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SUMMARY
The research of numerical methods for bending of beams and frames undergoing large displacement requires

reliable reference analytical solutions. Although these solutions can be found spread in the literature, we still need
to have them solved in a systematic way up to known accuracy. This paper is an attempt to fit this need.

The bench test examples include cantilever beam with concentrated force at the free end and diamond shaped
beam frame with diagonal forces. Numerical solutions of bench test examples are compared to the analytical
solutions. The analyzed examples show that the numerical solutions obtained by these methods converge monotonically
towards an exact analytical solution. For all numerical methods good agreement is indicated.

The numerical methods are compared with each other, using criteria of accuracy, reliability, and numerical
efficiency, in order to find out which methods are more suitable for engineering application.

Key words: beam bending, large displacements, nonlinear numerical analysis, line systems, analytical solutions,
accuracy, reliability, numerical efficiency.
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1. INTRODUCTION

 Since the first applications of computers to
nonlinear numerical analysis of structures, various
nonlinear beam elements have been presented by
Argyris and Dune [1], Bazant and Nimeiri [2], Oran
and Kassimaili [3], Reissner [4] and Crisfield [5, 6]. A
matrix displacement approach is developed for the
numerical analysis of elastic problems of beams and
frames by Yung [7].

The total Lagrangian formulation based on the
Reisner kinematic relations is developed by Haefner
and Willam [8].

An updated Lagrangian and a total Lagrangian
formulation of a three-dimensional beam element are
developed by Bathe and Bolourcki [9, 10].

The analysis of an engineering system requires the
idealization of the system into a form that can be

solved, the formulation of the mathematical model, the
solution of this, and the interpretation of the results.
The most effective mathematical model for the analysis
is surely that one which yields the required response
to a sufficient accuracy and, at least, cost.

The chosen mathematical model is reliable if the
required response is known to be predicted within a
selected level of accuracy measured on the response
of the very-comprehensive mathematical model. The
methods for numerical analysis of nonlinear line
structural problems are presented in chronological
order.

We start the analysis with method that uses a
classical stiffness matrix for small displacements. The
other methods for solution of geometrically nonlinear
structural line problems comprise development of
respective finite element matrices based on continuum
mechanics. A virtual work approach and total and
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updated Lagrangian approach for large displacement
of line structures are presented and compared with
other approaches from the literature. A comparative
analysis of methods for numerical solution of nonlinear
line system is performed in order to find out what
methods are more suitable for engineering application
in terms of accuracy, numerical efficiency, and
robustness.

Analysis is performed on standard bench test
examples using software package Matlab and finite
element program, which is developed in Ref. [11].

The results obtained for all numerical methods, are
compared to the analytical solutions. Studies of large
defections, which require nonlinear analytical
solutions, have been concerned mainly with single
members. Large defections in cantilever beams
subjected to concentrated loads were studied by
Bisshopp and Drucher [12]. The extensions of the
above development to the analytical solutions of frame
problems are, however, limited to a few specially
idealized cases. Jenkins, Seitz and Przemieniecki [13]
analyzed a diamond – shaped frame loaded diagonally
at two corners.

2. ANALYTICAL SOLUTIONS OF BEAMS
AND FRAMES UNDERGOING LARGE
DISPLACEMENTS

2.1 Large deflection of cantilever beams [3]

The derivation is based on the fundamental
Bernoulli-Euler theorem. Considering a long, thin
cantilever leaf spring, let L to denote the length of
beam, u the horizontal component of the displacement
of loaded end of the beam, v the corresponding vertical
displacement, P the concentrated vertical load at the
free end, EI the flexural rigidity as shown in Figure 1.
The exact expression for the curvature of the elastic
line may be stated conveniently in terms of arc length
and slope angle denoted by s and β, respectively, so
that x is the horizontal coordinate measured from the
fixed end of the beam.

The product of EI and the curvature of the beam
equals the bending moment M:

( )d dEI P L x u M
dsds

β
= − − = (1)

or:
2

2
d P dx P cos

EI ds EIds
β β= − = − (2)

Integrating Eq. (2):
21 d P sin C,

2 ds EI
β

β⎛ ⎞ = − +⎜ ⎟
⎝ ⎠

 P=0 ⇒ C=sinβ0 (3)

and:

( )
1
2o

d 2P sin sin
ds EI
β β β= − (4)

( )
0

1
L 21 2

2o
0 0

2P PLds sin sin 2
EI EI

β

β β − ⎛ ⎞
= − = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ (5)

In order to evaluate this elliptic integral, denote
2PL

EI
by α2 and let:

( )2 2 2
01 sin 2k sin 1 sin sinβ θ β θ+ = = + (6)

Then:

( )
1

1/ 2
2 2 2 1

21 k sin d , sin
2k

π

θ

α θ θ θ
−

= − =∫ (7)

The next step is to represent the deflection v in
terms of α and elliptic integral.

Since:

dy d dy sin
d ds ds

β β
β
⋅ = = (8)

and since we have d
ds
β  from Eq. (4):

( )
1
2o

dy 2P sin sin sin
d EI

β β β
β

− = (9)

Thus:

( )

y

1
0 0 2o

EI sin dv dy
2P

sin sin

β
β β

β β
= =

−
∫ ∫ (10)

With the aid of Eq. (6) we obtain:

( )

( )
( )

0

1

2 2/ 2

1 1
2 20 2 2o

2k sin 1 dv 2 sin d 1
L 2

sin sin 1 k sin

β π

β

θ θβ β
α α

β β θ

−
= =

− −
∫ ∫

(11)
Fig. 1  A cantilever beam with concentrated vertical load
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This equation can be split up into complete and
incomplete elliptic integrals of the first and second
kinds. In the notation of Jahnke and Emde, the vertical
displacement is:

( ) ( ) ( ) ( )1 1
v 1 F k F k , 2E k 2E k ,
L

θ θ
α
⎡ ⎤= − − +⎣ ⎦ (12)

( ) ( )1F k F k,α θ= − (13)
So that:

( ) ( )1
v 21 E k E k ,
L

θ
α
⎡ ⎤= − −⎣ ⎦ (14)

The horizontal displacement of the loaded end is
calculated from Eqs. (1) and (4) with x=0 when β=0.
Thus:

( ) ( )
1
20

0

d 2PP L u EI EI sin
ds EIβ

β β
=

⎛ ⎞− = =⎜ ⎟
⎝ ⎠

(15)

or:

0
2u 1 sinβ
α

= − (16)

From Eq. (6) we have:
2

0sin 2k 1β = − (17)
The solution for vertical displacement by linear

analysis is:
3

lin
P Lv
3 EI

= (18)

The exact analytical solution of the large
displacements of a cantilever beam are shown in Tables
1 and 2 (see next pages) and Figure 2.

2.2 Large deflections of diamond-shaped
frames [4]

The nonlinear solutions for large deflections of
diamond – shaped frames are derived. The exact
solutions are based on the assumption that the material
is perfectly elastic and that the shear deformations are
negligible.

Large deflection analysis: Pinned-fixed frame

Because of symmetry of the frame it is sufficient to
analyze only the frame member. The deformed
configuration is shown in Figure 3 so that the Euler –
Bernoulli equation for bending due to tensile loading
must be expressed as:

( )0
d M P L cos u x
ds EI EI
β β= = − − (19)
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Fig. 2  Analytical solutions of the large displacements of a
cantilever beam with a concentrated force

at the free end
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Fig. 3  Pinned – fixed frame: a) undeformed frame; b) large
deflections in tension; c) large deflections in compression

Differentiating Eq. (19) with respect to s and
introducing a nondimensional load parameter

2
2 PL

EI
η =  we obtain:

2 2

2 2
d P dx cos

EI dsds L
β η β= − ⋅ = − (20)
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α k sin β0 b β 1 F (k) F (k, β 1) E (k) E (k, β 1) α 1 

45 0.707107 7.17856x10-9 89.9992 1.85407 1.85405 1.35064 1.35063 0.0000202 

46 0.71934 0.0348995 79.4183 1.86915 1.60487 1.34181 1.21274 0.264281 

47 0.731354 0.0697565 75.2052 1.88481 1.51081 1.33287 1.15457 0.374 

48 0.743145 0.104528 72.0835 1.90108 1.44252 1.32384 1.11055 0.458568 

49 0.75471 0.139173 69.5415 1.918 1.38766 1.31475 1.0742 0.530341 

50 0.766044 0.173648 67.378 1.93558 1.34144 1.30554 1.04294 0.594141 

51 0.777146 0.207912 65.4883 1.95386 1.3014 1.29628 1.01542 0.652466 

52 0.788011 0.241922 63.8095 1.97288 1.26606 1.28695 0.990802 0.706823 

53 0.798636 0.275637 62.3 1.99267 1.23446 1.27757 0.96855 0.758212 

54 0.809017 0.309017 60.9306 2.01327 1.20593 1.26815 0.94827 0.807341 

55 0.819152 0.34202 59.6798 2.03472 1.17997 1.25868 0.929672 0.854747 

56 0.822925 0.374607 58.5312 2.05706 1.15622 1.24918 0.912534 0.900845 

57 0.838671 0.406737 57.4719 2.08036 1.13438 1.23966 0.896681 0.945977 

58 0.848048 0.438371 56.4916 2.10466 1.11423 1.23013 0.88197 0.99043 

59 0.857167 0.469472 55.5818 2.13002 1.09557 1.22059 0.868285 1.03445 

60 0.866025 0.50000 54.7356 2.15652 1.07826 1.21106 0.855528 1.07826 

61 0.87462 0.529919 53.947 2.18421 1.06216 1.20154 0.843617 1.12206 

62 0.882948 0.559193 53.2112 2.21319 1.04716 1.19205 0.832483 1.16604 

63 0.891007 0.587785 52.5236 2.24355 1.03317 1.18259 0.822064 1.21038 

64 0.898794 0.615661 51.8808 2.27538 1.02011 1.17318 0.812308 1.25527 

65 0.906308 0.642788 51.2794 2.30879 1.0079 1.16383 0.803169 1.30088 

66 0.913545 0.669131 50.7167 2.3439 0.9965 1.15455 0.794607 1.34741 

67 0.920505 0.694658 50.1901 2.38087 0.985841 1.14535 0.786586 1.39503 

68 0.927184 0.71934 49.6974 2.41984 0.97879 1.13624 0.779074 1.44396 

69 0.93358 0.743145 49.2367 2.461 0.966573 1.12725 0.772043 1.49443 

70 0.939693 0.766044 48.8063 2.50455 0.957886 1.11838 0.765469 1.54666 

71 0.945519 0.788011 48.4045 2.55073 0.949784 1.10964 0.75327 1.60095 

72 0.951057 0.809017 48.0301 2.59982 0.942239 1.10106 0.753599 1.65758 

73 0.956305 0.829038 47.6817 2.65214 0.935223 1.09265 0.748266 1.71692 

74 0.961262 0.848048 47.3582 2.70807 0.928713 1.08443 0.743311 1.77935 

75 0.965926 0.866025 47.0586 2.76806 0.922688 1.07641 0.73872 1.84538 

76 0.970296 0.882948 46.782 2.83267 0.917128 1.06861 0.734479 1.91554 

77 0.97437 0.898794 46.5277 2.90256 0.912018 1.06106 0.730577 1.99055 

78 0.978148 0.913545 46.2948 2.97857 0.907341 1.05378 0.727003 2.07123 

79 0.981627 0.927184 46.0827 3.06173 0.903083 1.04679 0.723747 2.15865 

80 0.984808 0.939693 45.8908 3.15339 0.899233 1.04011 0.7208 2.25415 

81 0.987688 0.951057 45.7187 3.2553 0.895781 1.03379 0.718156 2.35952 

82 0.990268 0.961262 45.5659 3.36987 0.892715 1.02784 0.715808 2.47715 

83 0.992546 0.970296 45.4319 3.50042 0.890029 1.02231 0.713749 2.61039 

84 0.994522 0.978148 45.3165 3.65186 0.887715 1.01724 0.711974 2.76414 

85 0.996195 0.984808 45.2193 3.83174 0.885767 1.01266 0.710479 2.94597 

86 0.997564 0.990268 45.1401 4.05276 0.88418 1.00865 0.709261 3.16858 

87 0.99863 0.994522 45.0787 4.33865 0.88295 1.00526 0.708317 3.4557 

88 0.999391 0.997564 45.0349 4.74272 0.882073 1.00258 0.707644 3.86064 

89 0.999848 0.999391 45.0087 5.43491 0.881548 1.00075 0.707241 4.55336 

90 1.000000 1.000000 45.0000 ∞ 0.881374 1.00000 0.707107 ∞ 

 

Table 1 Elliptic integrals of the first and second kinds
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FORCE Loading parameter Displacements of a beam 

P PL2/EI u vlin v 

7.17 x 10-9 4.1 x 10-10 -4.28 x 10-6 1.367 x 10-10 -9.388 x 10-6 

1.22228 0.06984 0.00032 0.02328 0.02327 

2.44783. 0.13988 0.00129 0.04663 0.04652 

3.67998 0.21028 0.00292 0.07009 0.06974 

4.92208 0.28126 0.00519 0.09375 0.09292 

6.17755 0.35300 0.00812 0.11767 0.11604 

7.44997 0.42571 0.01168 0.14190 0.13907 

8.74299 0.49959 0.01589 0.16653 0.16202 

10.06050 0.57489 0.02075 0.19163 0.18486 

11.40650 0.65180 0.02625 0.21727 0.20758 

12.78540 0.73059 0.03238 0.24353 0.23016 

14.20160 0.81152 0.03916 0.27051 0.25260 

15.66030 0.89487 0.04657 0.29829 0.27487 

17.16660 0.98095 0.05461 0.32698 0.29696 

18.72650 1.07009 0.06328 0.35669 0.31886 

20.34620 1.16264 0.07258 0.38755 0.34055 

22.03270 1.25901 0.08250 0.41967 0.36203 

23.79380 1.35965 0.09305 0.45322 0.38328 

25.63800 1.46503 0.10422 0.48834 0.40428 

27.57480 1.57571 0.11601 0.52524 0.42503 

29.61520 1.69230 0.12841 0.56410 0.44552 

31.77130 1.81550 0.14144 0.60517 0.46573 

34.05690 1.94611 0.15508 0.64870 0.48566 

36.48800 2.08503 0.16934 0.69510 0.50529 

41.86300 2.39217 0.19971 0.79739 0.54365 

44.85310 2.56303 0.21584 0.85434 0.56236 

48.08260 2.74758 0.23261 0.91586 0.58076 

51.58650 2.94780 0.25001 0.98259 0.59883 

55.40680 3.16610 0.26808 1.05537 0.61659 

59.59470 3.40541 0.28683 1.13514 0.63402 

64.21290 3.66931 0.30627 1.22310 0.65114 

69.33990 3.96228 0.32645 1.32076 0.66795 

75.07480 4.28999 0.34739 1.43000 0.68446 

81.54560 4.65975 0.36916 1.55325 0.70070 

88.92100 5.08120 0.39183 1.69373 0.71669 

97.42850 5.56735 0.41549 1.85578 0.73246 

107.38500 6.13629 0.44026 2.04543 0.74807 

119.24800 6.81415 0.46634 2.27138 0.76359 

133.70800 7.64047 0.49399 2.54682 0.77913 

151.87800 8.67877 0.52361 2.89292 0.79485 

185.69800 10.03990 0.55585 3.34663 0.81103 

208.98300 11.94190 0.59188 3.98063 0.82815 

260.83000 14.90460 0.63413 4.96819 0.84721 

362.73310 20.73310 0.68951 6.91103 0.87108 

∞ ∞ 1.00000 ∞ 1.00000 

 

Table 2 Analytical solutions of the large displacements of a cantilever beam with a concentrated force at the free end
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Integrating Eq. (20) we obtain:
2 2

2
d 2 sin C
ds L
β η

β⎛ ⎞ = − +⎜ ⎟
⎝ ⎠

(21)

where the constant C may be determined from the
boundary condition:

d 0 at
ds
β β β= = l (22)

Hence:

( )d 2 sin sin
ds L
β η β β± = −l (23)

The positive sign must be taken in the ambiguity
on the left of Eq. (23):

d d dy d sin
ds dy ds dy
β β β β= ⋅ = (24)

The projection of the deformed member on the y
axis may be calculated from:

0l sin v
0 0

L sin v dy
β

β
+

+ = ∫ (25)

Using Eqs. (23), (24) and (25) we have:

( )
l

0
0

l

v sin dsin
L 2 sin sin

β

β

β βη β
β β

⎛ ⎞+ =⎜ ⎟
⎝ ⎠ −∫ (26)

We can now introduce a new variable θ such that:

( )2
2

1 sin
sin

2k

β
θ

+
= (27)

where:
22k 1 sinβ= + l (28)

Equation (26) may be transformed into:

( )
( )

2

1

2 2

0
2 2

2k sin 1vsin d
L 1 k sin

θ

θ

θ
η β θ

θ

−⎛ ⎞+ =⎜ ⎟
⎝ ⎠ −

∫ (29)

where:

( )( )2
1 0 lsin 1 sin 1 sinθ β β= + + (30)

and:

2 2
πθ = (31)

The integral on the right side of the Eq. (29) is
expressible in terms of elliptic integrals and it can be
shown that:

( ) ( ) ( ) ( )
L0 1 1
vsin K k F ,k 2E k 2E ,kη β θ θ⎛ ⎞+ = − − +⎜ ⎟⎝ ⎠

(32)
Then, the vertical displacement is:

( ) ( ) ( ) ( )1 1
0

K k F ,k 2E k 2E ,kv sin
L

θ θ
β

η
− − +

= −

Similarly we can develop expression:

L

2

1

0 1
ucos 2k sin d 2k cos

θ

θ

η β β β θ⎛ ⎞− = =⎜ ⎟
⎝ ⎠ ∫ (33)

from where the horizontal displacement is:

0 1cos 2k cosu
L

β θ
η
−

=

and:

( )
( ) ( )

2

1

1
2 2

d K k F ,k
1 k sin

θ

θ

θη θ
θ

= = −
−

∫ (34)

For small deflection analysis we can develop
expression:

L L

1
4

1 1
2 4

u v 1 21 tanh

2 2

η
η

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= = −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

(35)

For infinitesimal deflections (linear theory) the
right-sides of the Eq. (35) reduce to PL2/6EI:

L L

2
lin linu v PL

6 EI
= = (36)

Exact analytical solutions for vertical and horizontal
deflection of pinned-fixed frame are shown in Table 3
and Figure 4.
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Fig. 4  Vertical and horizontal deflections of pinned-fixed
frame under tensile loading
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3. SOME NUMERICAL SOLUTIONS OF
BENCH PROBLEMS AND
COMPARISON WITH ANALYTICS

We start the analysis with method that uses a
classical stiffness matrix for small displacements.

This method is developed by T.Y. Yung [7]. The
present development is based on the assumption that
the material is linearly elastic and the displacements
are not small in comparison with the length of the
beam. The solution procedure includes first
formulating the stiffness equations for a beam element
based on the small deflection theory but with the
inclusion of effect of axial force, then applying a
linearized midpoint tangent incremental approach and
coordinate transformation at every step. If the
displacements obtained at every step are small with
reference to the local coordinates such that the
squares of the slope-increment are negligible in
comparison with unity, the small deflection theory
should hold.

α P η2 
2 v/l 
large 

2 u/l 
large 

2 v/l = 2 u/l 
small 

2 ulin = 2 vlin 

67,5 0 0 0 0 0 0 

68 0.876748 0.0500999 0.0163494 0.0165739 0.164667 0.0167 

69 2.71288 0.155021 0.0484065 0.0504795 0.0495043 0.0516738 

70 4.67269 0.267011 0.079592 0.0853604 0.0827591 0.0890036 

71 6.77488 0.387136 0.109888 0.121214 0.116324 0.129045 

72 9.04157 0.516661 0.139278 0.158036 0.150295 0.17222 

73 11.4992 0.579099 0.167746 0.195824 0.184767 0.219033 

74 14.1798 0.810277 0.195279 0.234579 0.219843 0.270092 

75 17.1225 0.978426 0.221866 0.274309 0.255626 0.326142 

76 20.3754 1.16431 0.247496 0.315029 0.292231 0.388103 

77 23.9993 1.37139 0.272163 0.356761 0.329779 0.45713 

78 28.0715 1.60409 0.295864 0.399539 0.368407 0.534696 

79 32.6924 1.86813 0.318598 0.443417 0.408269 0.622711 

80 37.995 2.17114 0.340373 0.488466 0.449543 0.723714 

81 44.1605 2.52346 0.3612 0.534792 0.492444 0.841153 

82 51.443 2.9396 0.381104 0.582545 0.537235 0.979866 

83 60.212 3.44068 0.400121 0.631944 0.584259 1.14689 

84 71.0314 4.05894 0.418312 0.683317 0.633978 1.35298 

85 84.8154 4.84659 0.435774 0.737172 0.687057 1.61553 

86 103.175 5.89569 0.452672 0.794352 0.744529 1.96523 

87 129.31 7.38915 0.469307 0.856383 0.808185 2.46305 

88 170.943 9.76816 0.486319 0.926483 0.881693 3.25605 

89 255.289 14.5879 0.505538 1.01385 0.975313 4.86264 

90 655.927 37.4815 0.536047 1.16419 1.13953 12.4938 

Table 3 Exact analytical solution for vertical and horizontal deflections of pinned-fixed frame under tensile loading

A simple beam element is developed for the solution
of large deflection problems by Haefner and Willam [8].
The total Lagrangian formulation is based on the
kinematic relations proposed by Reissner for finite
rotations and stretching as well as shearing of plane
beams.

Third method is developed by Bathe and Bolourchi
[9, 10]. An updated Lagrangian formulation of a three-
dimensional beam element is presented for large
displacement and large rotation analysis. The
formulations are derived from the continuum
mechanics based Lagrangian incremental equilibrium
equations. The beam elements are assumed to be
straight, and the conventional beam displacement
functions are employed to express the displacements of
the elements in convected coordinates. The element has
been implemented for use in elastic, elastic-plastic,
static and dynamic analysis.

Analysis is performed on standard bench test
examples. The numerical solutions obtained for all
methods are compared to exact analytical solutions by
Bisshopp [12], and Jenkins [13]. In addition, in all
analysis shear deformations were neglected.
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3.1 A cantilever beam with a concentrated
load at the free end

A cantilever beam, subjected at free end to a
concentrated force, was analyzed with the results of
vertical and horizontal displacements at the free end
shown in Table 4, Figures 5 and 6. Eight finite elements
were used. The results from an exact analytical solution
in terms of elliptic integrals [12] are also shown in
Figure 6 for comparison. For all methods good
agreement is indicated.

Fig. 6  Large displacements of a cantilever beam with a
concentrated force at the free end

3.2 A diamond-shaped frame loaded
diagonally at two joints

A diamond-shaped frame loaded by forces applied
at a pair of diagonally opposite joints is shown in
Figure 7. The two loaded joints are assumed to be
hinged while the two joints are assumed to be rigid. It
was also studied extensively by Jenkins, Seitz and
Przemieniecki [13]. Jenkins et al. provided an analytical
solution which was in a good agreement with their
experimental results. Numerical solutions for the

Fig. 5  A cantilever beam with a concentrated force at the
free end
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v 
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dimensionless horizontal elongation and vertical
contraction of the diagonals for all methods are shown
in Table 5 and Figure 8. The agreement is reasonable.
Again, eight finite elements were used.

Fig. 7  A diamond-shaped frame loaded diagonally
at two joints

Variation of the elongation of the frame diagonals
with the applied loading is plotted in Figure 8.

 

-1.5 -1 -0.5 0 0.5 1 1.5 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

2v/L 2u/L vlin/L ulin/L 

displacements 

PL
2  / 

EI
 

        - Yung, 8 beam 
           elements 
        - Haefner, 8    
          beam elements 
        - Bathe, 8 beam 
           elements 
        - linear solution 
        - analytical  
          solution by 
          Jankins [9] 

Fig. 8  Vertical and horizontal deflections of  pinned-fixed
frame under tensile loading

Typical deformed shapes for a square frame are
shown in Figure 9.
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Fig. 9  Deformed shapes of a square pinned-fixed frame  for
different values of the loading parameter η2
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Table 5 Horizontal and vertical components of the displacements for a diamond shaped beam frame with a diagonal forces

Diamond-shaped frame with 
diagonal forces 

by Yung 

Diamond-shaped frame with 
diagonal forces 

by Haefner and Willam 

Diamond-shaped frame with 
diagonal forces 

by Bathe 

FO
R

CE
 

LO
A

D
 

PA
RA

M
ET

E
R 

Horizontal 
displacement 

Vertical 
displacement 

Horizontal 
displacement 

Vertical 
displacement 

Horizontal 
displacement 

Vertical 
displacement 

P PL2 / EI 2u/L 2v/L 2u/L 2v/L 2u/L 2v/L 

0 0 0 0 0 0 0 0 
0.876 0.05009 0.01668 0.01651 0.01658 0.016403 0.01657 0.016387 

2.713 0.15502 0.05084 0.04890 0.05053 0.04857 0.05051 0.04853 
4.673 0.26701 0.08600 0.08042 0.08547 0.07989 0.08544 0.07982 
6.775 0.38714 0.12215 0.11107 0.12141 0.11034 0.12137 0.11025 
9.0416 0.51666 0.15931 0.14082 0.15833 0.13989 0.15829 0.13978 
11.499 0.57909 0.19746 0.16965 0.19625 0.16853 0.19621 0.16841 
14.180 0.81027 0.23661 0.19756 0.23515 0.19624 0.23512 0.19612 
17.123 0.97843 0.27677 0.22452 0.27506 0.22302 0.27503 0.22289 
20.375 1.16431 0.31795 0.25054 0.31598 0.24886 0.31596 0.24872 
23.999 1.37139 0.36018 0.27559 0.35793 0.27374 0.35793 0.27360 

28.0715 1.60409 0.40349 0.29968 0.40096 0.29766 0.40098 0.29752 
32.692 1.86813 0.44793 0.32280 0.44512 0.32062 0.44517 0.32049 
37.995 2.17114 0.49359 0.34496 0.49048 0.34263 0.49056 0.34251 
44.161 2.52346 0.54056 0.36618 0.53715 0.36369 0.53726 0.36359 
51.443 2.9396 0.58901 0.38647 0.58528 0.38384 0.58542 0.38375 
60.212 3.44068 0.63914 0.40584 0.63509 0.40311 0.63528 0.40303 

71.0314 4.05894 0.69131 0.42446 0.68691 0.42155 0.68715 0.42149 

Table 4 Horizontal and vertical components of the free end displacements for a cantilever beam with a concentrated force

Cantilever beam with a 
concentrated force 

by Yung 

Cantilever beam with a 
concentrated force 

by Haefner and Willam 

Cantilever beam with a 
concentrated force 

by Bathe 

F
O

RC
E

 

LO
AD

 
PA

RA
M

ET
E

R 
Horizontal 
displacement 

Vertical 
displacement  

Horizontal 
displacement 

Vertical 
displacement 

Horizontal 
displacement 

Vertical 
displacement 

P PL2 / EI u/L v/L u/L v/L u/L v/L 

0 0 0 0 0 0 0 0 
10 0.57142 -0.02028 0.18226 -0.02072 0.18293 -0.02045 0.18386 
20 1.14285 -0.06917 0.33186 -0.06992 0.33485 -0.07039 0.33618 
30 1.71428 -0.127403 0.44261 -0.12977 0.44810 -0.13050 0.44962 
40 2.28571 -0.18408 0.52292 -0.18820 0.53008 -0.189101 0.53170 
50 2.85557 -0.23550 0.58209 -0.24093 0.59000 -0.24195 0.59168 
60 3.42857 -0.29931 0.64781 -0.28642 0.63419 -0.28832 0.63658 
70 4.00000 -0.33963 0.68205 -0.32754 0.66926 -0.32870 0.67108 
80 4.57142 -0.27597 0.71301 -0.36271 0.69638 -0.36392 0.69826 
90 5.14285 -0.40351 0.73332 -0.39353 0.718218 -0.38478 0.72018 
100 5.71428 -0.43451 0.75005 -0.42071 0.73615 -0.42200 0.73820 
110 6.28571 -0.45920 0.76650 -0.44484 0.75115 -0.44617 0.75328 
120 6.85714 -0.48002 0.77929 -0.46640 0.76387 -0.46777 0.76609 
130 7.42857 -0.50011 0.78203 -0.48578 0.77482 -0.48718 0.77713 
140 8.00000 -0.51780 0.79980 -0.50331 0.78435 -0.50474 0.78675 
150 8.57142 -0.53381 0.80830 -0.51924 0.79273 -0.52070 0.79522 
160 9.14285 -0.54831 0.81581 -0.53379 0.80018 -0.53528 0.80274 
170 9.71428 -0.55820 0. 82005 -0.54047 0.80351 -0.54512 0.80768 
175 10.00000 -0.56806 0.82570 -0.54714 0.80684 -0.55495 0.81261 
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3.3 Analysis of results

The analysis of obtained results shown in Tables 4
and 5 is performed by the formula:

[ ]= ⋅ −method

analitical
deviation 100 100 %v

v

where vmethod is a displacement toward any of
methods, and vanalitical is a displacement which is
solved by analytical method. Deviation is absolutely a
deviation displacement of beams and frames of
analytical solutions expressed in percentage.

Analysis of the Bathe and Haefner methods for
determining large displacements of a cantilever beam
and diamond shaped beam frame reveals a variance of
between 0% and 1% measured against the analytical
solutions. Young’s method results in a difference in the
range of 0% to 2% compared with the analytical
solutions.

4. CONCLUSION

Nonlinear numerical analysis was performed on a
cantilever beam with a concentrated force at the free
end and diamond shaped beam frame with diagonal
forces.

The results obtained for all numerical methods are
compared with the analytical solutions. The numerical
methods are compared with each other, using criteria
of accuracy, reliability, and numerical efficiency. The
analyzed examples show that the numerical solutions
obtained by these methods converge monotonically
towards an exact analytical solution.

For discretisation with eight beam elements, in
respect of the finite element mesh, the methods used
by Bathe [9, 10] and Haefner [8], followed by Yung
[7] correspond most closely to the analytical solution.
The results for large displacements of a cantilever
beam with a force at the end and diamond shaped beam
frame with diagonal forces in terms of numerical
iterations are most closely aligned to the analytical
solution by method of Bathe, followed by the
procedures of Yung, and then Haefner. Therefore, the
Bathe method is more efficient than the methods used
by Haefner and Yung.

The methods employed by Bathe and Haefner are
based upon the full Newton-Raphson method for
solving nonlinear problems. The Yung method is based
upon incremental loads, and it has not removed control
error.

To reduce the error it is necessary to repeat the
process with other incremental loads. To summarize,
the methods adopted by Bathe and by Haefner are
extremely reliable, while the Yung method is less
reliable. Taking into consideration the criteria of
accuracy, reliability and numerical efficiency the Bathe
method provides the best results.
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ANALITI^KI TESTOVI ZA NUMERI^KE METODE KOD SAVIJANJA GREDA I
OKVIRA PRI VELIKIM POMACIMA

SA@ETAK

Istra`ivanje numeri~kih metoda za rješavanje savijanja greda i okvira pri velikim pomacima zahtijevaju pouzdana
referentna analiti~ka rješenja. Mada se ova rješenja mogu na}i u literaturi, potrebno je na}i metode koje vode
dovoljno to~nom rješenju. Ovaj rad je pokušaj pronalaska tih metoda.

Prikazani test primjeri uklju~uju gredu s koncentriranom silom na slobodnom kraju i rombasti okvir s dijagonalnim
optere}enjem. Numeri~ka rješenja prikazanih test primjera su uspore|ena s analiti~kim rješenjima. Analizirani primjeri
pokazuju da dobivena numeri~ka rješenja monotono konvergiraju prema to~nom analiti~kom rješenju. Sve numeri~ke
metode daju zadovoljvaju}e rezultate.

Numeri~ke metode su uspore|ene prema kriterijima to~nosti, pouzdanosti i numeri~koj efikasnosti.

Klju~ne rije~i: savijanje greda, veliki pomaci, nelinearna numeri~ka analiza, linijski sustavi, analiti~ka rješenja,
to~nost, pouzdanost, numeri~ka efikasnost.


