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SUMMARY
This paper intends to lay out a possible approach to optimizing the metal-metal sandwiche plates with corrugated

core based on a number of assumptions and for certain selected cases. The objective functions and constraints are
derived based on standard requirements of minimum weight and satisfaction of static, structural and design
constraints.

The intention of the approach and optimization model presented here is to be able to define the optimum geometry
(design) of the sandwich plate for given conditions. With an additional module also developed by the authors, one
can design the tool (profiled rolls) that will generate the ‘optimal’ geometry of the corrugated core. In this sense, the
approach is actually one of product development based on optimization. More particularly, starting from case-
specific given load and optimality conditions one can numerically derive the optimized shape and dimensions of the
sandwich and sequentially numerically derive the corresponding production tool geometry, thereby completing the
optimized product development.
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1. INTRODUCTION

Aluminum sandwich plates with corrugated
aluminum core and glued bonds are used extensively in
industry and construction, both as structural elements
as well as cover plate elements and interior walls. The
sandwich plates inheritably possess desirable properties
such as high stiffness per unit mass, acceptable
environmental resistance, low price (and mass) per unit
area, low maintenance costs, acceptable production
technology, acceptable visual properties, and other
advantages over other types of plate elements.

The increasing usage of metal sandwich plates with
both metal and non metal cores is demonstrated in
numerous applications and design examples, for
example [1, 2], also including respective design
optimization [3]. The various types of sandwich cores
can be manufactured at acceptable cost to provide low-

weight structural elements with high structural
performance, [4]. Optimization constraints for metal
cores include failure modes of face plates yielding and
wrinkling and core yielding and buckling. Many types
of sandwich plates are considered, ranging from
stiffened plates, I, V and X- shaped cores, honeycomb
and corrugated cores. Applications range from
shipbuilding to architecture and construction.

In this paper, design optimization of simple
corrugated core aluminum sandwich plates for
applications defined by respective geometric conditions
and loading is considered by applying nonlinear
programming methodology, [5-9]. Zero-order
optimizers and gradient-based solvers can be applied
with constraint penalization, efficient quasi-Newton
based direct approaches are also feasible for this
problem. Genetic algorithm-based optimizers [10, 11]
were also applied with penalty based formulations. The
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standard optimization models are applied with minimum
weight excellence criteria and structural constraints.
More advanced formulations based on general
multicriterial decision making, were the focus of many
researchers in recent years, [12]. In the context of
optimum design of corrugated core metal sandwich
plates, the simpler approach of an a-priori compromise
formulation based on total value aggregation is applied
with some of the case studies.

In terms of the respective numerical optimization
platform, the MATLAB optimization package [13] was
applied with constraints evaluated both by using
approximate simplified expressions and by coupling
with external finite analysis (ADINATM, [14]) with
data exchange via ASCII files.

The optimization approach presented here is based
on the assumption that the corrugated core will be
produced from simple aluminum plane plates by the
process of continuous rolling. The shaped rolls are
furthermore assumed to be produced by extrusion,
while the extrusion matrix is defined by the simulation
(additional program module) of the geer teeth
production process based on the shape of the
corrugated core obtained by optimization. The elastic
springback is currently disregarded (estimated from
experience), but the improved models should account
for the geometric impact of elastic springback by
including the necessary corrections in the geometry.

The idea is one of the optimal product development
process. For given constraint conditions, optimal
values of the dimensions and shape of the metal
sandwich are determined based on the nonlinear
programming approach, whereby significant savings
in material (both aluminum and glue) are expected to
be achieved in mass production of the respective plates.
For the optimized sandwich plates, the corresponding
geometry of the profiled rolls (Figure 1) is numerically
determined, closing the ‘product development cycle’.

 

2 

2. BASIC DEFINITIONS

The sandwich plate is simplified and defined in
Figure 2. The essential design variables are the
respective thicknesses of the outer aluminum plate and
of the corrugated core and the ‘shape’ of the corrugated
core. The outer thickness of the sandwich 2H, loading
F, and boundary conditions for the sample specimen
with width b and length l are given.

Fig. 1  Production of test - samples of aluminum sandwich
plates - corrugated core

Fig. 2  Geometry of the metal sandwich optimization problem

2.1 Optimization variables

With the chosen optimization model, the
optimization variables include the thicknesses of the
outside plates to, the thickness of the corrugated core
tk, the ‘half- wavelength’ d, and the shape of the
corrugated core.

The continuous corrugated core shape needs to be
described by a finite set of discrete variables, the
discretization is in this paper accomplished by means
of numeric interpolation. The coordinates of a number
of discrete interpolation points serve as optimization
variables, while the ‘shape’ of the corrugated core is
obtained by polinomial fitting with C1 continuity
through these points (or prescribed local slopes or even
prescribed local curvatures). The method of piece-
wise polinomial interpolation with 1st and 2nd order
continuity is selected here. A varying number of
interpolation points with corresponding piece-wise
ranges and degrees of the polinomials were applied with
various simulation cases.

The selected design (optimization) variables are:
to, tk,
yi in (xi, yi), i=1, mt,

where mt is the number of interpolation points with
given coordinate values, respectively.

2.2 Shape of the corrugated core as design
variable

The problem of having the shape of the corrugated
core as one of the key design variables with major
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impact both on the objective function and the
constraint conditions leeds to the problem that the
‘shape of the corrugated core’ needs to be represented
by several discrete variables, in order to be able to apply
the regular nonlinear programming approach. The
solutions therefore could for example include
piecewise polinomial interpolation techniques that
preserve C1 (and eventually C2 and higher) continuity
(Figure 3), such as cubic splines and other interpolation
methods, whereby the internal parameters of the
interpolating curves become the design (optimization)
variables representing the shape of the corrugated core.
The degree of the interpolating curves and the degree
of the continuity between the segments is naturally
chosen to provide a sufficient degree of freedom for
the curve in order to be able to model the various
geometric and technological constraints that are given
(eg. minimum radius of curvature).

Defined in this way, the coordinate values of the
interpolation points become the design - optimization
variables that define the shape of the corrugated core.
The current values of these variables (steered and
‘refreshed’ directly by the optimization algorithm) are
successively used in each iteration of the optimization
process to numerically evaluate the corresponding
‘current’ values of the length of the corrugated core,
respective approximate stresses, length of the glued
bonds, etc.

The piecewise interpolation approach should for real
‘industrial’ cases provide sufficient generality and a
capacity to model the corrugated core shapes up to the
proximity of the extreme cases of triangular and
trapezoid shape. Piecewise interpolation with higher-
order polinomials, higher-order continuity and an
increased number of segments can provide higher
flexibility to deliver this capacity of the overall curve.

2.3 Objective functions

For reasons of model simplicity only the cost of
aluminum is currently considered in the objective
function:

2
o k o kf 2 t t dl 2 t t 1 ( y'( x )) dx= ⋅ + ⋅ = ⋅ + ⋅ +∫ ∫ (5)

The integrals as well as the slopes and curvatures,
are evaluated numerically for current values of the
piece-wise interpolation polinomials parameters.

The objective function may also include
minimization of the amount of the glue material needed
in the sandwich, based on the optimized shape of the
corrugated core and the constraint given later by Eq. (12).

Other elements could also be included in the
objective function, such as tool depreciation (as a
function of complexity of the resulting profiled roll)
and tool wear-off, production cost as a function of
design, maintenance costs, cost of glued bonds, etc,
which would lead towards defining the objective
function more realistically in terms of the respective
total cost of operation (TCO).

2.4 Constraint functions

Considering only the simplified structural model of
the sandwich plate which is used at this point, the
following are the main corresponding constraints in
the optimization model:
- tensile strength of the outer aluminum plates [14]:

o Mσ σ≤ (6)
- local buckling resistance of the outer aluminum

plates [15]:

o crp p≤ (7)
- strength under compression + bending of the

corrugated core [14]:

i Mσ σ≤ (8)

Fig. 3  Piece-wise polinomial interpolation of the shape of
corrugated core (basic 3-segment version shown)

The simplest method used here is interpolation with
piecewise polinomials with continuity of slope at points
of contact. This preserves simplicity and still provides
the possibility of increasing interpolation quality.
Increasing the number of segments, choosing higher
degrees of the interpolation polinomials and imposing
higher-order continuity at the points of contact results
in an increased number of the respective degrees of
freedom of the overall interpolating curves that can be
deployed with more demanding constraint conditions.

The simplest version (basic model) used is in
setting three segments with the following conditions:

( )i i ip x y= (1)

( )i i 1 i 1p x y+ += (2)

( ) ( )i i 1 i 1 i 1p ' x p ' x+ + += (3)
for all segments, with zero-slope at the amplitudes of
the corrugated core (and optionally zero curvature at
x=d/2). Several other sets of conditions were also
applied. Another simple case is piecewise interpolation
with C2 continuity, where the additional continuity
requirement:

( ) ( )i i 1 i 1 i 1p " x p " x+ + += (4)
is imposed at points of contact.
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- local buckling resistance of the corrugated core [16]:

i crp p≤ (9)
- shear strength of the glued bonds:

b M ,bσ σ≤ (10)
- minimum technologically feasible radius of

curvature of the corrugated core shape p(x)
depending on the condition properties of the
material used [17]:

{ } 1R p ( x ) K′′ ≥ (11)
- sufficient length of glued bonds between the

corrugated core and the outer plates (given for
example by corrugated core shape curvature or
interpolated curve shape at contact points):

{ }b 2L p( x ) K≥ (12)
- technical feasibility of the production of the inner

corrugated plate shape using the process of shaped
rolling, i.e. manufactureability of the corresponding
profiled rolls that generate the corrugated core
shape:

{ }constraints p( x ) (13)

If the geometry and load is approximated as shown
in Figure 4, then simplified expressions can be used in
expanding the above constraints to the form adequate
for nonlinear optimization purposes.

The constraint given by Eq. (8) is implemented as
stress under combined loading under compression and
bending. The bending load is calculated based on the
maximum offset fmax (Figure 4) which is numerically
evaluated (one-dimensional search for maximum along
the current curve) based on the interpolation of the
current shape of the corrugated core.

As the final (optimal) shape of the corrugated core
tends to a straight segment, the constraint given by
Eq. (9) is implemented similar to the expressions in
Eqs. (14) to (16), but for the close-to-straight segment
of the corrugated core.

The constraint given by Eq. (10) is based on the
data available for shear strength of glued bonds
available in the manufacturer’s specifications for epoxy
and polyethylene glue. However, this is an area where
the respective material data strongly depend on climatic
conditions, preparation of surfaces, gluing process
parameters and environmental conditions, etc.

The length of the glued bond is again evaluated
numerically based on the interpolation of the corrugated
core shape, Eqs. (1) to (3). The length of the glued
joint (Figure 4) is a function of the maximum thickness
of the glued bond and the shape of the corrugated core,
which is numerically implemented as a one-dimensional
search along the plate segment.

The constraint given by Eq. (11) is implemented
based on the manufacturer’s data for aluminum alloys
used for the construction of the corrugated core, in
this paper we used data from Ref. [17].

For the material used for the production of the
corrugated core (AlMg2.5, hard condition, condition
number 0.30) the minimum feasible curvature as a
function of thickness is given as:

to /mm/ -0.8 0.8-1 1-1.5 1.5-2 2-3 

r  /mm/ 3.2 4.0 6.0 8.0 12.5 

which is implemented as a corresponding polinomial
approximation in the numerical model.

The actual curvature of the ‘current’ shape of the
corrugated core is once again evaluated numerically
based on the interpolated curve as:

( )3 / 22

min

1 y'
R

y"
+

= (17)

where the differentials are derived from the piecewise
polinomial of the current interpolated curve.

The actual definition of the constraints in Eq. (13)
depends on the method of how the corrugated core is
actually produced. In this approach, it is based on
(continuous) rolling with profiled rolls, in which case, the
constraints (13) will be numerically implemented by
coupling the optimization functions package (Figure 4)
with a function which simulates the process of production
of gear teeth, which will be used to prevent shapes that
would cause locking and other geometric inadequacies
during the production of the corrugated core shape.

Fig. 4  Simplified model of sandwich plate segment

According to Ref. [16], for the case of even
compressive load of a hinged plate, the following
approximate expressions can be used for the critical
buckling load related to buckling constraint, Eq. (7):

2

kr 2

Dp K
b
π

= (14)

K f ( b,d )= (15)
3

o
2

E tD
12(1 )υ

⋅
=

−
(16)

whereby 2d is the length of the outer plate of width b
in local buckling (one wavelength of the corrugated
core, between two glued amplitudes of the core), and
D is the plate stiffness.
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Fig. 6  Optimization of metal sandwich plates - functional
blocks

During the course of the optimization, a number of
fine-tunings of the control parameters were necessary.
Before the penalty-function based version of the
optimization was launched, the penalty terms for
individual constraints and the actual objective function
were mutually balanced and the parameter values for
convergence determined experimentally.

In the actual implementation of the procedures in
Figure 6, several specific numerical algorithms were
used for particular blocks [12, 13, 20, 21].

5. NUMERICAL RESULTS

A number of numeric tests were performed with
different optimization scenarios. Some of the variations

3. OPTIMIZATION APPROACH

The approach to optimizing the design of the
aluminum sandwich plates is a classical one of
multivariable nonlinear programming with constraints,
[5-9, 18]. The full-scale design optimization would
have to include optimization procedures numerically
coupled with structural analysis to evaluate the
constraint functions. At present, however, optimization
and structural analysis are decoupled in a simplified
model, where structural analysis is replaced by
simplified ‘equivalent models’ with explicit expressions.
More specifically, constraints are based on
corresponding approximate formulas for buckling and
bending from the Refs. [15, 16].

Plans for follow-up research include optimization
fully coupled with structural analysis, as well as neural
network based approximation of constraint functions
which in the post-training phase may provide for the
decoupling of structural analysis and optimization.

The simple test-case for optimization of the
sandwich plate is shown in Figure 5.

on which the optimality condition is imposed, which in
turn provides the direction for the 1D line search steps
as H⋅∆x = -c.

It is therefore generally expected that the
optimization process is generically not guaranteed to
converge, especially with remote initial solutions and
highly nonlinear objective functions, where the
quadratic approximation of the original function may
not be adequate, therefore the descent condition ∇f⋅d<0
needs to be monitored.

Moreover, in this paper the BFGS quasi-Newton
method was applied, Ref. [13, 19], where the Hessian
matrix is not directly evaluated during the iteration
process, but the BFGS approximate of the Hessian is
used and successively updated instead.

Similar problems with a higher degree of the
complexity of the model, representing more realistic
structural models would also be solved using direct
optimization methods such as SQP, and have been
also solved in this paper by evolutionary methods
such as GAs.

4. OPTIMIZATION FLOWCHART

The optimization process is based on ‘vertical’
optimization routines and ‘horizontal’ problem-specific
functionality module (numerical analysis) as shown in
Figure 6.

 
optimization 
algorithm 

objective  
functions 

constraint  
functions 

shape  
interpolation 

structural 
analysis or 
approximate 
stresses 

Fig. 5  Simple test case for the metal sandwich optimization
problem (width b)

In this paper, the penalty-function approach is
chosen in a combination with the unconstrained
multivariable nonlinear programming methods. With
this choice, slower convergence and ill-conditioned
design points can appear. Care must be taken in the
modified objective function to balance the individual
penalty functions terms mutually and with respect to
the original objective function.

In this paper, the exterior penalty function approach
with inequality constraints was applied with:

F(x) = f(x) + ri ⋅ P(x),     ri+1 > ri (18)

P(x) = Σk (gk(x) + abs gk(x)) / 2 (19)
where f(x) being the original objective function
defined by Eq. (5), gk(x) the k-th inequality constraint
function, P(x) the penalty function, ri the penalty
constant in the i-th iteration, and F(x) the modified
‘unconstrained’ composite objective function.

The nonlinear programming method deployed here
belongs to the quasi-Newton family of methods, in
particular the BFGS method, Refs. [5, 13]. These
gradient methods make use of both the gradient
information as well as the Hessian matrix, as the
principle is based on substituting the original objective
function by its second-order Taylor series expansion:

( ) ( ) T Tf f 0.5∆ ∆ ∆ ∆+ = + + ⋅x x x c x x Η x (20)
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included different values of control parameters of
optimization methods, different relative weights in
balancing the individual constraints and objective
functions, variations in respective ranges and individual
degrees of complexity of piece-wise polinomial fitting
for corrugated core shapes definition, etc.

All optimization cases have been run for hardened
aluminum with data and epoxy and polyethylene glued
bonds. The assumed test values of dimensions, loads
applied, and material properties are:

H = 3 mm,
d = 12 mm,
b = 20 mm,
F = 50 N,
σdop = 100 MPa,
ν = 0.3
Three segment piecewise polinomials with C1 and

C2 continuity were used. The maximum thickness of
the glued bonds was set to 0.2 mm, and the minimum
permissible length of the glued joint was chosen as
1.2 mm.

The minimum permissible radius of curvature of
the corrugated core shape was set to 3 mm and
depends on the core thickness.

The initial values of some design variables used as
the starting point vector are:

t0 = 0.5 mm,
tk = 0.3 mm,
point 1 = (d/6, 0.7⋅H),
point 2 = (d/3, 0.4⋅H)
In the respective graphs, typically one d/2 segment

of the corrugated core shape is shown, with the initial
shape designated as ‘poc’ and the final optimized shape
denoted with ‘kon’.

Case 1
The initial test-case is the case of unconstrained

optimization where the objective function is set to be
equal to the length of the corrugated core with no
constraints imposed, and first interpolation point set
to (0, H) instead of (0, h), where h=H-to-tk/2. The
reason for this is that with (0, h) the optimization
process with the length of the corrrugated core as
objective function pushes the optimum (minimum
length) value of (to+tk/2) towards being equal to H,
whereby the shape of the corrugated core degrades
to the x-axis with the length of to d/2. Equivalent test-
cases were run with the first point set to (0, h) but
with constraints defined on the plate thicknesses, in
which case the plate thicknesses are pushed to their
respective upper limits to minimize core length. These
test-cases have, of course, no practical relevance.

In this case, the ‘optimal’ interpolation shape
obtained as a result of length minimisation is shown
in Figure 7 (one quarter of wave is plotted - segment
0-d/2).

Fig. 7  Unconstrained optimization of corrugated core case,
minimum length of core

In this case (quasi-unconstrained, minimum
length), the length of the segment of the corrugated
core is 6.74 mm, which is here compared with other
possible shapes of the corrugated core:

- triangle (through points (0, H) and (d/2, 0):
* length l = 6.708 mm (relative factor f = 1)

- trapezoid (within d/2 segment: base d/6, side
projection d/6, base d/6):
* length l = 7.606 mm (factor f = 1.134)

- cosine wave (stretched through points (0, H)
and (d/2, 0)):
* length l = 6.839 mm (factor f = 1.02)

- quadratic parabola (through points (0, H) and
(d/2, 0)):
* length l = 6.887 mm (factor f = 1.027)

- interpolation shape by unconstrained
optimization as in Figure 7, three-segments
third-order piecewise polinomials with C2
continuity:
* length l = 6.74 mm (factor f = 1.005)

- interpolation shape by unconstrained
optimization as in Figure 7, three-segments
second-order piecewise polinomials with C1
continuity:
* length l = 6.775 mm (factor f = 1.01)

Case 2
The following test-case (Figure 8) is similar to the

above unconstrained optimization case, but with the
following assumptions (one half-wave is plotted for
optimized shape):

- first interpolation point is now (0, h) where
h=H-to-tk/2,

- limits on the thicknesses set to (0.2 ≤ to ≤ 0.8)
for the outer plates and (0.1 ≤ tK ≤ 0.5) for the
corrugated core, respectively,

- objective function is now the sectional area of
the sandwich plate rather than the length of
corrugated core.
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Case 4
Adding the constraints in Eqs. (8) to (9) related to

the strength of both the outer plates and the corrugated
core, the following optimal core shape is obtained
(Figure 10) where in some 50 iterations an optimum
with a length of 6.476 mm and total longitudinal cross
sectional area of aluminum equal to 7.77 mm2 is
obtained, with corresponding thicknesses of to=0.517
mm and tk=0.243 mm respectively, for the version with
the total mass of aluminum in the sandwich as the
objective function.

Fig. 8  Minimization of sandwich mass with constraints on
plate thicknesses

In this case where the objective function is a set
equal to the total mass of aluminum in the sandwich
(both corrugated core and outer plates), the following
(statically unfeasible, purely geometric test) solution is
obtained: length of the corrugated core in the optimum
is 6.62 mm, longitudinal cross-section area is 3.06 mm2,
and both thickness-design variables are driven down (by
the optimization process) to their respective limit values.

Case 3
Including only the constraints in Eqs. (6) and (7)

related to the strength of the outer plates (tensile/
compressive stress, local buckling), the following
optimal core shape is obtained (Figure 9) where in some
30 iterations an optimum with a length of the corrugated
core of 6.45 mm and cross-sectional area of aluminum
(both core and outer plates) of 6.82 mm2 is obtained,
with corresponding thicknesses of to=0.514 mm and
tk=0.1 mm respectively.

Fig. 9  Optimization of the sandwich plate towards minimum
mass of material with constraints on tensile/compressive

strength and local buckling of outer plates

Fig. 10  Optimization of sandwich plate, minimum mass of
material (-.-) and minimum length of core (—), constraints on
stresses and buckling of both outer plates and corrugated core

Case 5
The next test case (Figure 11) also includes the

constraints in Eqs. (10) to (12) on glued bond minimum
length and shear strength, and additionally the
constraint on minimum permissible radius of curvature
of the corrugated core, i.e. all constraints listed except
the technological one.

Fig. 11  Optimization of sandwich plate, minimum mass of
material (-.-) and minimum length of core (—), all constraints

(6)-(12) except technological manufactureability
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Test-cases with all constraints similar to the one in
Figure 11 were also run with the objective function set
equal to the length of the corrugated core, and
minimum length of glued joint equal to 1.0 mm and
minimum radius of curvature at the amplitude of the
corrugated core (point of glued bond between
corrugated core and outer plate) set to 2 mm. The
parameters of variation were the interpolation curves
deployed, such as the three-segment piecewise
interpolation curve with C1 continuity and the
interpolation curve with C2 continuity and qubic
polinomials.

In approximately 50 iterations, an optimum with a
core length of 6.486 mm and aluminum (outer plates
and corrugated core) cross-sectional area of 8.785
mm2 is obtained, with the corresponding thicknesses
of to=0.517 and tk=0.396 mm respectively. The
constraints are all satisfied within a given tolerance.

Case 6
Amongst many different numerical simulations for

various optimization constraints, a few are shown here.
The minimum required length of the glued joint was
varied as a parameter of the respective constraint
equation, Eq. (12), subject to the given precondition that
the maximum possible thickness of the glued joint is 0.2
mm. Since the ‘gap’ between the outer plate and the
corrugated core is determined by the shape of the
corrugated core, which is in turn a function of the
optimization variables (interpolation of piecewise
polinomials obtained by fitting through values of design/
optimization variables), this constraint will obviously
have an impact on the shape of the corrugated core in
the optimum that satisfies the design constraints.
Therefore, changes in the prescribed minimum length
of the glued joints effectively change the constrained-
optimum-shape of the corrugated core (Figure 12).

Fig. 12  Change of the constrained optimum shape of the
corrugated core for prescribed minimum values of glued

bonds of 1.2 mm (—), 1.5 mm (-.-), and 1.8 mm (..)
respectively, the objective function is a total cross-sectional

area (mass) of aluminum plates

Case 7
Another variation is the minimum permissible

curvature of the corrugated core, numerically evaluated
as 1-dimensional optimum of the respective expression
on curvature in Eq. (11) along the interpolated curve.
The results are as shown in Figure 13.

The obtained values of the plate thicknesses do not
change significantly with the variations in Figures 12
and 13. Of course, higher-degree polinomials need to
be used if more specific requirements on the geometry
of the corrugated core need to be represented or
imposed.

Fig. 13  Change in the constrained optimum shape of the
corrugated core for prescribed minimum values of radius of

curvature of 3 mm (—), 3.5 mm (-.-) and 4 mm (..) respectively,
objective function is the length of corrugated core

Case 8
For the sake of mutual comparison, the case with

all constraints as shown in Figure 11, in particular the
case of the minimum length of core, was also
optimized using the genetic algorithm (GA) method
[10, 11, 13, 22, 23]. The results using the evolutionary
approach fully coincide with the classical nonlinear
programming approach from Figure 11, as the matter
of fact, using the same program script function for the
objective function and constraints, the following results
were obtained (Figure 14) with t0=0.5194 mm,
tk=0.3957 mm, core segment length equal to 6.4906
mm and sandwich segment longitudinal cross-sectional
area equal to 8.8397 mm2. A constant population of 20
members was used, in the respective value ranges
given by:

(t0 tk y1 y2) ∈ (0.3 0.2 1.5 0 ; 0.8 0.6 3 1.5)

whereby a member of the randomly generated initial
population is shown in Figure 15. The convergence
process of the population in terms of the average
distance between the members of the population is
shown in Figure 15.
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As this is a paper with a conceptual focus,
relatively simple interpolations of the corrugated core
(such as 9 and 11 parameters ones) were used. In
real-life situations, higher-degree polinomials with
higher-order continuity and a larger number of
segments will be used to represent more complex
shapes, because they provide more capacity (internal
degrees of freedom) to be geometrically more flexible
and adaptible in satisfying constraints while reducing
the objective function value. Other simulations have
also been performed with different sets of control
parameters.

Fig. 14  Genetic algorithm - based optimization of sandwich
plate, minimum length of core (—), all constraints given by

Eqs. (6)-(12) except technological manufactureability

Fig. 15  Convergence of population with the genetic algorithm -
based optimization of sandwich plate shown in Figure 14

6. CONCLUSIONS

Optimization of the designs of metal sandwich
plates using nonlinear programming with several
objective function and constraint function definitions
is developed and presented. The constraint functions
applied in the model are based on simplified structural
models which provide for overall simplicity of the
optimization process. Several test cases were used to
verify the developed optimization model, numerical
optimizations were performed, and results shown.

The developed model for the optimal design of metal
sandwich plates for particular applications with
specifically defined loading data and design
requirements seems feasible, leading to optimized
product development. The research group has so far
developed and built several sandwich plate small-scale
prototypes for testing purposes.

Follow-up research will include improved
approximate structural models which will be
introduced and implemented with direct and indirect
(via constraint function approximators) coupling of the
numerical optimization and the numerical structural
analysis. Direct nonlinear programming methods and
advanced evolutionary optimization will also be applied
and combined with models that include a higher degree
shape optimization.

In future research, coupling of evolutionary
methods with structural analysis for constraints
evaluation will also be based on neural network based
approximators [11, 23, 24].
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OPTIMIZACIJA METALNIH SENDVI^ PLO^A S NABORANOM JEZGROM

SA@ETAK

Ovaj rad postavlja mogu}i pristup optimizaciji aluminijskih sendvi~a (‘metal-metal’) s naboranom jezgrom na
temelju niza pretpostavki i za odabrane slu~ajeve. Funkcije cilja i ograni~enja izvedene su na temelju zahtjeva za
minimalnom masom te zadovoljavanjem stati~kih, strukturnih i projektno-konstrukcijskih ograni~enja.

Cilj ovdje razvijenog i prezentiranog pristupa te pripadnog optimizacijskog modela je mogu}nost definiranja
‘optimalne geometrije’ sendvi~-plo~e za zadane uvjete. S dodatnim modulom koji je razvijen mo`e se projektirati i
alat (profilirani valjci) koji }e valjanjem generirati dobivenu optimalnu geometriju naborane jezgre sendvi~a. U tom
smislu, ovaj rad, zapravo uvodi odgovaraju}i razvoj proizvoda na temelju optimizacije. U konkretnom smislu, polaze}i
od zadanih uvjeta optere}enja i definicije optimalnosti sendvi~-plo~e (specifi~nih za pojedine slu~ajeve), numeri~kim
putem se odre|uju optimalni oblik i dimenzije sendvi~-plo~e te nakon toga pripadna geometrija alata kojim se
proizvode, ~ime je kompletiran ciklus ‘razvoja optimalnog proizvoda’.
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