67.

228 International Journal of Electrical and Computer Engineering Systems

