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SUMMARY

The paper presents the results of experimental measurements and numerical calculations of temperature fields in
the “die-moving wire” geometry configuration. Experimental measurements were applied for modelling boundary
conditions for numerical models and their verification. Boundary element method (BEM) was used in mathematical
modelling of basic differential equations and the technique of subdomains was used to combine different temperature
fields in the tool and workpiece into a common problem. This statement defines in short the nature of the new
approach to numerical modelling of temperature fields in the technological process of metal forming.
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1. INTRODUCTION Variousthermoel ectric, pyrometric and photometric

The phenomena of generation and transfer of heat in
the tool and workpeace in technological processes of
metal working and machining have attracted scientific
attention in the recent years. The major part of the
deformation and friction energy in these processes is
transformed into heat that increasesthe temperature, thus
having substantial influence on the tool and object of
working. High local thermal loads can have the
following consequences: intensive wear and formation
of cratersin the tool, lower quality of the surface finish
and worsened tolerances of products. Investigation and
knowledge of thermal effectsin technological processes
of metalworking are essential in the selection of optimal
parameters for the course of the process. Thus, known
temperature profilesin real engineering applications are
very important for selection of optimum parameters in
technological process, for defining the level of local
thermal loads, which is one of limiting factors for the
improved technological process, as well as for quality
of products.

methods were applied to measure temperaturesin those
processes. Simultaneously with experimental
measurements, there were attempts to obtain the same
results by numerical methods. They were rather
successful as confirmed by many scientific works. The
approaches known till now, experimental and
numerical, for analysing heat fluxes in technological
processes of machining and working (i.e. in cutting,
forging, rolling, drawing etc.) were such that the tool
and the workpiece were analysed separately [1-3].
This model is based on the Boundary Element
Method (BEM) and on the technique of subdomains.
It enables a completely new access to these problems,
which essentially meansthat the tool and the workpiece
involved in the technol ogical process of metalworking
are considered as a unified problem [4]. The process
of cold drawing of axially symmetrical steel sections
was treated as an example for this experimental and
numerical analysis. An important parameter of this
technological process is drawing rate, proportional to
machine capacity and limited by local thermal loads.
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The development of drawing technology is directed
towards the development of machine designs with
controlled cooling of thetool and workpiece. This may
result in: increase of the drawing vel ocity, reduced tool
wear and better quality of products.

2. EXPERIMENTAL MEASUREMENTS

Planning of measurements includes the
application of suitable instruments, measuring
methods and data acquisitions. The optimal selection
of the measuring points and drawing parameters was
made. An important characteristic of the experiment
wasits complexity that was reflected in simultaneous
measurements of nearly all relevant parameters
needed for analysing the drawing process. The
following parameters were measured experimental ly:
the die (tool) temperatures in points A and B, the
temperature of the wire surface prior to drawing and
during the process, the temperature of the wire
surface after drawing and during the process, the

Table 1 Results of experimental measurements

temperature of the cooling water at the entrance into

the measuring module, the temperature of the cooling

water at the exit from measuring module, the cooling
water rate, the ambient temperature, the drawing rate

(i.e. wire velocity), the drawing force, the wire

diameter prior to and after the drawing, the chemical

composition of the wire, the mechanical properties
of the wire prior to and after the drawing, the
metall ographic properties of the wire prior and after

the drawing, for more details look in Ref. [4].

The results of experimental measurements were
used for:

— Modelling of the boundary conditionsin numerical
calculations of temperature distribution in the tool
(die) and workpiece (wire);

— Verification of calculations of the boundary
element method.

Figure 1 presents the detailed drawing with the
position of measuring points A and B, while Table 1
shows the results of laboratory measurements. The
measurementswere madein thelaboratory of the Ingtitute
for Metals and Technologiesin Ljubljana, Slovenia

Measurement, No. Il 2] 3] 4 5 ] 6l 7] s8] 9 o] ]2
Cooling water rate, m’n! 0.182278
Drawing speed, m-s' 0.2833 | 0.55 | 0.95 | 1583
Wire cross-section
reduction, % 24.3
Drawing force, kN 26 [25] 25 J 245 25 [ 25 23 ] 24 ] 23 [ 255]266] 26
Ambient temperature, [°C] 9.5
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water, [°C] ’
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Fig. 1 Die (tool): 1 - core of die (hard metal), 2 - core holder (steel), A and B - measurement points
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3. BOUNDARY ELEMENT METHOD

3.1 Mathematical model for the temperature
field in the tool

3.1.1 Governing eguation

The steady energy transport in isotropic and
homogeneous body of constant conductivity is
described by the following linear elliptic equation for
the temperature:

VT=0 in @
where T is temperature, Q2 is solution domain and V?
is Hamilton’s nabla operator. The mathematical
description of the problem is completed by providing
linear boundary conditions: Dirichlet, Neumann and
Cauchy.

3.1.2 Boundary integral eguation

Differential equation (1) istransformed in boundary
integral equation by applying a weighted residual
technique or Green’s theorem [5]:

or” orT .

C T T—dl=|—TdrI 2

(€) (5)+£ . lan (2)

where C(&) is geometrical coefficient, I" is boundary

of domain and o/dn is partial derivation in the normal
direction.

3.1.3 Fundamental solution

Weighted function 7* in Eq. (2) is the fundamental
solution of the homogeneous elliptic equation and it
represents the influence of the unit source which acts
in the source point £ on the reference point S:

. 1 1
T (&S)=—Ih———
(&5)= 2 sy ®
where & is source point, S is field point on boundary
and r(¢,S) is distance between source and field point.

3.1.4 Discrete form of integral equation

The analytical solution of integral equation (2) is
limited to simple examples, without much practical
application. Therefore, the solution must be found
numerically and the first step is the transformation of
Eq. (2) in the discrete form. The discrete matrix form
of Eg. (2) can be written as:

[#]{}+ 6N} =[Gl{e}+ TG} @

where o is convection heat transfer coefficient, A is

heat conductivity coefficient and 7, is ambient
temperature.

The system of algebraic equation (4) for known
boundary conditions is transformed in the following
system:

[4]{x} ={F} ()
where [4] is system matrix, {X} is vector of
unknowns, and { F} is a known vector.

The system of algrebraic equation (5) can be solved
with the Gauss elimination method.

3.2 Mathematical model for the temperature
field in the workpiece

3.2.1 Governing eguation

The steady diffusive-convective energy transport in
the isotropic and homogeneous body with constant
conductivity and velocity of movement in the x
direction can be described by the following equation
for temperature:

(VV)T=aV°’T in (6)

where a,) is diffusion coefficient, V, is velocity in x
direction, that is velocity of the wire, and V is the
L aplace operator.

The mathematical description of the problem is
completed by providing linear boundary conditions:
Dirichlet, Neumann and Cauchy.

3.2.2 Boundary integral eguation
The governing Eq. (6) is transformed in boundary

integral equation by applying a weighted residual
technique or the Green’stheorem for scalar function [6]:

C(§)T(§)+IT%CJF=IZ—:T* —ijTT* V.n dI
r r

()

3.2.3 Fundamental solution

The weighted function 7* in Eq. (7) represents the
fundamental solution of the equation:

a,V’T—-(V.V)T+6(&,s)=0 (8)

where §(¢,s) is the Dirac’'s delta function and in two-
dimensiona problems it has the following form [7]:

V.r
T’ :;Ko rr exp| - d 9
2r a, 2a, 2a,
where K, represents the modified Bessel's function of
the second kind and zero order.
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3.2.4 Discrete form of integral equation

Since analytical solution of Eq. (7) isnot possible,
the problem can be solved only numerically and the
first step towards the goal is the transformation of the
equation into the discrete form. The discrete form of
Eq. (7) can be written as:

[H]{T}+ 5G]} =

(10)
a 1
~[6l{o}+ < [6]{r.} - [6]1v. {7}
0
which, for known boundary conditions, can be
transformed in the following system of algrebaic
equations:

[4]{x} ={F]} (1)
The system of algebraic equations (11) can be
solved with the Gaussian elimination method.

3.3 Subdomain technique

Inreal engineering problems, the application of the
techniques of subdomains is inevitable. It represents
the procedure of the division of the basic domain into
subdomains, for which the boundary elements method
can be applied inthe sameway asfor the basic domain.
The mutual position of subdomains can be a contacting
one or an overlapping one, which means that different
algorithmsfor solving the obtained system of algebraic
equations are applied. The standard method is using
the techniques of contacting subdomains and the
obtained system of algebraic equations is suitable for
direct solving.

The techniques of subdomains were initially
developed for the problems with solidsin which single
sections or subdomains had different physical
properties[8], e.g. different conductivities. In problems
with branched or thin geometry, it isessential to divide
the domains into a necessary number of subdomains
to assure the exactness and efficiency of the numerical
procedure. In such a case, the integration of the
boundary and the domain integralsis shorter since only
points from actual subdomains take part in the
calculations. This technique enables that subdomains
arelinked into aunity intheframe of an approximative
method when a greater number of subdomains with
different basic equations due to various physical
phenomena are used. Thus, they can be analysed as a
unified model [9]. The analysis of the techniques of
subdomains for two solids in close contact will be
made for the case when one solid ismoving, e.g. when
it is actually moving along one axis, in this paper it is
x axis.

On the edge of contact I'; heat is generated due to
friction between ; and €, subdomains. These two
physically different temperature fields have acommon
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edge I'y where a joint temperature field is created due
to the techniques of subdomains. On this interface the
following conditionsarevalid:

T, =T, =T, (compatibility) (12)

and:
q,=q; +q;° (equilibrium) (13)
where g istotal friction heat (in our case between wire
and die), g/ isthe part of friction heat transported over

domain €2, (i.e. die) and ¢ /€ isthe part of friction heat
transported over domain £, (i.e. wire), see Figure 2.

subdomain
Vx,l = O, Vy,l =0

Vx,z = COﬂSt., Vy,z =0

subdomain €2

Fig. 2 Definition of the problem

If heat is not generated on the interface boundary,
then the equlibrium condition attains the following
form:

q; =—q;° (14)
where subscript / means friction, superscript D is
diffusion and DC is diffusion-convection.

The Q; subdomain has m+fand the £, subdomain
n+f boundary elements, and it is supposed that the
boundary element method (BEM) is applied in
numerical procedure for both subdomains. For the €,
subdomain the system of algebraic equation
[41{ X}={F} obtained by numerical BEM procedure
can be (according to Figure 2) separated in the
following way:

4, Ap | x) |EY 15)
= 15
A AT 97

The same way on the same level of numerical
procedure for the 2, subdomain gives:

DC DC DC DC

A y A i T/. 3 q; (16)
pC pC pc || mpC

. X, F

Combining the equation systems (15) and (16),
summing the corresponding algebraic equations and
taking into account the conditions (12) and (13) or (14)
ontheinterface, thefollowing joint systemis obtained:

4, Ay 0 (x| (R

Ap (AP +47°) Ap° T, t={q, ¢ (17)
DC DC DC DC

0 A, F,

The system of algebraic equations (17) is the
known system, as [A]{ X} = {F}, which can be solved
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by the method of the Gaussian elimination. Also, it is
important to note that system (17) has
(m+n+f)-(m+n+f) dimension.

4. NUMERICAL CALCULATIONS

The computer program, named Heat2DCS, was
developed and used for the calculation of the
temperature field in the “die-moving wire’ geometry
configuration and it has the following advantages: it
solves the diffusion-convective heat transport; on the
interface it incorporates friction heat generated by the
friction of contacting subdomains into calculation; it
combines two physicaly different temperature fields
into aunified system by the techniques of subdomains,
e.g. diffusion and diffusion-convective oneinthis case.

The mentioned advantages of the Heat2DCS
programme enable a complete computer simulation of
heat fluxes and temperature fields in the tool and
workpiece in the technological processes of
metalworking. The abbreviation Heat2DCS standsfor:
heat, two dimensions, diffusion, convection and steady
state. For the temperature levels created during the
experimental measurements, the physical properties of
materials shown in Tables 2 and 3 can be taken as
constants.

Table 2 Hard metal, subdomains 2 and 3 in Figure 3

A detailed description, type and position of
boundary conditionsfor the geometrical configuration,
used in calculations, are presented in Figure 3. The
domain of geometric configuration in calculation is
composed of the moving wire and the die body.
Boundary conditions on AB and KE lines represent
joint heat of surface friction between the wire and the
die. The second condition isthe compatibility, and it is
the result of calculation. On edges BC and DE, the
boundary conditions are given by the ambient
temperature 7, measured experimentally, and the
covection heat transfer coefficient o, which includes
forced convection and radiation of the wire into
surroundings. The conditions on EFG, 1JK and CD
edges are given by the ambient temperature 7, and by
the convection heat-transfer coefficient to the
surroundings, ¢,. On the GI section of the edge the
conditions are given by the average temperature of
cooling water 7,, measured experimentally and by the
heat-transfer coefficient k, given by expression:

1
k=——ps— (18)

a, A

w steel

where ¢, is convection heat transfer coefficient from
the die to the cooling water, d is thickness of the core
dieholder wall and A,,; isthermal conductivity of the
holder wall material (steel).

Thermal Specific Density , Dlﬁusivit%) Temperature fields are the result of modelling and
conductivity heat Pims kg/m | aopm, mm'/s solving the systems of differential equations, i.e. the
’1’""’7?/0’“( cp,h255/10€g g 300 7357 diffusion and diffusion-convective equations. The

' ' : temperature profiles for the “die-moving wire”
Table 3 Wire, subdomain 1 in Figure 3 geometry configuration are presented from Figure 4 to

Thermal Specific Density Diffusiviy Figure 7, wher_e the parameter_s of the technological
conductivity Tt P kg | g mm’s process for which the cal Cl_JIgtl on was ma(_de and the
Jw WimK | ¢y kg K modelled boundary conditions, respectively, are

59.59 418.7 7760 18.37 discussed in details.
| G
Subdomain-2
(hard metal)
F
E D
A Subdomain-1(wire)
B C
y
Subdomain-3
(hard metal)
_—

Fig. 3 Definition of the geometry and boundary conditions for the calculated “die-moving wire” geometry configuration, where AB
and KE present Neumann's boundary condition {qs; BC - Cauchy s boundary condition {T,=9.5°C, o,,=100 W/m?K}; CD - Cauchy's
boundary condition {T,=9.5°C, o,=4.8 W/m?K}; DE - Cauchy’s boundary condition {T,=9.5°C, o,=100 W/m? K}, EFG - Cauchy’s
boundary condition {T,=9.5°C, a,,=4.8 W/m?K}; GI - Cauchy's boundary condition {T,,=9.5°C, k=2160 W/m? K}, IJK - {T,=9.5°C,
0,=4.8 W/m? K}; KA - Dirichlet’s boundary condition {T=55°C}
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Isolines: 30, 35, 40, 45, 50, 56, 57 °C.

Tmax = 58.76 °C.
‘\.._/"'
Va————

Fig. 4 Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%, dry lubrication; drawing velocity Ve 1=0.2833 m/s;
friction coefficient ©=0.062; convection heat transfer coefficient between the die and the enviroment o, =4.8 W/m2' K, convection
heat transfer coefficient between the wire and the enviroment a,=100 W/m? K (which includes convection and radiation);
convection heat transfer coefficient on coolig water &,,=5400 W/m? K, thermal conductivity of steel, i.e holder of hard metal
Agteer=39.59 W/m K, thermal conductivity of hard metal Ay,,,=73 W/m'K; average temperature of cooling water T,,=10.5°C;
temperature of the deformed wire Tp=55°C

5 Isolines: 30, 35, 40, 45, 50, 56, 60 °C.
Timax = 66.64 °C.
S 94

—

Fig. 5 Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%, dry lubrication; drawing velocity Vx’2=0.55 m/s;
Sriction coefficient ©=0.062; convection heat transfer coefficient between the die and the environment o,,=4.8 W/m2' K, convection
heat transfer coefficient between the wire and the environment o,,=100 W/m? K (which includes convection and radiation);
convection heat transfer coefficient on coolig water a,,=5400 W/m? K, thermal conductivity of steel, i.e holder of hard metal
Asteer=39.59 W/m2'K; thermal conductivity of hard metal Ay,,=73 W/m? K, average temperature of cooling water T,,=10.5°C;
temperature of the deformed wire Tp=55°C

Isolines: 45, 50, 56, 60, 70, 80, 90, 95 °C.

Tmax = 100.37 °C.

Fig. 6 Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%, dry lubrication; drawing velocity Vx’3=0. 95 m/s;
Sriction coefficient ©=0.048; convection heat transfer coefficient between the die and the environment o,,=4.8 W/m2' K, convection
heat transfer coefficient between the wire and the environment 0,,=100 W/m? K (which includes convection and radiation);
convection heat transfer coefficient on coolig water a,,=5400 W/m? K, thermal conductivity of steel, i.e holder of hard metal
Asteer=39.59 W/m2'K; thermal conductivity of hard metal Ay, =73 W/m? K, average temperature of cooling water T,,=10.5°C;
temperature of the deformed wire Tp=55°C
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Isolines: 50, 56, 60, 70, 80, 90, 100, 110, 120 °C.

7 Timac=123.76 °C.

Fig. 7 Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%, dry lubrication; drawing velocity Viqa=1.583 m/s;
Sriction coefficient u=0.071; convection heat transfer coefficient between the die and the environment o, =4.8 W/m? K, convection
heat transfer coefficient between the wire and the environment o, =100 W/m? K (which includes convection and radiation);
convection heat transfer coefficient on coolig water a,,=5400 W/m? K; thermal conductivity of steel, i.e holder of hard metal
Astee1=39.59 W/m? K; thermal conductivity of hard metal Xy,,=73 W/m? K, average temperature of cooling water T,,=10.5°C;
temperature of the deformed wire Tp=55°C

5. VERIFICATION OF THE NUMERICAL numerically calculated value could be accepted asreal,
CALCULATIONS if agreeement of results between experiment and BEM
in the points A and B is satisfactory. It should be
New numerical models can be tested on simple highlighted that knowledge of this temperatureis very
examples, which have analytical solutions, or with important sinceit showsthe level of local thermal load
experimental measurements for real calculated in the technological working process.
geometrical configuration. In our case we have chosen The presented results in Table 4 show a good
experimental verification of the numerical model. agreement, which confirms the validity of the
Therefore, Table 4 presents the results of experiments numerical model for basic equations and boundary
and numerical calculations of temperature in A and B conditions. In addition, results of numerical calculation
points. for 7,,,, in the Table 4, for four different velocities of
Thetemperature 7,,,,,, isthe compatibility condition, wire drawing, could be accepted as satisfactory and
Eq. (12), which is the result of the numerical used in practice.
calculation and it represents the temperature in the Of course, it is possible to make a calculation of
contact between the tool and the workpiece. this very important wire drawing parameter by the
Unfortunately, it is not possible to determine the presented numerical model. The calculation could be
temperature T,,,. experimentally. However, its made for all drawing conditions and is particularly

important for drawing velocity.

Table 4 Results for different drawing velocities

Temperature, ’c | T, | Ty | T
Drawing velocity V,.; = 0.2833 m/s

experiment 37.5 26.0 -

The BEM 39.1 29.3 58.74
Drawing velocity V., = 0.550 m/s

experiment 46.0 29.5 -

The BEM 49.19 32.6 66.62
Drawing velocity V.; = 0.950 m/s

experiment 71.0 41.0 -

The BEM 72.47 44.9 100.5
Drawing velocity V., = 1.583 m/s

experiment 83.0 45.0 -

The BEM 88.0 53.0 123.0
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6. CONCLUSION

Experimental measurements fulfilled their basic
task, which was the modelling of boundary conditions
for numerical models and their verification.
Comparison of calculated and experimentally
measured results shows a good agreement, which
confirms the correctness of the numerical model for
governing differential equations and boundary
conditions.

The model is very suitable for optimization of
existing technological processes: drawing of axially
symmetric sections, forging, cutting, rolling etc. For
example, it is possible to investigate very important
aspects in the technological process of wire drawing
such as: reduction of local thermal loads, increase of
drawing rate, improvement of product quality,
reduction of consumed electric energy and of auxiliary
material consumption etc.

The test examples given in Ref. [4] have shown a
great stability of solutions for very small and for big
Peclet's numbers, which enables analyses and
calculations of temeperaturefieldsfor all real situations
that could appear in practice. It isalso possible to enter
afield that istechnologically not possible yet, i.e. some
futuristic analyses can be made as well as research on
conditions of their rea introduction into practice.
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NOVI PRISTUP NUMERICKOM MODELIRANJU TEMPERATURNIH POLJA U
PROCESIMA OBRADE METALA S EKSPERIMENTALNIM DOKAZIMA

SAZETAK

Ovaj rad iznosi rezultate eksperimentalnih mjerenja i numerickih izracuna temperaturnih polja u "die-moving-
wire" geometrijskoj konfiguraciji. Eksperimentalna mjerenja su primjenjivana za modeliranje rubnih uvjeta za
numericke modele kao i njihovu verifikaciju. Metoda rubnih elemenata (BEM) koristila se u matematickom
modeliranju osnovnih diferencijalnih jednadzbi, a tehnika podrucja poddomena koristila se da bi se sjedinila
razlicita temperaturna polja u alatu i predmetu obrade u zajednicki problem. Navedeno ukratko definira prirodu
novog pristupa u numerickom modeliranju temperaturnih polja u tehnoloskim procesima oblikovanja metala.

Kljucne rijeci: numericka metoda, metoda rubnih elemenata, prijenos topline, tehnoloski proces oblikovanja metala.

70 ENGINEERING MODELLING 19 (2006) 1-4, 63-70



