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SUMMARY
The paper presents the results of experimental measurements and numerical calculations of temperature fields in

the “die-moving wire” geometry configuration. Experimental measurements were applied for modelling boundary
conditions for numerical models and their verification. Boundary element method (BEM) was used in mathematical
modelling of basic differential equations and the technique of subdomains was used to combine different temperature
fields in the tool and workpiece into a common problem. This statement defines in short the nature of the new
approach to numerical modelling of temperature fields in the technological process of metal forming.
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1. INTRODUCTION

The phenomena of generation and transfer of heat in
the tool and workpeace in technological processes of
metal working and machining have attracted scientific
attention in the recent years. The major part of the
deformation and friction energy in these processes is
transformed into heat that increases the temperature, thus
having substantial influence on the tool and object of
working. High local thermal loads can have the
following consequences: intensive wear and formation
of craters in the tool, lower quality of the surface finish
and worsened tolerances of products. Investigation and
knowledge of thermal effects in technological processes
of metalworking are essential in the selection of optimal
parameters for the course of the process. Thus, known
temperature profiles in real engineering applications are
very important for selection of optimum parameters in
technological process, for defining the level of local
thermal loads, which is one of limiting factors for the
improved technological process, as well as for quality
of products.

Various thermoelectric, pyrometric and photometric
methods were applied to measure temperatures in those
processes. Simultaneously with experimental
measurements, there were attempts to obtain the same
results by numerical methods. They were rather
successful as confirmed by many scientific works. The
approaches known till now, experimental and
numerical, for analysing heat fluxes in technological
processes of machining and working (i.e. in cutting,
forging, rolling, drawing etc.) were such that the tool
and the workpiece were analysed separately [1-3].

This model is based on the Boundary Element
Method (BEM) and on the technique of subdomains.
It enables a completely new access to these problems,
which essentially means that the tool and the workpiece
involved in the technological process of metalworking
are considered as a unified problem [4]. The process
of cold drawing of axially symmetrical steel sections
was treated as an example for this experimental and
numerical analysis. An important parameter of this
technological process is drawing rate, proportional to
machine capacity and limited by local thermal loads.
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The development of drawing technology is directed
towards the development of machine designs with
controlled cooling of the tool and workpiece. This may
result in: increase of the drawing velocity, reduced tool
wear and better quality of products.

2. EXPERIMENTAL MEASUREMENTS

Planning of measurements includes the
application of suitable instruments, measuring
methods and data acquisitions. The optimal selection
of the measuring points and drawing parameters was
made. An important characteristic of the experiment
was its complexity that was reflected in simultaneous
measurements of nearly all relevant parameters
needed for analysing the drawing process. The
following parameters were measured experimentally:
the die (tool) temperatures in points A and B, the
temperature of the wire surface prior to drawing and
during the process, the temperature of the wire
surface after drawing and during the process, the

temperature of the cooling water at the entrance into
the measuring module, the temperature of the cooling
water at the exit from measuring module, the cooling
water rate, the ambient temperature, the drawing rate
(i.e. wire velocity), the drawing force, the wire
diameter prior to and after the drawing, the chemical
composition of the wire, the mechanical properties
of the wire prior to and after the drawing, the
metallographic properties of the wire prior and after
the drawing, for more details look in Ref. [4].

The results of experimental measurements were
used for:
− Modelling of the boundary conditions in numerical

calculations of temperature distribution in the tool
(die) and workpiece (wire);

− Verification of calculations of the boundary
element method.
Figure 1 presents the detailed drawing with the

position of measuring points A and B, while Table 1
shows the results of laboratory measurements. The
measurements were made in the laboratory of the Institute
for Metals and Technologies in Ljubljana, Slovenia.
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Table 1 Results of experimental measurements

Measurement,  No. 1 2 3 4 5 6 7 8  9 10 11 12 
Cooling water rate,  m3 ⋅h-1 0.182278 

Drawing speed,  m⋅s-1 0.2833 0.55  0.95 1.583 
Wire cross-section 

reduction,  % 24.3 

Drawing force,  kN 2 .6 2.5 2.5 2.45 2.5 2.5 2.3 2 .4 2.3 2.55 2.66 2.6  
Ambient temperature,  [ 0C]  9.5 
Inlet temperature of cooling 

water,  [ 0C]  10 .0 

Outlet temperature of 
cooling water,  0C 11 11 11 11 11 11 11.5 11.5 11.5 12 12 12 

Wire surface temperature in 
front of the die,  0 C 9.5 

Wire surface temperature 
behind the die,  0C 54.5 55 54.5 59 59 58 62 62 63 68 69 68 

Temperature in  
the point A,  0C 37.5 37 37.5 46.5 46 46 70 71 71 82 83 83 

Temperature in  
the point B,  0C 

26 26 26 29.5 29 30 40.5 41 41 45 46 45 

 

Fig. 1  Die (tool): 1 - core of die (hard metal), 2 - core holder (steel), A and B - measurement points
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3. BOUNDARY ELEMENT METHOD

3.1 Mathematical model for the temperature
field in the tool

3.1.1 Governing equation

The steady energy transport in isotropic and
homogeneous body of constant conductivity is
described by the following linear elliptic equation for
the temperature:

2T 0 in Ω∇ = (1)
where T is temperature, Ω is solution domain and ∇2

is Hamilton’s nabla operator. The mathematical
description of the problem is completed by providing
linear boundary conditions: Dirichlet, Neumann and
Cauchy.

3.1.2 Boundary integral equation

Differential equation (1) is transformed in boundary
integral equation by applying a weighted residual
technique or Green’s theorem [5]:

( ) ( )
*

*T TC T T d T d
n nΓ Γ

ξ ξ Γ Γ∂ ∂
+ =

∂ ∂∫ ∫ (2)

where C(ξ) is geometrical coefficient, Γ is boundary
of domain and ∂/∂n is partial derivation in the normal
direction.

3.1.3 Fundamental solution

Weighted function T* in Eq. (2) is the fundamental
solution of the homogeneous elliptic equation and it
represents the influence of the unit source which acts
in the source point ξ on the reference point S:

( ) ( )
* 1 1T ,S ln

2 r ,S
ξ

π ξ
= (3)

where ξ is source point, S is field point on boundary
and r(ξ,S) is distance between source and field point.

3.1.4 Discrete form of integral equation

The analytical solution of integral equation (2) is
limited to simple examples, without much practical
application. Therefore, the solution must be found
numerically and the first step is the transformation of
Eq. (2) in the discrete form. The discrete matrix form
of Eq. (2) can be written as:

[ ]{ } [ ]{ } [ ]{ } [ ]{ }aH T G T G Q G Tα α
λ λ

+ = + (4)

where α is convection heat transfer coefficient, λ is

heat conductivity coefficient and Ta is ambient
temperature.

The system of algebraic equation (4) for known
boundary conditions is transformed in the following
system:

[ ]{ } { }A X F= (5)
where [A] is system matrix, {X} is vector of
unknowns, and {F} is a known vector.

The system of algrebraic equation (5) can be solved
with the Gauss elimination method.

3.2 Mathematical model for the temperature
field in the workpiece

3.2.1 Governing equation

The steady diffusive-convective energy transport in
the isotropic and homogeneous body with constant
conductivity and velocity of movement in the x
direction can be described by the following equation
for temperature:

( ) 2
x 0V T a T in Ω∇ = ∇ (6)

where a0 is diffusion coefficient, Vx is velocity in x
direction, that is velocity of the wire, and ∇ is the
Laplace operator.

The mathematical description of the problem is
completed by providing linear boundary conditions:
Dirichlet, Neumann and Cauchy.

3.2.2 Boundary integral equation

The governing Eq. (6) is transformed in boundary
integral equation by applying a weighted residual
technique or the Green’s theorem for scalar function [6]:

( ) ( )
*

* *
x x

0

T T 1C T T d T T T V n d
n n aΓ Γ Γ

ξ ξ Γ Γ∂ ∂
+ = −

∂ ∂∫ ∫ ∫
(7)

3.2.3 Fundamental solution

The weighted function T* in Eq. (7) represents the
fundamental solution of the equation:

( ) ( )2
0 xa T V T ,s 0δ ξ∇ − ∇ + = (8)

where δ(ξ,s) is the Dirac’s delta function and in two-
dimensional problems it has the following form [7]:

j j*
0

0 0 0

V r1 V rT K exp
2 a 2 a 2 aπ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
(9)

where K0 represents the modified Bessel’s function of
the second kind and zero order.
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3.2.4 Discrete form of integral equation

Since analytical solution of Eq. (7) is not possible,
the problem can be solved only numerically and the
first step towards the goal is the transformation of the
equation into the discrete form. The discrete form of
Eq. (7) can be written as:

[ ]{ } [ ]{ }

[ ]{ } [ ]{ } [ ][ ]{ }
0

1
a x x

H T G T

G Q G T G V n T
a

α
λ
α
λ

+ =

= + −
(10)

which, for known boundary conditions, can be
transformed in the following system of algrebaic
equations:

[ ]{ } { }A X F= (11)
The system of algebraic equations (11) can be

solved with the Gaussian elimination method.

3.3 Subdomain technique

In real engineering problems, the application of the
techniques of subdomains is inevitable. It represents
the procedure of the division of the basic domain into
subdomains, for which the boundary elements method
can be applied in the same way as for the basic domain.
The mutual position of subdomains can be a contacting
one or an overlapping one, which means that different
algorithms for solving the obtained system of algebraic
equations are applied. The standard method is using
the techniques of contacting subdomains and the
obtained system of algebraic equations is suitable for
direct solving.

The techniques of subdomains were initially
developed for the problems with solids in which single
sections or subdomains had different physical
properties [8], e.g. different conductivities. In problems
with branched or thin geometry, it is essential to divide
the domains into a necessary number of subdomains
to assure the exactness and efficiency of the numerical
procedure. In such a case, the integration of the
boundary and the domain integrals is shorter since only
points from actual subdomains take part in the
calculations. This technique enables that subdomains
are linked into a unity in the frame of an approximative
method when a greater number of subdomains with
different basic equations due to various physical
phenomena are used. Thus, they can be analysed as a
unified model [9]. The analysis of the techniques of
subdomains for two solids in close contact will be
made for the case when one solid is moving, e.g. when
it is actually moving along one axis, in this paper it is
x axis.

On the edge of contact Γf, heat is generated due to
friction between Ω1 and Ω2 subdomains. These two
physically different temperature fields have a common

edge Γf where a joint temperature field is created due
to the techniques of subdomains. On this interface the
following conditions are valid:

D DC
f f fT T T= =   (compatibility) (12)

and:
D DC

f f fq q q= +   (equilibrium) (13)

where qf is total friction heat (in our case between wire
and die), qfD is the part of friction heat transported over
domain Ω1 (i.e. die) and qfDC is the part of friction heat
transported over domain Ω2 (i.e. wire), see Figure 2.
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subdomain  Ω 1 
  

Γ m  

V x,1  = 0, V y,1  = 0 

Γn   

Γ f  
V x,2  = const., V y,2  = 0 

DC 
f q  

D 
f q   

x   

y  

Fig. 2  Definition of the problem

If heat is not generated on the interface boundary,
then the equlibrium condition attains the following
form:

D DC
f fq q= − (14)

where subscript f means friction, superscript D is
diffusion and DC is diffusion-convection.

The Ω1 subdomain has m+f and the Ω2 subdomain
n+f boundary elements, and it is supposed that the
boundary element method (BEM) is applied in
numerical procedure for both subdomains. For the Ω1
subdomain the system of algebraic equation
[A]{X}={F} obtained by numerical BEM procedure
can be (according to Figure 2) separated in the
following way:

D D D D
m mf m m

D DD D
f ffm f

A A X F
T qA A

⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

(15)

The same way on the same level of numerical
procedure for the Ω2 subdomain gives:

DC DC DC DC
f fn f f

DC DC DC DC
nf n n n

A A T q

A A X F

⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

(16)

Combining the equation systems (15) and (16),
summing the corresponding algebraic equations and
taking into account the conditions (12) and (13) or (14)
on the interface, the following joint system is obtained:

( )

D D D Dm mf m m
D D DC DC
fm f f fn f f

DC DCDC DC
n nnf n

A A 0 X F
A A A A T q

X F0 A A

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥+ =⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

(17)

The system of algebraic equations (17) is the
known system, as [A]{X} = {F}, which can be solved
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by the method of the Gaussian elimination. Also, it is
important to note that system (17) has
(m+n+f)·(m+n+f) dimension.

4. NUMERICAL CALCULATIONS

The computer program, named Heat2DCS, was
developed and used for the calculation of the
temperature field in the “die-moving wire” geometry
configuration and it has the following advantages: it
solves the diffusion-convective heat transport; on the
interface it incorporates friction heat generated by the
friction of contacting subdomains into calculation; it
combines two physically different temperature fields
into a unified system by the techniques of subdomains,
e.g. diffusion and diffusion-convective one in this case.

The mentioned advantages of the Heat2DCS
programme enable a complete computer simulation of
heat fluxes and temperature fields in the tool and
workpiece in the technological processes of
metalworking. The abbreviation Heat2DCS stands for:
heat, two dimensions, diffusion, convection and steady
state. For the temperature levels created during the
experimental measurements, the physical properties of
materials shown in Tables 2 and 3 can be taken as
constants.
Table 2 Hard metal, subdomains 2 and 3 in Figure 3

A detailed description, type and position of
boundary conditions for the geometrical configuration,
used in calculations, are presented in Figure 3. The
domain of geometric configuration in calculation is
composed of the moving wire and the die body.
Boundary conditions on AB and KE lines represent
joint heat of surface friction between the wire and the
die. The second condition is the compatibility, and it is
the result of calculation. On edges BC and DE, the
boundary conditions are given by the ambient
temperature Ta, measured experimentally, and the
covection heat transfer coefficient αa, which includes
forced convection and radiation of the wire into
surroundings. The conditions on EFG, IJK and CD
edges are given by the ambient temperature Ta and by
the convection heat-transfer coefficient to the
surroundings, αa. On the GI section of the edge the
conditions are given by the average temperature of
cooling water Tw measured experimentally and by the
heat-transfer coefficient k, given by expression:

w steel

1k
1 δ
α λ

=
+

(18)

where αw is convection heat transfer coefficient from
the die to the cooling water, δ is thickness of the core
die holder wall and λsteel  is thermal conductivity of the
holder wall material (steel).

Temperature fields are the result of modelling and
solving the systems of differential equations, i.e. the
diffusion and diffusion-convective equations. The
temperature profiles for the “die-moving wire”
geometry configuration are presented from Figure 4 to
Figure 7, where the parameters of the technological
process for which the calculation was made and the
modelled boundary conditions, respectively, are
discussed in details.

Thermal 
conductivity 
λhm, W/m⋅K 

Specific 
heat 

cp,hm,  J/kg⋅K 

Density 
ρhm ,  kg/m3 

Diffusivity 
a0,hm ,  mm2/s 

73.0 452.0 14300 11.294 

Thermal 
conductivity 
λw, W/m⋅K 

Specific 
heat 

cp,w, J/kg⋅K 

Density 
ρw , kg/m3 

Diffusivity 
a0,w, mm2/s 

59.59 418.7 7760 18.37 

Table 3 Wire, subdomain 1 in Figure 3
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Fig. 3  Definition of the geometry and boundary conditions for the calculated “die-moving wire” geometry configuration, where AB
and KE present Neumann’s boundary condition {qf}; BC - Cauchy’s boundary condition {Ta=9.5°C, αa=100 W/m2·K}; CD - Cauchy’s
boundary condition {Ta=9.5°C, αa=4.8 W/m2·K}; DE - Cauchy’s boundary condition {Ta=9.5°C, αa=100 W/m2·K}; EFG - Cauchy’s
boundary condition {Ta=9.5°C, αa=4.8 W/m2·K}; GI - Cauchy’s boundary condition {Tw=9.5°C, k=2160 W/m2·K}; IJK - {Ta=9.5°C,

αa=4.8 W/m2·K}; KA - Dirichlet’s boundary condition {TD=55°C}
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Isolines: 30, 35, 40, 45, 50, 56, 60 0C. 

Tmax = 66.64 0C. 

 

 

Isolines: 45, 50, 56, 60, 70, 80, 90, 95 0C. 

Tmax = 100.37 0C. 

 

Fig. 5  Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%; dry lubrication; drawing velocity Vx,2=0.55 m/s;
friction coefficient µ=0.062; convection heat transfer coefficient between the die and the environment αa=4.8 W/m2·K; convection

heat transfer coefficient between the wire and the environment αa=100 W/m2·K (which includes convection and radiation);
convection heat transfer coefficient on coolig water αw=5400 W/m2·K; thermal conductivity of steel, i.e holder of hard metal

λsteel=59.59 W/m2·K; thermal conductivity of hard metal λhm=73 W/m2·K; average temperature of cooling water Tw=10.5°C;
temperature of the deformed wire TD=55°C

Fig. 6  Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%; dry lubrication; drawing velocity Vx,3=0.95 m/s;
friction coefficient µ=0.048; convection heat transfer coefficient between the die and the environment αa=4.8 W/m2·K; convection

heat transfer coefficient between the wire and the environment αa=100 W/m2·K (which includes convection and radiation);
convection heat transfer coefficient on coolig water αw=5400 W/m2·K; thermal conductivity of steel, i.e holder of hard metal

λsteel=59.59 W/m2·K; thermal conductivity of hard metal λhm=73 W/m2·K; average temperature of cooling water Tw=10.5°C;
temperature of the deformed wire TD=55°C

 

Isolines: 30, 35, 40, 45, 50, 56, 57 0C. 

Tmax = 58.76 0C. 

 

Fig. 4  Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%; dry lubrication; drawing velocity Vx,1=0.2833 m/s;

friction coefficient µ=0.062; convection heat transfer coefficient between the die and the enviroment αa=4.8 W/m2·K; convection
heat transfer coefficient between the wire and the enviroment αa=100 W/m2·K (which includes convection and radiation);

convection heat transfer coefficient on coolig water αw=5400 W/m2·K; thermal conductivity of steel, i.e holder of hard metal
λsteel=59.59 W/m·K; thermal conductivity of hard metal λhm=73 W/m·K; average temperature of cooling water Tw=10.5°C;

temperature of the deformed wire TD=55°C
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Isolines: 50, 56, 60, 70, 80, 90, 100, 110, 120 0C. 

Tmax = 123.76 0C. 

 

Fig. 7  Temperature profile in the “die-moving wire” geometry configuration for the following conditions of drawing: low-carbon
wire with 0.1% C; wire diameter D=3.1 mm; cross section reduction R=24.3%; dry lubrication; drawing velocity Vx,4=1.583 m/s;
friction coefficient µ=0.071; convection heat transfer coefficient between the die and the environment αa=4.8 W/m2·K; convection

heat transfer coefficient between the wire and the environment αa=100 W/m2·K (which includes convection and radiation);
convection heat transfer coefficient on coolig water αw=5400 W/m2·K; thermal conductivity of steel, i.e holder of hard metal

λsteel=59.59 W/m2·K; thermal conductivity of hard metal λhm=73 W/m2·K; average temperature of cooling water Tw=10.5°C;
temperature of the deformed wire TD=55°C

Table 4 Results for different drawing velocities

Temperature, 0C TA TB Tmax 

Drawing velocity  Vx,1 = 0.2833 m/s 
experiment 37.5 26.0 - 
The BEM 39.1 29.3 58.74 

Drawing velocity   Vx,2 = 0.550 m/s 
experiment 46.0 29.5 - 
The BEM 49.19 32.6 66.62 

Drawing velocity  Vx,3 = 0.950 m/s 
experiment 71.0 41.0 - 
The BEM 72.47 44.9 100.5 

Drawing velocity  Vx,4 = 1.583 m/s 
experiment 83.0 45.0 - 
The BEM 88.0 53.0 123.0 

 

5. VERIFICATION OF THE NUMERICAL
CALCULATIONS

New numerical models can be tested on simple
examples, which have analytical solutions, or with
experimental measurements for real calculated
geometrical configuration. In our case we have chosen
experimental verification of the numerical model.
Therefore, Table 4 presents the results of experiments
and numerical calculations of temperature in A and B
points.

The temperature Tmax is the compatibility condition,
Eq. (12), which is the result of the numerical
calculation and it represents the temperature in the
contact between the tool and the workpiece.
Unfortunately, it is not possible to determine the
temperature Tmax experimentally. However, its

numerically calculated value could be accepted as real,
if agreeement of results between experiment and BEM
in the points A and B is satisfactory. It should be
highlighted that knowledge of this temperature is very
important since it shows the level of local thermal load
in the technological working process.

The presented results in Table 4 show a good
agreement, which confirms the validity of the
numerical model for basic equations and boundary
conditions. In addition, results of numerical calculation
for Tmax in the Table 4, for four different velocities of
wire drawing, could be accepted as satisfactory and
used in practice.

Of course, it is possible to make a calculation of
this very important wire drawing parameter by the
presented numerical model. The calculation could be
made for all drawing conditions and is particularly
important for drawing velocity.
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NOVI PRISTUP NUMERI^KOM MODELIRANJU TEMPERATURNIH POLJA U
PROCESIMA OBRADE METALA S EKSPERIMENTALNIM DOKAZIMA

SA@ETAK

Ovaj rad iznosi rezultate eksperimentalnih mjerenja i numeri~kih izra~una temperaturnih polja u "die-moving-
wire" geometrijskoj konfiguraciji. Eksperimentalna mjerenja su primjenjivana za modeliranje rubnih uvjeta za
numeri~ke modele kao i njihovu verifikaciju. Metoda rubnih elemenata (BEM) koristila se u matemati~kom
modeliranju osnovnih diferencijalnih jednad`bi, a tehnika podru~ja poddomena koristila se da bi se sjedinila
razli~ita temperaturna polja u alatu i predmetu obrade u zajedni~ki problem. Navedeno ukratko definira prirodu
novog pristupa u numeri~kom modeliranju temperaturnih polja u tehnološkim procesima oblikovanja metala.

Klju~ne rije~i: numeri~ka metoda, metoda rubnih elemenata, prijenos topline, tehnološki proces oblikovanja metala.

6. CONCLUSION

Experimental measurements fulfilled their basic
task, which was the modelling of boundary conditions
for numerical models and their verification.
Comparison of calculated and experimentally
measured results shows a good agreement, which
confirms the correctness of the numerical model for
governing differential equations and boundary
conditions.

The model is very suitable for optimization of
existing technological processes: drawing of axially
symmetric sections, forging, cutting, rolling etc. For
example, it is possible to investigate very important
aspects in the technological process of wire drawing
such as: reduction of local thermal loads, increase of
drawing rate, improvement of product quality,
reduction of consumed electric energy and of auxiliary
material consumption etc.

The test examples given in Ref. [4] have shown a
great stability of solutions for very small and for big
Peclet’s numbers, which enables analyses and
calculations of temeperature fields for all real situations
that could appear in practice. It is also possible to enter
a field that is technologically not possible yet, i.e. some
futuristic analyses can be made as well as research on
conditions of their real introduction into practice.
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