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 In this paper, an adaptive neuro-fuzzy based on fractional-order 
proportional-integral-derivative (ANFFOPID) controller with an 
improved slime mould algorithm (ISMA) for the two-legged robot 
(TLR) is proposed to achieve the minimum angular displacement 
error of the joint motors. Achieving such error is considered a 
challenging and time-consuming process due to the gain values set 
for the FOPID controller. Thus the neural-fuzzy network is used to 
provide the FOPID input signals by the adaptive magnitude gains. 
The adaptive mechanism depends on the ISMA to train the neural 
network weights. The outstanding properties of the ANFFOPID 
controller are evaluated by comparing the proposed controller 
with other existing work that is modified chaotic invasive weed 
optimization based on neural network (MCIWO-NN) for various 
walking terrains that are flat surface, stair ascending, and stair 
descending. Finally, the results obtained show the effectiveness of 
the ANFFOPID controller. 
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1 Introduction  
 

In recent years, the two-legged robot industry has been overgrowing due to its benefits in scientific and 
social life applications such as cleaning applications for specific types of industries or health care applications, 
serving applications, etc. Two-legged robots should handle different terrains and surfaces in natural 
environments, e.g. flat surfaces, slop surfaces, staircases, roads, sands, and stones. Although of such features 
for two legged-robots, it is considered challenging to obtain the task mentioned above. Thus, most of the 
researchers provide different solutions and techniques to solve a certain problem.  

These techniques and solutions depend on designing new controlling approaches to enhance the balance 
of the two-legged robot. The uneven terrain requires a new control to increase system stability [1]. In two-
legged robots, the walking patterns related directly to the robot balance, the walking problem is considered a 
crucial problem that should be solved with high reliability. In [2], the authors present a zero moment point 
(ZMP) concept to obtain a dynamically balanced gait for the two-legged robot due to the significant criterion 
for robot walking stability. In [3], the authors introduce a new concept for online gait adaptation to the leg 
robots capabilities. In [4], the authors proposed a suitable proportional integral derivative (PID) controller for 
the two-legged robot to achieve the required positions for the joints to achieve stable walk patterns. In [5], the 
authors present a fractional-order proportional derivative (FOPID) controller for a hexapod robot to achieve 
the best performance for different ground properties.  

The tuning process of different controllers such as PID and FOPID need to be highly taken care of to 
present the best performance of autonomous robotic systems. Thus, many researchers proposed different 
controller approaches such as the state-dependent Riccati equation [6], Kalman filter and backstepping design 
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[7], adaptive neural network design [8], a neural approximation based on model predictive tracking control 
[9], genetic algorithm (GA) and fuzzy approach [10, 11]. 

Moreover, tuning the gains of the proposed controller's for two-legged robots were highly researched 
through the recent years, such that the authors in [12] present particle swarm optimization to tune the 
parameters of the PID controller, in [13], the authors proposed a hybrid salp swarm algorithm with grey wolf 
optimizer algorithm (HSSGWOA) to tune the integral sliding mode controller (ISMC), in [14], the authors 
present a hybrid dragonfly optimization and differential evolution algorithm for obstacle avoidance trajectory 
planning problem, in [15], the authors introduce a modified chaotic inverse weed optimization (MCIWO) for 
training the neural network with PID controller, in [16] the authors proposed an improved slime mould 
algorithm (ISMA) to adjust the parameters of FOPID controllers, while the authors in [17] present a slime 
mould algorithm to tune a magnetic levitation system. 

Related to this work, many researchers across the globe present and develop different controllers such as 
[18–20], where the authors proposed on gait generation for a 7-DOF robot. While in [21, 22], they present a 
PID controller with ZMP to test the various joints of motors. Motivated by the above analysis, we proposed a 
new technique to reduce the error between the desired angle of the joint motor and the final displacement angle 
of the joints. This technique ensures that the value of the error will be smaller and optimized. The most 
challenging problem is to tune the two-legged robot gains controller with the proper values to present the best 
effort for the different terrains. Thus, this problem is solved by presenting a neuro-fuzzy network to present 
the best gains possible to the FOPID controller, where the fuzzy network firstly selects the best fuzzy rules for 
the optimized error techniques and then provides the neural network with the required results inputs weights. 
At the same time, the neural network weights are trained using an improved slime mould algorithm adaptively. 
The improved slime mould algorithm is tested for its effectiveness to the TLR by comparing it with other 
optimization algorithms via the fitness function and the required torque by the motors joints. 

The remainder of this work is structured as follows. Section 2 presents the two-legged robot model used 
in this work. The fractional-order proportional integral derivative (FOPID controller design are stated in 
Section 3. The Neural fuzzy network with FOPID controller design is stated in Section 4. In Section5, the 
improved slime mould algorithm is presented. Then, the fundamental result of this work and some numerical 
simulations to verify the efficiency of the presented controller are proposed in Section 6. At the end, the 
conclusion part is presented in Section 7.   

 
2 Modelling of two-legged robot 

 

In this work, an 18-DOF of two legged-robot is used, where each leg is 6-DOF, while each hand has 3-
DOF. The two-legged robot dynamics were obtained using the Lagrange-Euler formulation. The Lagrange-
Euler formulation is used to supply the joints of the two-legged robot with the required torques [15], [23]. 
Figure 1 show the two-legged robot structure.  The frontal plane is considered for the motion of the two-legged 
robot. The inverse kinematics concept has been used to calculate the direction of each joint for the TLR. To 
define the joint angles of TLR, the following mathematical expression is used [23]: 

 
 

𝛺ସ = sinିଵ ൬
𝐴ଵ𝐵ଷ sin 𝛽 + 𝐿ଵ𝐵ଵ cos 𝛽 (𝐵ସ + 𝐵ଷ cos 𝛽)

(𝐵ସ + 𝐵ଷ cos 𝛽)ଶ + (𝐵ଷ sin 𝛽)ଶ ൰ (1) 

 
where 𝐴ଵ = 𝐵ସ cos(𝛺ସ) + 𝐵ଷ cos(𝛺ଷ), 𝐿ଵ = 𝐵ସ sin(𝛺ସ) + 𝐵ଷ sin(𝛺ଷ), 𝛺ସ and 𝛺ଷ are the joint angles of the 
swing leg. 

𝛽 = 𝛺ସ − 𝛺ଷ = cosିଵ ቀ
஺భ

మା௅భ
మି஻ర

మି஻య
మ

ଶ஻ర஻య
ቁ. While 𝛺ଷ = 𝛺ସ − 𝛽, similarly the joint angles of the standing 

leg (𝛺ଵ଴ and 𝛺ଽ) can be obtained as follows: 
 

 
𝛺ଵ଴ = 𝑠𝑖𝑛ିଵ ൬

𝐴ଶ𝐵ଽ 𝑠𝑖𝑛 𝛽 + 𝐿ଶ(𝐵ଵ଴ + 𝐵ଽ 𝑐𝑜𝑠 𝛽)

(𝐵ଵ଴ + 𝐵ଽ 𝑐𝑜𝑠 𝛽)ଶ + (𝐵ଽ 𝑠𝑖𝑛 𝛽)ଶ ൰ (2) 
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Figure 1. Two-legged robot structure. 
 

where 𝐴ଶ = 𝐵ଽ cos(𝛺ଽ) + 𝐵ଵ଴ cos(𝛺ଵ଴), 𝐿ଶ = 𝐵ଽ sin(𝛺ଽ) + 𝐵ଵ଴ sin(𝛺ଵ଴),  

𝛽 = 𝛺ଵ଴ − 𝛺ଽ = cosିଵ ቀ
஺మ

మା௅మ
మି஻భబ

మି஻వ
మ

ଶ஻భబ஻వ
ቁ. While 𝛺ଽ = 𝛺ଵ଴ − 𝛽, 

 
Now, the ankle joint angle is assumed to equal to zero concerning the vertical axis, thus 𝛺଺ = 𝛺ଵଶ = 0. Next, 
to determine the joint angles of the frontal plane leg, the following equation can be considered: 

 
 

𝛺ଶ = 𝛺଼ = 𝑡𝑎𝑛ିଵ ൬
𝑓௪

𝐴ଵ
൰ (3) 

 
 

𝛺ହ = 𝛺ଵଵ = 𝑡𝑎𝑛ିଵ ൬
0.5𝑓௪

𝐴ଶ
൰ (4) 

where (𝛺ଶ and 𝛺ହ) are the joint angles of the swing leg in the frontal plane, while (𝛺଼ and 𝛺ଵଵ) are the joint 
angles of the standing leg in the frontal plane,  𝑓௪  represent the width of the TLR foot. 

As mentioned before, the Lagrange-Euler formulation has been used for obtaining the dynamics of TLR. 
Thus, the torque based FOPID controllers for each joint of the TLR are designed while the robot moves in 
different terrains, as shown in the following equation [23]: 

 
 
 𝒯௜ = ෍ 𝑅௜௝(𝑞)𝑞̈௝ + ෍ ෍ 𝑈௜௝௞𝑞̇௝𝑞̇௞ + 𝑉௜

௡

௞ୀଵ

௡

௝ୀଵ

௡

௝ୀଵ

 
(5) 

For 𝑖, 𝑗, 𝑘 = 1, 2, … , 𝑛. 
where 𝒯௜  denote the torque required for joint 𝑖, 𝑞 represent the movement in (𝑚), 𝑞̇௝  denote the joint of the 
velocity in (𝑚/𝑠𝑒𝑐), while 𝑞̈௝  denote the joint acceleration in (𝑚/𝑠𝑒𝑐ଶ), and the 𝑅௜௝  term denotes the inertia 
term and given as follows: 
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𝑅௜௝ = ෍ 𝑇௥ൣ𝑑௭௝𝐼௭𝑑௭௜

் ൧

௡

௭ୀ௠௔௫ (௜,௝)

     𝑖, 𝑗, 𝑘 = 1 … 𝑛 (6) 

 
While the 𝑈௜௝௞ term defined as the coriolis/centrifugal coefficient and given as follows: 

 
 

𝑈௜௝ = ෍ 𝑇௥ ൤
𝜕(𝑑௭௞)

𝜕𝑞௭
𝐼௭𝑑௭௜

் ൨

௡

௭ୀ௠௔௫ (௜,௝,௞)

     𝑖, 𝑗, 𝑘 = 1 … 𝑛 (7) 

 
The 𝑉௜ term represents the gravity term and given as follows: 

 
 

𝑉௜ = − ෍ 𝑚௭𝑔𝑑௭௜ 𝑟௭௘
௭ି

௡

௭ ୀ ௜

     𝑖, 𝑗, 𝑘 = 1 … 𝑛 (8) 

 
where 𝑚௭ denote the mass center of the 𝑧௧௛ link in (𝑚), while 𝑟௭௘

௭ି  and 𝐼௭ denotes the moment of inertia 
tensor in (𝐾𝑔. 𝑚/𝑠𝑒𝑐ଶ), and the term 𝑔 represent the acceleration due to gravity in (𝑚/𝑠𝑒𝑐ଶ).  
Now, the acceleration of the links plays an enormous role in controlling each joint of the TLR. Thus, by 
rearranging Eq. (5) above, the acceleration equation of the links can be obtained as follows [23]: 

 
 

𝑞̈௝ = ෍ 𝑅௜௝(𝑞)ିଵ

௡

௝ୀଵ

቎− ෍ ෍ 𝑈௜௝௞𝑞̇௝𝑞̇௞ − 𝑉௜

௡

௞ୀଵ

௡

௝ୀଵ

቏ + ቌ෍ 𝑅௜௝(𝑞)ିଵ × 𝒯௜

௡

௝ୀଵ

ቍ     𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛 (9) 

 
Next, let us consider the following term: 

 
 

෍ 𝑅௜௝(𝑞)ିଵ × 𝒯௜

௡

௝ୀଵ

= 𝒯෠  (10) 

 
Eq. (10) can be written as follows: 

 
 

𝑞̈௝ = ෍ 𝑅௜௝(𝑞)ିଵ

௡

௝ୀଵ

቎− ෍ ෍ 𝑈௜௝௞𝑞̇௝𝑞̇௞ − 𝑉௜

௡

௞ୀଵ

௡

௝ୀଵ

቏ + 𝒯෠    𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛  (11) 

 
3 Design of the FOPID controller 
 

During the last years, many researchers across the glope proposed a new thoughts to improve typical 
controllers. Such that, the authors in [24] provide a nonlinear PID controller to reduce the error to minimum 
value to increase the system stability for different models. Thus, we proposed the same technique for the 
neural-fuzzy network input with the FOPID controller [25, 26] to present the best results for the TLR and 
increase the system stability.  
 
The following expression represents this technique [24]: 
 
 

𝐾௘(ఆ೔) = 𝐾଴ + 𝐾ଵ ൜
2

1 + exp (−𝑘ଶ𝑒(𝛺௜)
− 1ൠ  (12) 

      
 Figure 2 below show the general design for Eq. (12) above when 𝐾଴ = 1, 𝐾ଵ = 1, and 𝐾ଶ = 2. 
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Figure 2. Nonlinear gain function.
 
Now, the actual torque of FOPID controller required at the different joints of TLR can be explained as the 
following equation [27-29]: 
 
 

𝑢(𝛺௜) = 𝐾௣𝑒́(𝛺௜) + 𝐾௜

𝑑ିఒ൫𝑒́(𝛺௜)൯

𝑑𝑡ିఒ
+ 𝐾ௗ

𝑑ఓ൫𝑒́(𝛺௜)൯

𝑑𝑡ఓ
  (13) 

 
where é(Ω୧) = e(Ω୧) × Kୣ(ஐ౟), while K୮ is the proportional gain of the FOPID controller, K୧ defined as the 
integral gain of the FOPID controller, Kୢ defined as the derivative gain of the FOPID, λ and μ represent the 
proportional and derivative orders, respectively. 
 
The meaning of 𝑒(𝛺௜) equal the following formula: 
 

𝑒(𝛺௜) = 𝛺௜௙ − 𝛺௜௦  (14) 

where 𝛺௜௦ represent the initial angular position, while 𝛺௜௙  represent the final angular position for the moving 
joints. 
Now, for the fuzzy inference system (FIS), the multi inputs single-output (MISO) involve a set of fuzzy rules, 
where the rules are given in the following form: 

𝑅𝑢𝑙𝑒 𝑖: 𝐼𝐹 𝜉ଵ(𝛺௜) 𝑖𝑠 𝑇ଵ
௜  𝐴𝑁𝐷 … 𝐴𝑁𝐷 𝜉௡(𝛺௜) 𝑖𝑠 𝑇௡

௜  𝑇𝐻𝐸𝑁 𝛿൫𝜉(𝛺௜)൯ = 𝛿௜(𝛺௜),  
where 𝜉௝(𝛺௜) defined as the linguistic variable, 𝛿൫𝜉(𝛺௜)൯ defined as the output of the fuzzy inference system, 

𝛿௜(𝛺௜) is the output of the ith rule, while 𝑇௝
௜ defined as the jth linguistic variable of the fuzzy term.  

Thus, the final output of the FIS is 
                                                               
 

𝛿൫𝜉(𝛺௜)൯ = ෍ 𝑤௜൫𝜉(𝛺௜)൯𝛿௜(𝛺௜)

௉

௜ୀଵ

  (15) 

 
where 𝑃 is the total number of fuzzy rules, 𝑤௜൫𝜉(𝛺௜)൯ is the weight of the ith rule. 
Now, the fuzzy FOPID controller can be expressed by the following equation: 
 

𝑅𝑢𝑙𝑒 𝑖: 𝐼𝐹 𝑒́(𝛺௜) 𝑖𝑠 𝑇ଵ
௜  𝐴𝑁𝐷 

𝑑ିఒ൫𝑒́(𝛺௜)൯

𝑑𝑡ିఒ
 𝑖𝑠 𝑇ଶ

௜  𝐴𝑁𝐷 
𝑑ఓ൫𝑒́(𝛺௜)൯

𝑑𝑡ఓ
 𝑖𝑠 𝑇ଷ

௜  𝑇𝐻𝐸𝑁 𝑢൫𝜉(𝛺௜)൯ = 𝑢௜(𝛺௜) 

 
The final output of the fuzzy FOPID controller can be explained as follows: 
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𝑢൫𝜉(𝛺௜)൯ = ෍ 𝑤௜൫𝜉(𝛺௜)൯𝑢௜(𝛺௜)

௉

௜ୀଵ

  (16) 

 
Figure 3 below represent the fuzzy-FOPID design. 
 

 
 

Figure 3. Fuzzy with FOPID network design. 
 

4 Adaptive neuro-fuzzy FOPID network 
 

This section discusses the ANFFOPID controller design work based on ISMA. As shown in Figure 4, the 
adaptive neuro-fuzzy FOPID network consists of the neuro-fuzzy network, which is shown in the yellow block, 
while the neuro FOPID network is observed in the orange block. Both of these networks are depicted in Figure 
5.  

The states of the TLR model 𝜆௜(𝛺௜) are the input to the neuro-fuzzy network, which will generate the fuzzy 
states 𝜆௡ and merge the information of the FIS in the current state. The neuro FOPID network will take the 
fuzzy states 𝜆௡ and generates the active gain values 𝑄(𝛺௜) which is then multiplied by the factor 𝐺 to generate 
the required control signal 𝑢(𝛺௜). The neural network weights are adaptively trained using ISMA.  
The structure of the neuro-fuzzy network is firstly predefined by the fuzzy system, where the input layer 
consists of twelve variables, which are selected to present the state of the TLR system and expressed as 𝜆௜ =

𝜉௜  where 𝜉௜ = ൣ𝑒(𝛺௜)𝐾௘(ఆ೔)൧, for (𝑖 = 1,2, … , 12). As depicted in Figure 5, the inputs of the neuro-fuzzy 
network are expressed as 𝜆௡ = [𝜆ଵ, ⋯ , 𝜆ଵଶ]. The input linguistic layer is connected to the input nodes layer, 
the inputs nodes represent the fuzzy terms of each linguistic variable. 
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Figure 4. System controller design. 
             

The number of fuzzy terms defines the inputs nodes, each linguistic variable has three fuzzy terms for each 
of the 𝜆௜ that are SMALL, MEDIUM, and LARGE. The membership function of 𝜆௜ are shown in Figure 6 
below, where S-shaped membership functions are used for the fuzzy terms of 𝜆௜. Then, the rule node numbers 
can be found by multiplying the fuzzy terms (3) by neural network inputs 𝜆௜. Thus, the number of fuzzy rules 
nodes are 𝑅௡ = 3 × 12 = 36. Each rule node presents a corresponding weight, where this weight related to 
the joint angles are in the form of  
 
 

𝑤௜(𝜆௡) =
∏ 𝜇

ெೕ
೔(𝜆௡)ଵଶ

௝ୀଵ

∑ ቀ∏ 𝜇ெೕ
೔(𝜆௡)ଵଶ

௝ୀଵ ቁ
ோ೙
௞ୀଵ

  (17) 

where 𝑖 = 1,2, … , 𝑅௡, where 𝑅௡ is the number of fuzz rules related to 𝜆௜ . The fuzzy states are given as 𝜆௙ =

ൣ𝑤ଵ𝜆ଵ, 𝑤ଵ𝜆ଶ, 𝑤ଵ𝜆ଷ, ⋯ , 𝑤ଵ𝜆ଵଶ, ⋯ , 𝑤ோ೙
𝜆ଵ, 𝑤ோ೙

𝜆ଶ, 𝑤ோ೙
𝜆ଷ, ⋯ , 𝑤ோ೙

𝜆ଵଶ ൧. 
 

In the following layer, the number of output nodes of the neuro-fuzzy network can be expressed by 
multiplying the corresponding states by fuzzy rules numbers. Thus the number of the out nodes in this layer is 
equal to 𝑂௡ = 12 × 36 = 432. 
Now, for the neuro FOPID network, the input layer is the same as the output neuro-fuzzy network layer. As 
depicted in Figure 5, the output of the first hidden layer is expressed as follows:  

 
 

ℎ௜
ଵ = ෍ 𝑤௜௝

ଵ 𝑤௜(𝜆௡)
ଵଶ

௝ୀଵ
𝜆௝     𝑖 = 1,2, … , 𝑅௡ (18) 

 
The weights of 𝑤௜௝

ଵ  are obtained and trained using an improved slime mould algorithm (ISMA) which will be 
discussed in the next section. The output of the second hidden layer is expressed as follows: 

 
 

𝑄 = ෍ 𝑤ଵ௝
ଶ

ோ೙

௝ୀଵ
ℎ௝

ଵ (19) 
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Figure 5. Neuro-fuzzy with FOPID network design. 
 

 
 

Figure 6. Membership function of 𝜆௡. 
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The force applied in the TLR can be expressed as: 
 

𝑢 = 𝐺𝑄 (20) 

where 𝐺 = 0.01 is a constant gain selected after deep experiments. 
 

 
𝑢 = 𝐺 ෍ 𝑤ଵ௞

ଶ
ோ೙

௞ୀଵ
෍ 𝑤௞௝

ଵ 𝑤௞(𝜆௡)
ଵଶ

௝ୀଵ
𝜆௝  

 
(21) 

 
𝑢 = 𝐺 ൭෍ 𝑤௞(𝜆௡)

ோ೙

௞ୀଵ
൫𝑤௞ଵ

ଵ 𝑤ଵ௞
ଶ 𝜆ଵ + 𝑤௞ଶ

ଵ 𝑤ଵ௞
ଶ 𝜆ଶ + 𝑤௞ଷ

ଵ 𝑤ଵ௞
ଶ 𝜆ଷ + 𝑤௞ସ

ଵ 𝑤ଵ௞
ଶ 𝜆ସ + 𝑤௞ହ

ଵ 𝑤ଵ௞
ଶ 𝜆ହ

+ 𝑤௞଺
ଵ 𝑤ଵ௞

ଶ 𝜆଺ + 𝑤௞଻
ଵ 𝑤ଵ௞

ଶ 𝜆଻ + 𝑤௞଼
ଵ 𝑤ଵ௞

ଶ 𝜆଼ + 𝑤௞ଽ
ଵ 𝑤ଵ௞

ଶ 𝜆ଽ + 𝑤௞ଵ଴
ଵ 𝑤ଵ௞

ଶ 𝜆ଵ଴

+ 𝑤௞ଵଵ
ଵ 𝑤ଵ௞

ଶ 𝜆ଵଵ + 𝑤௞ଵଶ
ଵ 𝑤ଵ௞

ଶ 𝜆ଵଶ൯൱ 

(22) 

 
 

𝑢 = ෍ 𝑤௞(𝜆௡)
ோ೙

௞ୀଵ
൫𝐾௉భೖ

𝜆ଵ + 𝐾஽భೖ
𝜆ଶ + 𝐾ூభೖ

𝜆ଷ + 𝐾௉మೖ
𝜆ସ + 𝐾஽మೖ

𝜆ହ + 𝐾ூమೖ
𝜆଺ + 𝐾௉యೖ

𝜆଻

+ 𝐾஽యೖ
𝜆଼ + 𝐾ூయೖ

𝜆ଽ + 𝐾௉రೖ
𝜆ଵ଴ + 𝐾஽రೖ

𝜆ଵଵ + 𝐾ூరೖ
𝜆ଵଶ൯ 

(23) 

 
where 𝐾௉భೖ

= 𝐺𝑤௞ଵ
ଵ 𝑤ଵ௞

ଶ , 𝐾஽భೖ
= 𝐺𝑤௞ଶ

ଵ 𝑤ଵ௞
ଶ , 𝐾ூభೖ

= 𝐺𝑤௞ଷ
ଵ 𝑤ଵ௞

ଶ , 𝐾௉మೖ
= 𝐺𝑤௞ସ

ଵ 𝑤ଵ௞
ଶ , 𝐾஽మೖ

= 𝐺𝑤௞ହ
ଵ 𝑤ଵ௞

ଶ , 𝐾ூమೖ
=

𝐺𝑤௞଺
ଵ 𝑤ଵ௞

ଶ , 𝐾௉యೖ
= 𝐺𝑤௞଻

ଵ 𝑤ଵ௞
ଶ , 𝐾஽యೖ

= 𝐺𝑤௞଼
ଵ 𝑤ଵ௞

ଶ , 𝐾ூయೖ
= 𝐺𝑤௞ଽ

ଵ 𝑤ଵ௞
ଶ , 𝐾௉రೖ

= 𝐺𝑤௞ଵ଴
ଵ 𝑤ଵ௞

ଶ , 𝐾஽రೖ
= 𝐺𝑤௞ଵଵ

ଵ 𝑤ଵ௞
ଶ , 

𝐾ூరೖ
= 𝐺𝑤௞ଵଶ

ଵ 𝑤ଵ௞
ଶ .  

 
Thus, Eq. (23) above can be expressed as follows: 

 
 

𝑢 = ෍ 𝑤௞(𝜆௡)𝑈௔௞ + 𝑤௞(𝜆௡)𝑈௕௞ + 𝑤௞(𝜆௡)𝑈௖௞ + 𝑤௞(𝜆௡)𝑈ௗ௞

ோ೙

௞ୀଵ
 (24) 

 
where 𝑈௔௞ = 𝐾௉భೖ

𝜆ଵ + 𝐾஽భೖ
𝜆ଶ + 𝐾ூభೖ

𝜆ଷ, 𝑈௕௞ = 𝐾௉మೖ
𝜆ସ + 𝐾஽మೖ

𝜆ହ + 𝐾ூమೖ
𝜆଺, 𝑈௖௞ = 𝐾௉యೖ

𝜆଻ + 𝐾஽యೖ
𝜆଼ +

𝐾ூయೖ
𝜆ଽ, 𝑈ௗ௞ = 𝐾௉రೖ

𝜆ଵ଴ + 𝐾஽రೖ
𝜆ଵଵ + 𝐾ூరೖ

𝜆ଵଶ. 
 
Thus, these variables stand for the outputs 𝑢௜ in the concept of the fuzzy FOPID controller that is given in 

Eq. (16). As mentioned before, the neuro-fuzzy and the neuro-FOPID are merged to present the adaptive 
technique, while the wights of the neuro-FOPID are trained using the following improved algorithm in the 
next section. 
 
5 Slime mould algorithm  

 

Slime Mould Algorithm (SMA) [30-32], an stochastic optimization invented by [33]. The oscillation mode 
of slime mould inspires the SMA in nature. SMA employs a unique mathematical model that uses adaptive 
weights to simulate the propagation wave of SMA. The SMA depends on connecting food with excellent 
exploratory ability and exploitation propensity.  
The SMA used the odour of the air to approach the food, where the following formula described the 
approaching mechanism [33]: 
 

 
𝑋(𝑡 + 1)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = ቊ

𝑋௕(𝑡)ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 𝑣𝑏ሬሬሬሬ⃗ . ൫𝑊ሬሬሬ⃗ . 𝑋஺(𝑡)ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑋஻(𝑡)ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯, 𝑟 < 𝑝

𝑣𝑐ሬሬሬሬ⃗ . 𝑋(𝑡)ሬሬሬሬሬሬሬሬ⃗ , 𝑟 ≥ 𝑝
 (25) 

 
where 𝑟 is a random number of interval (0,1), while 𝑝 given as shown in the following formula: 
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𝑝 = 𝑡𝑎𝑛ℎ|𝑆(𝑖) − 𝐷𝐹|  (26) 

where 𝑆(𝑖) is the fitness of the location of the slime mould (𝑋⃗), 𝐷𝐹 defined as the best fitness function of all 
iteration. 𝑡 represent the current iteration number, 𝑣𝑐ሬሬሬሬ⃗  is linearly decrease number from [1⇒0], 𝑋஺

ሬሬሬሬ⃗  and 𝑋஻
ሬሬሬሬሬ⃗  

defined as two individuals selected randomly from slime mould, 𝑋௕
ሬሬሬሬ⃗  defined as the individual with the 

highest odour concertation currently found, 𝑊ሬሬሬ⃗  defined as the weight of slime mould, 𝑣𝑏ሬሬሬሬ⃗  defined as 
parameter with range [-𝑎, 𝑎] where 𝑎 found as follows: 
 

 
𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (− ൬

𝑡

𝑚𝑎𝑥 _𝑡
൰ + 1)  (27) 

 
where (max _𝑡) is the maximum iteration number for SMA. 
 

Despite the advantages of the SMA algorithm, such as the good speed in conducting a simulation of the 
robot and obtaining the best parameters for the controller, but after conducting several simulations with the 
presence of the adaptive neuro-fuzzy controller with the proposed terrain, it was discovered that the robot 
suffers from a lack of implementation of the proposed path due to the huge amount of information that must 
be processed from the ANFFOPID controller which employs the SMA algorithm. For this reason, we proposed 
an improvement to this algorithm that depends on replace one of the functions to increase the ability of the 
robot to perform accurate calculations in the presence of the proposed controller. 
      The improvements developed on the SMA are explicitly chosen to be appropriate for the ANFFOPID 
controller with the URV model, where the first improvement depends on improved Eq. (26), such that (𝑡𝑎𝑛ℎ) 
function working on the interval (-1, 1). Thus, instead of this function, the following function is developed for 
the ISMA: 
 

 
𝑝 = ቆ

𝑟𝑎𝑛𝑑𝑖([−1000,1000])

1000
∗ |𝑆(𝑖) − 𝐷𝐹|ቇ (28) 

 
where (𝑟𝑎𝑛𝑑𝑖) refers to a random integer number in the interval (-1000,1000) and divided by (1000) to provide 
a number of one order; this improvement allows the TLR for a better search of the best weights for the neuro-
FOPID controller. To summarize the improved algorithm, the following pseudo-code represents the SMA 
algorithm procedure. 
  

Algorithm 1. Pseudo-code of the Improved SMA algorithm. 
Generate the initial SMA population, 𝑀𝑎𝑥௜௧௘௥௔௧௜௢௡;                                                                                                                           
Generate the positions of SMA 𝑋௜(𝑖 = 1, 2,…, N);                                                                                                                             
𝑾𝒉𝒊𝒍𝒆 (𝑡 < 𝑀𝑎𝑥௜௧௘௥௔௧௜௢௡)                                                                                                                                                                       
          𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑀𝐴;                                                                                                           
          𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑋௕     
         𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑊 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑀𝐴;                                                                                                                                 
                      𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                                                                                                             
                                     𝑈𝑝𝑑𝑎𝑡𝑒 𝑝 𝑏𝑦 𝑬𝒒. (28);  
                                    𝑈𝑝𝑑𝑎𝑡𝑒 𝑣𝑐 𝑎𝑛𝑑 𝑣𝑏;           
                                    𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔 𝑬𝒒. (25);                                                                                                                              
                      𝒆𝒏𝒅 𝒇𝒐𝒓                                                                   
                      𝑡 ⃪ 𝑡 + 1                                                                                                                      
𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆                                                                                                                             
return the best fitness, Xୠ; 
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6 Results and discussion  

In this section, the effectiveness of the ANFFOPID controller is evaluated, but first, the performance of 
the ISMA is evaluated by comparing this algorithm with other optimization algorithms. These algorithms are 
particle swarm optimization (PSO) [34], genetic algorithm (GA) [35], modified chaotic inverse weed 
optimization (MCIWO) [15], and the typical slime mould algorithm (SMA). This comparison depends on 
operating each optimization algorithm with an ANFFOPID controller to update the weights of the neuro-
FOPID network adaptively. Each optimization algorithm is running for an average of (30) complete 
simulations, where Figure 7 below is obtained, which shows the average cost-value versus the number of 
iterations for the selected optimization algorithms. 

 

 
 

Figure 7. The average of best cost value versus iteration number. 
 

Figure 7 above indicate clearly that the ISMA present the best performance with the minimum cost value 
compared with other optimization algorithms. Furthermore, to be more sure about the ISMA effectiveness, we 
set another experiment depending on the distribution of the required torque values for the TLR with the ISMA, 
PSO, GA, MCIWO, and SMA algorithms, such that the algorithm that presents the least distribution torque 
will be the most fitted to work with the proposed controller. The required torque represents the actual torque 
required for the joint motors of the TLR. This experiment has been done using a boxplot technique to describe 
the collected results for each optimization algorithms, as shown in Figure 8. Each optimization algorithm was 
also run for (30) complete simulations in order to make this work more accurate. 
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Figure 8. Distribution of the torque required for the joint motors with different optimization algorithms. 
 

Figure 8 indicate clearly that the ISMA present the minimum torque for the joint motors compared to the 
other optimization algorithms. After ensuring the effectiveness of the ISMA, the error of the displacement 
angle of the joint motors in TLR are measured to evaluate the performances of the ANFFOPID controller. The 
ANFFOPID effectiveness is evaluated by comparing the ANFFOPID controller with other existing work, 
which is adaptive torque based on proportional integral derivative based on modified chaotic invasive weed 
optimization (MCIWO) with a neural network [15]. The error of the joint angles represents the difference 
between the desired angle and the actual output joint angle for the TLR. These error magnitudes correspond to 
the various joints of the swing, and the standing legs of the two-legged robot are shown in Figure 9.  

The error is produced for different joints while the TLR moves in: flat surface, ascending, and descending 
stairs. For all the joints, the error magnitude for the MCIWO-NN controller is very high initially and decreases 
quietly with time. At the same time, the ANFFOPID controller presents the best performance with the 
minimum possible error for all of the joints compared to the MCIWO-NN. Moreover, it is clearly shown that 
the error generated in the flat surface for various joints are less than the other cases that are stairs ascending 
and descending.  

Figure 10 presents the required torque of different joints for the TLR while the robot moves through various 
terrains. The collected results show that the average torque required has a high value while the TLR ascends 
the stairs and less value while moving along the flat surface. It is noticed that the torque at joint 3 has the 
highest torque; this may be because that joint 3 carry all the load while ascending the stairs. At the same time, 
the results show the effectiveness of the ANFFOPID controller compared to the MCIWO-NN controller, such 
that the torque required for the ANFFOPID controller has fewer torques for all TLR terrains. 
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Figure 9. The errors for the various joints. 
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Figure 10. The torque required for various joints. 
 

Now, we present a TLR trajectory for stairs ascending and descending, where Figure 11 show a symbol of 
the stairs ascending for TLR while the obtained trajectory for the ANFFOPID controller and the MCIWO-NN 
are shown in Figure 12. 

 

 
 

Figure 11. Stairs ascending for a two-legged robot. 
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Figure 12. Top-view of TLR line trajectory. 
 

A top view of stairs ascending for the TLR is presented in Figure 12 above, where the width of the stairs 
is given in a cyan color. Moreover, a middle line is presented in the stairs and considered a reference line 
trajectory for the TLR model. Each of the trajectories obtained for the ANFFOPID controller and MCIWO-
NN has markers which represent the foot position of the TLR for the trajectory obtained. The results 
obtained indicate clearly that the ANFFOPID controller presents the best foot position with trajectory 
tracking compared to the MCIWO-NN, which present the worst trajectory tracking compared to the 
reference and ANFFOPID markers. The foot position of the TLR represents the balance of the robot around 
a certain trajectory. The concept used to measure the foot balance of the TLR is called zero moment point 
(ZMP) [22], [36].  

The same procedure is used for the stairs descending, where Figure 13 present the stairs descending for 
TLR while the obtained trajectories for the ANFFOPID controller and the MCIWO-NN are shown in Figure 
14. The results show that the ANFFOPID markers present the best foot position with trajectory tracking than 
the MCIWO-NN. Finally, we present another trajectory for the flat surface terrain, such that the two-legged 
robot has a start point and ending point and the same concept used for ascending and descending the stairs is 
used for the flat surface. Figure 15 show the results obtained for the TLR while moving on a flat surface, 
where the ANFFOPID present the best trajectory in addition to robot balance performance compared to the 
MCIWO-NN. 
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Figure 13. Stairs descending for a two-legged robot. 
 

 
 

Figure 14. Top-view of TLR line trajectory. 
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Figure 15. Flat-surface line tracking. 
 
Finally, a zero moment point concept has been used, such that the position of the ZMP is lying at the center 
of the foot support polygon for the flat surface case, ascending case, and descending case. Thus, the TLR is 
considered to be dynimcally balance for all of the cases. Figure 16 indicate that the TLR for the flat surface 
movment is noticed to be more balanced since the location of the ZMP is closer to the center of the robot 
foot than the ascending and descending cases. Such that, the position of ZMP is kind of away from the foot 
support polygon center. For this reason, the slope of the ascending and descending cases tend to be more 
different than the flat surface case.  
 

 
 

Figure 16. The variation of Zero Moment Point in the directions of X and Y axis. 
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7 Conclusion 
 

In this work, we proposed an innovative adaptive fuzzy-neural FOPID network design based on an 
improved slime mould optimization algorithm for a two-legged robot moving along a flat surface, stairs 
ascending, and stairs descending. The results obtained demonstrate clearly that the ANFFOPID controller 
can solve the highly nonlinear effects of the two-legged robot and reduce the error fast to zero while the TLR 
moves on different terrains. In addition, the required torque for the two-legged robot is measured and clearly 
shows that the ANFFOPID presents the best performance to consume less torque for the TLR joints than the 
MCIWO-NN, which consume more torque for different joints. The neuro-fuzzy FOPID network has been 
used, such that the fuzzy network used to supply the neuro-FOPID network with weights based on TLR 
states, the neuro-FOPID network used to provide the FOPID controller with the best gain values 𝐾௉, 𝐾஽, and 
𝐾ூ , while the neuro-FOPID weights are trained using an improved slime mould algorithm adaptively. Future 
works suggested to study the TLR balancing techniques across other complex terrains, different controllers 
may be used such as adaptive sliding mode controllers, nonlinear proportional integral controllers and etc. 
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