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SUMMARY

The accuracy analysis of fully nonlinear Boussinesq equations is made in this study. We first introduce the
modified Boussinesq equations expressed in a recursion form. It is helpful for engineers to derive the higher order
of equations in the future if needed. Almost all linear and nonlinear wave properties are derived subsequently. By
comparing the error magnitude of each wave property, one can determine the optimal model and find that for wave
propagation in shallow water, the higher order of Boussinesq equations provides a better prediction. But, for wave
properties in deep water, the ( )4O µ model behaves better in nonlinear properties and worse in some particle
characteristics.

Key words: Boussinesq equations, accuracy, nonlinear property, linear property.

UDC 627.223:523.5:519.61
Original scientific paper

Received: 22.10.2004.

The accuracy analysis of fully nonlinear
Boussinesq equations

Chi-Min Liu(1) and Chin-Hwa Kong(2)

(1)General Education Center, Chienkuo Technology University, Changhwa City, TAIWAN
e-mail: cmliu@cc.ckit.edu.tw

(2)Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, TAIWAN

1. INTRODUCTION

When the classical Boussinesq equations first
appeared in 19th century [1], it had profoundly
influenced the analysis of long waves propagating in
coastal zones for almost one century. In late 20th century,
many researchers were interested in rederiving
Boussinesq-type equations again because there were still
many restrictions worth being overcome. For example,
the classical Boussinesq equations cannot be applied very
well in deeper water or extremely shallow water.

In recent years, many studies and efforts have
apparently enhanced the Boussinesq equations and
extended its applicable region from shallow water to
deep water. Peregrine [2] improved the classical
Boussinesq equations for wave propagation over an
uneven seabed. This is a key opening for new
researches on old equations. For most researchers,
numbers of efforts they made are for the sake of
extending the applicable depth range of Boussinesq
equations wider. Consequently, various kinds of the
optimal wave equations were evaluated in the

following two decades. Witting [3] applied conservative
equations to analyze wave mechanics in a constant-
depth channel. The wave equations were expressed in
terms of the depth-averaged velocity and the mean free
surface velocity respectively. He expanded the
dispersion relation into a Taylor series form. Then the
corresponding coefficients were determined to yield a
Padé approximation to the Taylor expansion of the
dispersion relation given by the linear Stokes wave
theory. By applying the (2,2) Padé approximation,
Witting obtained good results for both deep and shallow
water waves.

In 1991, Madsen et al. [4] formulated the
conventional Boussinesq equations for the flat bottom
in terms of volume flux components instead of the
depth-averaged velocity. They introduced some higher-
order terms in the momentum equations, which were
conventionally neglected in the process of deriving the
Boussinesq equations. An additional third-order term
was also added to momentum equations to improve the
linear dispersion properties of Boussinesq-type
equations. Madsen and Sorensen [5] further extended
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this set of Boussinesq-type equations for a slowing
varying topography and introduced the linear shoaling
gradient as another quantity to evaluate the
improvement of wave equations. Nwogu [6] derived a
new set of modified Boussinesq equations in terms of
a horizontal velocity at an arbitrary elevation. His study
is a crucial beginning for other consequent studies. The
linear dispersion property in his study can approach
very close to that of the first-order Stokes wave if a
velocity near the middle depth is selected as the velocity
variable. This makes the new set of equations
applicable to wave propagation from relatively deep
water to shallow water. Chen and Liu [7] rederived the
( )2O µ  Boussinesq-type equations in terms of an

arbitrary-depth velocity potential instead of the
horizontal velocity adopted by Nwogu. The optimal
elevation where the velocity potential should be
evaluated is determined by comparing the phase
velocity, group velocity and the shoaling gradient with
those given by the linear Stokes theory. Their
investigation provides an optimal wave model at a
specific elevation near the middle depth that is lightly
different from Nwogu’s result.

Gobbi et al. [8] derived the ( )4O µ  Boussinesq

equations by introducing a new variable defined as a
weighted average of the velocity potential at two
distinct water depths. They determined the values of
two parameters in the weighted velocity potential and
so obtained the best Boussinesq-type model by
comparing the coefficients of the Taylor-like expansion
of dispersion relation with those of Padé (4,4)
approximation of the exact linear solution. Some linear
kinematic properties were also introduced to evaluate
the wave equations. Madsen et al. [9] introduce finite
series (Boussinesq-type) approximations involving up
to fifth-derivative operators. By using the Padé
approximants, they make some wave characteristics
very accurate within the range of µ from 0 to 40.

As mentioned in previous retrospection, almost
each model was derived by satisfying the dispersion
relation to the Padé approximation. These expansions
lead to almost the best accuracy of the wave celerity
not only in shallow water but in deeper water.
However, these models based on the satisfaction of the
Padé approximation are still weak in describing the
velocity profile of water particles. In the other way, the
models which can predict the velocity profile well
often can not make the celerity close to the exact
solution. To overcome such a natural weakness of these
Padé-based models, we derive a set of the sixth-order
Boussinesq-type equations in terms of a velocity
potential at an arbitrary water depth for wave
propagation over an uneven bottom. In our derivation,
almost each variable and coefficient of the higher-order
equations can be developed in the recursion form.
These expressions greatly simplify the procedures of
deriving the higher-order Boussinesq equations.

Based on the above reasons, the ( )2O µ , ( )4O µ
and ( )6O µ  Boussinesq equations, which are
described by the velocity potential at an arbitrary z-
level, are introduced in Section 2. In order to derive
the higher-order equations more conveniently in the
coming future, we express some formulations and
variables with the iteration forms. Some linear and
nonlinear properties of waves are consequently
derived. The Stokes solutions are also provided for
comparison. In Section 3, the accuracy analysis is made
by investigating all wave properties. Conclusions are
made in Section 4.

2. MATHEMATICAL FORMULATION

First, we introduce the velocity potential Φm that
the subscript m denotes the expressed by the velocity
potential at an arbitrary z-level as:
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Inserting Eq. (1) into the following equations:
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leads to the fully nonlinear Boussinesq equations of the accuracy of the sixth order. The linear forms of Eqs. (2) and
(3) are as follows:
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The above linear equations are of the sixth order. By assigning the different value of m, the different type of
Boussinesq equations are obtained. To study the optimal Boussinesq equations, five linear properties are introduced
as:
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where C, Cg, FH, FV  and FT  indicate the phase velocity, the group velocity, the horizontal velocity of particle, the
vertical velocity of particle and the particle trajectory, respectively. The corresponding Stokes solutions are
expressed as:

0.5

S
tanhC µ
µ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

gS
1 tanh 2C 1
2 sinh2

µ µ
µ µ

⎛ ⎞ ⎛ ⎞
= ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

( )
HS

cosh 1 z
F

cosh
µ

µ

⎡ ⎤+⎣ ⎦=

( )
VS

sinh 1 z
F

sinh
µ

µ

⎡ ⎤+⎣ ⎦=

TSF tanhµ=

As for the study of nonlinear characteristics, consider the following perturbations:
2

m 0 1 2 ...Φ Φ εΦ ε Φ= + + + (13)
2
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Inserting Eqs. (13) and (14) into the fully nonlinear equations gives:
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Now the possible obtained nonlinear and linear wave
properties are shown above. In next section, the
accuracy analysis will be made.

3. THE ACCURACY ANALYSIS OF
BOUSSINESQ EQUATIONS WITH
DIFFERENT ORDERS

Due to the nature property of the convergence of
Boussinesq equations in deep water, a further study for
determining the accuracy is needed. Figure 1 shows
the error magnitude of the phase velocity. The
maximum error is up to 30%. It indicates that the sixth
order equations have the wider valid range. The valid
ranges of all models will decrease with the increase of
µ. Figure 2 displays the error magnitude of the
horizontal velocity of water particles. The results are

the same as that of the phase velocity. The sixth order
model has a better behavior than other models. Since
there are many similar figures that describe different
properties of wave motion, the results are very alike
that the ( )6O µ  owns more excellent behaviors than
other two models. All results are concentrated to
express in Table 1. Table 1 shows that, for nonlinear
properties, the ( )4O µ  model behaves better than other
two models. But for the particle characteristics, the
( )6O µ  and the ( )2O µ  models provide a more

excellent prediction than the ( )4O µ model. The reason
is that the expansion of Boussinesq equations has an
alternative sign in the subsequent term. In conclusion,
for wave propagation in shallow water, the higher order
of Boussinesq equations provide a better prediction.
But, for wave properties in deep water, the optimal
wave equations are referred to Table 1.

Table 1. The valid range of µ  for the maximum error up to 30%

Maximum µ  ( )6O µ  model ( )4O µ  model ( )2O µ  model 

Phase velocity Over 20 Over 20 Over 20 
Group velocity 18.6 15.5 12.3 
Horizontal velocity 15.2 4.2 10.7 
Vertical velocity 14.0 7.2 13.5 
Particle trajectory 13.2 7.6 11.3 

1F  7.6 8.5 7.8 

2F  5.5 6.3 5.7 

1E  7.3 8.1 7.7 

2E  5.4 6.2 5.5 

Optimal m -0.611 -0.581 -0.346 
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Fig. 1  The error magnitude of Boussinesq equations

Fig. 2  The error magnitude of the horizontal velocity of water particles
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ANALIZA TO^NOSTI POTPUNO NELINEARNIH BOUSSINESQ-OVIH JEDNAD@BI

SA@ETAK

U ovom radu izvršena je analiza to~nosti potpuno nelinearnih Boussinesq-ovih jednad`bi. Najprije su uvedene
modificirane Boussinesq-ove jednad`be u rekurzivnom obliku. To poma`e in`enjerima da u budu}nosti izvedu
jednad`be višeg reda, ako bude potrebno. Gotovo sva linearna i nelinearna svojstva vala izvedena su kasnije.
Uspore|uju}i veli~inu greške svojstva svakog vala mo`e se odrediti optimalni model i zaklju~iti da Boussinesq-ove
jednad`be omogu}avaju da se bolje predvidi širenje valova u pli}aku. Za svojstva vala u dubokoj vodi model ( )4O µ
se bolje ponaša s nelinearnim svojstvima, a lošije kod nekih karakteristika ~estica.

Klju~ne rije~i: Boussinesq-ove jednad`be, to~nost, nelinearno svojstvo, linearno svojstvo.

4. CONCLUSION REMAKS

In our present study, we first introduce the modified
Boussinesq equations that are accurate to ( )6O µ .
Almost all linear and nonlinear wave properties are
derived subsequently. By comparing the optimal models
of different order wave equations, we conclude that,
for wave propagation in shallow water, the higher order
of Boussinesq equations provide a better prediction.
But, for wave properties in deep water, the optimal
wave equations are referred to Table 1.
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