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ABSTRACT 
In Indonesia, the common problem in operating breastshot water wheels is wheel operation 

discontinuity due to low stream velocity in the channel during the dry season. One could minimize this 
problem by studying the method of maintaining the wheel’s operation continuity during the season. 
Therefore, this study aimed to propose the installation of a water-jumper at the wheel upstream by 
fabricating water channel laboratory models and a breastshot water wheel. The water-jumper, whose slope 
angle is adjustable, is attached at the upstream. The study also aimed to investigate the effect of the water-
jumper slope on the breastshot wheel’s performance. The slope angles were set at 5°, 10°, 15°, 20°, 25°, 
30°, 35°, and 40°, and the upstream velocities were 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 m/s. The result showed 
that the water-jumper could increase the low stream's gross head and hydraulic power, enhancing the 
breastshot wheel’s torque and output power. The highest efficiency is achieved at the slope of 10º for a 
stream velocity of 1.3 m/s. Furthermore, the water-jumper significantly affects a stream velocity lower than 
1.3 m/s. The hydraulic power is influenced by discharge and gross head, which increase with the water-
jumper slope angle. However, higher momentum losses occur at the wheel for stream velocity higher than 
1.3 m/s, decreasing the breastshot output power and efficiency while increasing hydraulic power. Overall, 
the water-jumper could maintain continuous breastshot wheel operation in the irrigation channel during the 
dry season.  
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INTRODUCTION 
Renewable energy generation is important due to environmental concerns, increased global 

demand, and fossil fuel limitations [1]. Sources, such as biomass, solar and hydro energy, have 
been considered worldwide to reduce dependence on fossil resources. As countries evaluate 
their energy resources, many have recognized hydrokinetic energy as a significant contributor 
to their portfolio regarding this commodity [2]. For instance, Ersoy et al. modeled water 
scenarios in Southern Marocco for renewable energy development [3]. 

Human development requires access to electricity because it is essential for basic activities 
such as lighting, refrigeration, and running household appliances [4]. Many rural regions in 
poor and developing countries lack reliable access to national power grids, and they utilize 
hydro energy for electrification. For this reason, a decentralized micro-hydro power plant has 
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been developed in North-Eastern Afghanistan [5]. Moreover, [6] examined hydro power-
boosting using an underwater power generator based on a gravity vortex siphon. Hydropower 
has become an attractive source of renewable energy for electricity generation because it is 
eco-friendly, pollution-free, natural, and favorable for future development. Dependency on 
fossil fuels can be reduced by increasing renewable energy production [7] and applying small-
scale hydro power in locations where available head and discharge are relatively low [8]. The 
hydropower plant could provide cheap, clean, and reliable electricity [9]. However, 
hydropower plants are highly water-intensive because large volumes of water evaporate from 
the increased reservoir surface [10]. Many countries have a significant but unused hydropower 
potential with head differences below 2.5 m. Standard turbines appear uneconomical because 
they require large turbine diameters, extensive civil engineering works, and ecological effect 
considerations [11]. The hydropower plants capture the energy in flowing water and make it 
useful. Recent studies showed that conventional technologies such as water wheels are suitable 
devices for low-head sites [12].  

Many countries have used irrigation channels for pico-hydro and micro-hydro power 
plants. Examples include a 0.5 kW electric power generation in Padang Panjang, Indonesia 
[13], a 160 kW hydropower in Thailand [14], and a micro-hydro in Srilangka [15]. Typically, 
the micro-hydro power plant capacity is less than 500 kW [16]. Micro-hydro power plants have 
attracted increasing attention for renewable energy conversion systems due to their simplicity 
and low-cost installation. As a result, many micro-hydro plants have been successfully 
developed and tested, as reported by Kamran et al. [17], Jawahar and Michael [18], Nasir [19], 
and Pigaht and Van der Plas [20]. A stream water wheel seems suitable for a micro-hydro 
power plant for an irrigation channel. 

Stream water wheel could be divided into undershot, overshot, and breastshot [21], as 
shown in the schematic diagram in Figure 1. Many studies examined stream water wheels, 
such as Quaranta and Ravelli [22], which investigated output power and power losses 
estimation for an overshot water wheel. The study of [23] also evaluated breastshot water 
wheels performance using different inflow configurations. Moreover, Quaranta et al.[24] 
analyzed the efficiency of a traditional water wheel, while the performance evaluation of a 
breastshot water wheel was experimentally conducted by Vidali et al. 2016 [25] and Muller 
and Kauppert [26]. Small-hydro power plants intended for low head difference, such as 
irrigation channels, have also been reported by Bakis et al. [27] and Senior [28]. Other studies 
performed simulation work to investigate breastshot water wheel performance. For instance, 
Adanta et al., 2020 [29] simulated the effect of channel slope on breastshot water wheel 
performance. Budiarso et al. 2018 [30] simulated the impact of bucket shape and kinetic energy 
on breastshot water wheel performance. A suitable stream water wheel could be selected using 
the diagram in Figure 2, as suggested by Quaranta [31]. 

 
 

 
 

Figure 1. Categories of the stream water wheel 

 



 

Journal of Sustainable Development of Energy, Water and Environment Systems  3 

Abubakar, S., Fajar T. K.. et al.  
Effect of Water-Jumper Slope on Performance of… 

Year 2023 
   Volume 11, Issue 1, 1080420 

 
 

Figure 2. Diagram for selection of water wheel [31]; HPM - Hydrostatic Pressure Machine  

 
The common problem in the micro hydropower plant is operation discontinuity due to low 

stream velocity in the channel during the dry season. A sustainable operation could be 
achieved using a water-jumper at the wheel upstream. The blocking effect of the water-jumper 
may increase the water depth in the conveying channel, increasing the stream’s potential 
energy. However, the blocking of the flow may affect the velocity of the water downstream 
and the stream’s kinetic energy. The effect of the water-jumper on depth and velocity results 
in the availability of the gross head flow. 

This study designed the breastshot water wheel for a laboratory-scale open channel. It 
aimed to investigate the effect of the water-jumper slope angle on the breastshot wheel 
performance at various upstream velocities. This kind of experiment has not been conducted 
by any study.  

EXPERIMENT 
The experimental test rig and measurement devices were set before data collection and 

analysis.  

Experiment Description 
The experimental test rig was installed at Institut Sains & Teknologi AKPRIND Indonesia 

laboratory. Figure 3a shows the experimental test rig comprising a water pump plenum 
chamber, adapter, jumping-water, breastshot wheel, conveying channel, exit gate, and draught 
passage. The test rig also has measurement devices, including a digital flow meter, disk brake, 
load cell, and tachometer, as shown in Figure 3b. The channel is made of a Mild Steel (MS) 
plate measuring 10 m in length, 0.56 m in width, and 0.4 m in depth. The water-jumper with 
an adjustable angle (α) was attached at the wheel’s upstream. The breastshot wheel was hand-
made from MS plate, measures 0.8 m in diameter, and has 16 galvanized blades, each 
measuring 0.4 m and 0.5 m in width and length, respectively. The stream velocity was 
measured using a digital flow meter, while a tachometer measured the wheel’s rotational speed. 
Furthermore, a disk brake dynamometer was used to obtain the wheel’s torque. The experiment 
was conducted at stream velocities of 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 m/s and water-jumper slope 
angles of 5°, 10°, 15°, 20°, 25°, 30°, 35°, and 40°.  
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Figure 3. Schematic diagram (a) and photograph (b) of experimental test rig; dimensions are given 
in mm 

Data Analysis 
Figure 4 shows a schematic diagram of a breastshot wheel in the channel without a water-

jumper. Water flows with velocity v1 and depth h1 at the upstream and v2 and h2 at the 
downstream. The diagram governs the flow’s head gross equation. Head gross would be 
converted to rotate the wheel to produce mechanical energy. In this case, the flow head gross 
is the difference between the energy head comprising pressure, kinetics, and upstream and 
downstream potential, as shown in Eq. 1. Since the upstream and downstream pressure is the 
same (p1 = p2) and the channel is horizontal (z1 = z1), Eq. (1) simplifies as Eq. (2): 

 
𝐻𝐻𝑔𝑔𝑔𝑔 = �𝑝𝑝1

𝛾𝛾
+ 𝑣𝑣12

2g
+ (𝑧𝑧1 + ℎ1)� − �𝑝𝑝2

𝛾𝛾
+ 𝑣𝑣22

2g
+ (𝑧𝑧2 + ℎ2)�                 (1) 

 
𝐻𝐻𝑔𝑔𝑔𝑔 = �𝑣𝑣1

2−𝑣𝑣22

2g
� + (ℎ1 − ℎ2)           (2) 

 
Where Hgr is the head gross [m], v is the stream velocity [m/s], h is the stream height [m], g is 
the gravitational acceleration (9.81 m/s2), and subscripts 1 and 2 indicate the wheel’s upstream 
and downstream, respectively. 



 

Journal of Sustainable Development of Energy, Water and Environment Systems  5 

Abubakar, S., Fajar T. K.. et al.  
Effect of Water-Jumper Slope on Performance of… 

Year 2023 
   Volume 11, Issue 1, 1080420 

 
 

Figure 4. Schematic diagram of the wheel in the channel without water-jumper 

Figure 5 shows the schematic diagram of the water wheel installed in the channel with 
a water-jumper. The upstream head (h1) was effectively replaced by water jumping height (y2) 
following the hydraulic jump theory [32]. Therefore, the flow’s head gross equation with the 
water-jumper changes to: 
 

𝐻𝐻𝑔𝑔𝑔𝑔 = �𝑣𝑣1
2−𝑣𝑣22

2g
� + (𝑦𝑦2 − ℎ2)       (3) 

 
Based on hydraulic jump theory and assuming the use of a water-jumper with a length of 0.4 
m and slope angle 𝛼𝛼, the height of hydraulic jump at the wheel’s upstream becomes: 
 

𝑦𝑦2 = 2.2 ℎ1 + (0.4 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 − ℎ1)      (4) 
 

By substituting Eq. (4) into Eq. (3), the head gross for the channel with water-jumper is given 
by Eq. (5): 
 

𝐻𝐻𝑔𝑔𝑔𝑔 = �𝑣𝑣1
2−𝑣𝑣22

2g
� + ��(2.2 × ℎ1) + (0.4 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 − ℎ1)� − ℎ2�   (5) 

 
 

 
 

Figure 5. Schematic diagram of the wheel in a channel with water-jumper 

Comparing the water-jumper with the broad caster weir [32], the discharge coefficient is 
calculated using Eq. (6). The volumetric flow rate of the channel is derived from the flow rate 
equation, Eq. (7). 
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𝐶𝐶𝑑𝑑 = 1.125 �1+(𝑦𝑦2−ℎ1)/0.4𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2+(𝑦𝑦2−ℎ1)/0.4𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�
1/2

      (6) 
 
𝑄𝑄′ = 𝐶𝐶𝑑𝑑 × 𝑏𝑏 × 𝑣𝑣1 × ℎ1       (7) 

 
Substituting Eq. (6) into Eq. (7) and assuming the water-jumper width b = 0.56 m, the 
volumetric flow rate becomes: 
 

𝑄𝑄′ = 0.63 �1+(𝑦𝑦2−ℎ1)/0.4𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2+(𝑦𝑦2−ℎ1)/0.4𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�
1/2

× 𝑣𝑣1 × ℎ1     (8) 
 

Once the head gross and volumetric flow rate are known, input hydraulic power to the water 
wheel is calculated using Eq. (9), where 𝜌𝜌 is the density of water (1000 kg/m3). 
 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝜌𝜌g𝑄𝑄′𝐻𝐻𝑔𝑔𝑔𝑔        (9) 
 

The wheel’s torque, output power, and efficiency are obtained using Eqs. (10), (11), and (12), 
respectively. 
 

𝑇𝑇𝑎𝑎 = 𝑚𝑚𝑏𝑏 × g × 𝑙𝑙        (10) 
 
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 2×π×𝑁𝑁𝑎𝑎×𝑇𝑇𝑎𝑎

60
        (11) 

 
𝜂𝜂 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖𝑖𝑖
× 100%        (12) 

where Ta is the torque [N m], mb is the mass of the load cell [kg], l is the distance from the 
wheel's axis to the load cell (0.4 m), Pin is the output power [W], and Na is the rotational speed 
[rpm]. 

RESULTS AND DISCUSSION 
This study analyzed the effect of slope angle on gross head, hydraulic power, torque, output 

power, and efficiency. 

Effect of slope angle on the gross head 
Figure 6 shows the effect of the water-jumper slope angle on head gross at different 

upstream velocities. The head gross increases significantly at slopes above 10º (the height of 
the hydraulic jump increases with slope, resulting in increased potential and gross head). 
Figure 6 also shows that the gross head increases with upstream water velocity for the same 
jumper angle due to increased hydraulic jump. 
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Effect of slope angle on hydraulic power 
Figure 7 shows the effect of the water-jumper slope angle on the wheel’s hydraulic power. 

At the same upstream velocity, the hydraulic power increases from 15º and steps up 
significantly at 10º–20º. The hydraulic power is influenced by discharge and gross head, and 
its graph is similar to the trend of the gross head and discharge, which increase with the water-
jumper slope angle. The hydraulic power is enhanced with increased upstream velocity for a 
particular slope angle. 

 

 
 

Figure 7. Hydraulic power (Pin) as a function of the slope angle of water-jumper  

Effect of slope angle on torque 
Figure 8 shows that the torque increases with slope angle. It means that a larger angle 

produces more power to improve the torque. From Figure 7, the torque and hydraulic power 
trends are similar. 

 

 
 

Figure 8. Torque (Ta) as a function of the slope angle of water-jumper  

Effect of slope angle on output power 
Figure 9 shows the effect of slope angle on the breastshot’s actual power, which increases 

significantly at 10º–20º at all upstream velocities. The actual power remains the same or 
decreases at a slope angle greater than 20º due to decreased breastshot’s rotational speed (the 
wheel’s output power is directly proportional to rotational speed, as shown in Eq. (11)). 
However, a different trend of output power at a slope angle higher than 30º is observed for a 
stream velocity of 1.6 m/s. The output power decreases significantly from 35º to 40º, even as 
the hydraulic power increases, due to more momentum losses at 35º to 40º for a higher stream 
velocity of 1.6 m/s. 
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Figure 9. Output power (Pout) as a function of the slope angle of water-jumper  

Effect of slope angle on efficiency 
Figure 10 shows the effect of slope angle on the wheel’s efficiency, which becomes 

highest for each upstream velocity at 10º. At a slope angle of 10º, maximum efficiency of 
41.73% is obtained for an upstream velocity of 1.3 m/s. The efficiency steps up from 5º and 
reaches a maximum value at 10º, but decreases at higher slope angles. The water-jumper slope 
angle higher than 10º is ineffective in improving breastshot performance. Therefore, the slope 
angle must be set at 10º when the stream velocity varies from 1.1 m/s to 1.6 m/s. 

 

 
 

Figure 10. Efficiency (η) as a function of the slope angle of water-jumper 

CONCLUSION 
This study aimed to investigate the effect of water-jumper slope angle on breastshot water 

wheel performance at low stream velocities. The results showed that a water-jumper increases 
gross head, torque, and hydraulic and output power. However, the highest efficiency is 
achieved at a slope angle of 10º and stream velocity of 1.3 m/s. The water-jumper significantly 
affects the water wheel performance, specifically when stream velocity is lower than 1.3 m/s. 
The hydraulic power is influenced by discharge and gross head, which increase with the water-
jumper slope angle. Significant momentum losses occur at the wheel for stream velocity higher 
than 1.3 m/s, decreasing the breastshot’s output power and efficiency, even as hydraulic power 
increases. Therefore, a water-jumper could be useful in maintaining continuous breastshot 
wheel operation in the irrigation channel during the dry season when the slope angle is set at 
10º. 
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NOMENCLATURE 
b width of the water-jumper [m] 
Cd coefficient of discharge [-] 
g gravitational acceleration [m/s2] 
h stream height [m] 
Hgr head gross [m] 

l distance from the wheel's axis 
to the load cell [m] 

mb mass of the load cell [kg] 

Na rotational speed of the water 
wheel [rpm] 

Pin input power [W] 
Pout output power [W] 
Q’ volumetric flow rate [m3/h] 
Ta actual torque [N m] 
v stream velocity [m/s] 

y2 height of hydraulic jump at the 
wheel’s upstream [m] 

z height from reference line [m] 
Greek letters 
α slope angle [o] 
γ specific weight of water [N/kg] 
η efficiency [%] 
ρ density of water [kg/m3] 
Subscripts and superscripts 

1 upstream 
2 downstream 
Abbreviations 

H Total Energy 
N Rotational speed 
P Power 
T Torque 
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