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The objective of  study was to investigate the effects of  different doses of  simvastatin and fenofibrate on malondialdehyde (MDA) and 
reduced glutathione (GSH) in the plasma, liver, and brain tissue of  male normolipidaemic and hyperlipidaemic rats. Normolipidaemic 
(Wistar) rats were receiving 10 or 50 mg/kg a day of  simvastatin or 30 or 50 mg/kg a day of  fenofibrate. Hyperlipidaemic (Zucker) rats 
were receiving 50 mg/kg/day of  simvastatin or 30 mg/kg/day of  fenofibrate. Control normolipidaemic and hyperlipidaemic rats were 
receiving saline. Simvastatin, fenofibrate, and saline were administered by gavage for three weeks. In normolipidaemic rats simvastatin and 
fenofibrate showed similar and dose-independent effects on plasma and brain MDA and GSH concentrations. Generally, plasma and brain 
MDA decreased, while brain GSH concentration increased. In hyperlipidaemic rats simvastatin did not affect plasma and brain MDA and 
GSH concentrations but significantly decreased liver GSH. Fenofibrate decreased plasma and liver MDA but increased brain MDA. In 
both rat strains fenofibrate significantly decreased liver GSH concentrations, most likely because fenofibrate metabolites bind to GSH. 
Our findings suggest that simvastatin acts as an antioxidant only in normolipidaemic rats, whereas fenofibrate acts as an antioxidant in 
both rat strains.
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Statins are usually used to treat patients with elevated cholesterol 
to prevent cardiovascular diseases (1, 2) and fibrates to treat patients 
with elevated triglyceride. Regardless of  their antilipid effects, both 
groups of  drugs have additional pleiotropic effects such as anti-
inflammatory, antiplatelet, improved glucose tolerance, reduced 
vascular smooth muscle inflammation, and lower plasma fibrinogen 
(3–6). There are adverse effects too. Statin side effects include muscle 
pain and damage, liver damage, increased blood sugar, or type 2 
diabetes (7). Additionally, according to Okuyama et al. (8), statins 
may stimulate atherogenesis by suppressing vitamin K2 synthesis 
and cause heart failure by depleting the myocardium of  coenzyme 
Q10. Fibrates can also cause side effects such as high liver enzymes 
and serum creatinine, myopathy, and less commonly rhabdomyolysis. 
These side effects can be serious if  fibrates are co-administered 
with statins (4).

Many of  these positive and negative pleiotropic effects are 
mediated by the interaction of  statins and fibrates with peroxisome 

proliferator-activated receptors (PPARs), especially PPAR-α (9, 10). 
PPAR-α receptors are expressed in the brain, heart, liver muscle, 
and other organs and play a significant role in oxidative stress, energy 
homeostasis, mitochondrial fatty acid metabolism, and inflammation 
(11). According to new data, PPAR-α receptors in the brain are 
important for statins and fibrates to act as neuroprotectors and treat 
various neurodegenerative disorders, such as multiple sclerosis, 
stroke, and Parkinson’s and Alzheimer’s disease (12–15). Animal 
studies have also shown neuroprotective effects of  fenofibrate alone 
or in combination with simvastatin in animals with traumatic brain 
injury (16, 17).

Both antilipid drugs also affect two important parameters of  
oxidative stress, namely malondialdehyde (MDA) and reduced 
glutathione (GSH) (18, 19). GSH is synthesised in the liver but also 
in the brain, where it plays an important role maintaining the 
homeostasis of  cell functions (19, 20). However, studies of  the 
effects of  simvastatin and fenofibrate on MDA and GSH report 
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inconsistent findings. Macan et al. (21) and Mohamadin et al. (22) 
reported that simvastatin reduced MDA concentrations in 
normolipidaemic and diabetic rats, whereas Zeng and Liu (23) 
reported a prooxidative effect of  atorvastatin. Fenofibrate, in turn, 
was reported to significantly reduce plasma MDA in rats (24), 
whereas gemfibrozil was reported to increase it significantly in the 
plasma, liver, and kidney in Wistar and Fisher rats (25). Ciriolo et 
al. (26, 27) reported that clofibrate or fenofibrate caused lipid 
peroxidation in rat liver homogenates.

As far as reduced glutathione is concerned, simvastatin has been 
reported to significantly deplete its cellular reservoirs and to increase 
the levels of  its oxidised form (28, 29), whereas fenofibrate has been 
reported to increase GSH in experimental animals with diabetic 
nephropathy (30).

In view of  these inconsistent reports of  preclinical and clinical 
studies about simvastatin and fenofibrate effects on MDA and GSH, 
we decided to investigate how two different doses of  simvastatin 
and fenofibrate would affect plasma, liver, and brain MDA and GSH 
concentrations in normolipidaemic rats and if  the effects would be 
dose-dependent. We also wanted to see if  the same doses of  
simvastatin or fenofibrate would have the same or comparable 
effects in normolipidaemic and hyperlipidaemic rats.

MATERIAL AND METHODS

Test substances and dose selection

Simvastatin and fenofibrate were chosen for this investigation, 
because both agents cross the blood-brain barrier (31, 32). 
Simvastatin (CAS-79902-63-9) (Lipex®, Merck Sharp & Dohme, 
Haarlem, The Netherlands) (simvastatin) and fenofibrate (CAS-
49562-28-9) (Tricor®, Recipharm Fontaine, Fontaine-lès-Dijon, 
France) (fenofibrate) tablets were suspended in 5 mL/kg saline and 
administered daily (at 9.00–10.00 a.m.) by gavage. Our choice of  
fenofibrate doses of  30 and 50 mg/kg/day and of  simvastatin doses 
of  10 and 50 mg/kg/day is based on literature data (33–36) from 
different experiments on rats.

Treatment of  animals

This study included male 10-week-old normolipidaemic (N=72) 
and hyperlipidaemic rats (N=21). The normolipidaemic rats were 
the Wistar strain and weighed 250–300 g (University of  Zagreb 
School of  Medicine, Department of  Pharmacology, Zagreb, 
Croatia). The hyperlipidaemic rats were the HsdOla: Zucker-Lepr 
fa-fa strain (Harlan Laboratories srl, Udine, Italy) and weighed 
270–300 g. The animals were kept in macrolone cages at controlled 
room temperature (22 °C) and 12:12 h day/night cycles and had 
free access to standard pellet diet. Animal handling and treatment 
followed the national (37) and European (38) guidelines and 
recommendations for the use of  laboratory animals. The 
experiments were approved by the ethics committee of  the 

University of  Zagreb School of  Medicine (approval No. 380-59-
10106-23-111/33).

The experiment lasted 21 days (3 weeks). Normolipidaemic rats 
were randomly divided into four experimental (N=10) and four 
control groups (N=8). The first experimental group was receiving 
simvastatin 10 mg/kg/day and the second simvastatin 50 mg/kg/
day. The third experimental group was receiving fenofibrate 30 mg/
kg/day and the fourth fenofibrate 50 mg/kg/day. Corresponding 
control groups were given saline (0.9 % NaCl solution) 5 mL/kg 
b.w. daily by gavage.

Hyperlipidaemic Zucker rats were divided in two experimental 
and one control group. The first experimental group (N=7) was 
receiving simvastatin 50 mg/kg/day and the second (N=8) 
fenofibrate 30 mg/kg/day. The control group (N=6) was receiving 
saline as described above.

On day 22 of  the study, after an overnight fast of  12 h, all rats 
were sacrificed under diethyl ether anaesthesia. Blood samples were 
taken by cardiac puncture and frozen at -20 °C immediately after 
sampling. Liver and brain tissues were also taken immediately after 
sacrifice. Liver was rinsed with saline in situ via the superior vena 
cava to remove blood. The brain was also rinsed with saline. The 
whole brain and a part of  the liver were homogenised in saline in 
the 1:4 ratio and centrifuged at 3500 g for 20 min. The separated 
supernatants were frozen at -80 °C.

Measurement of  malondialdehyde in plasma

The samples were prepared by pipetting 100 µL of  plasma and 
500 µL of  precipitation reagent into labelled, light-protected vials, 
which were vortexed and then centrifuged at 8125 g for 5 min. The 
obtained supernatant (500 µL) was then transferred to a labelled 
derivatisation vial and added 100 µL of  derivatisation reagent. The 
vials were capped, briefly vortexed, and incubated at 95 °C for 
60 min. Followed abrupt cooling under a stream of  cold water, and 
then we added 500 µL of  neutralisation buffer to the cooled mixture 
and injected 20 µL of  the prepared sample into the column.

Plasma MDA concentrations were determined with a high 
performance liquid chromatograph (HPLC) (Nexera, Shimadzu 
Corporation, Kyoto, Japan) using a commercially available kit (Cat. 
No. 67000, Chromsystems Instruments and Chemicals GmbH, 
Gräfelfing, Germany), according to the manufacturer’s instructions. 
Sample preparation was based on protein precipitation followed by 
derivatisation. The HPLC system consisted of  a fluorescent detector 
(RF-20AXS), isocratic pump (LC-20ADXR), column thermostat 
(CTO-20A), autoinjector (SIL-30AC), degasser (DGU-20A5), and 
control unit (CBM-20A). Chromatographic conditions were as 
follows: isocratic mobile phase flow 1.0 mL/min; pressure ~125 bar; 
wavelength 515 nm (excitation) and 553 nm (emission); column 
temperature 25 °C; analysis time 5 min; injection volume 20 µL.

Data from the detector were collected and processed with the 
Shimadzu LabSolutions software, and the measured plasma MDA 
concentrations are expressed in micromoles per litre (µmol/L).
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Measurement of  malondialdehyde in the liver and brain

Brain and liver tissue MDA concentrations were measured using 
a modified method described by Drury et al. (39), which is based 
on MDA binding to 2-thiobarbituric acid (TBA) to form a pink 
compound that absorbs light at the wavelength of  538 nm. For the 
standard calibration curve we used 1,1,3,3-tetraethoxy propane. 
Further oxidation was prevented by adding butylated hydroxytoluene 
(BHT).

The sample solution contained 50 µL of  the brain or liver tissue 
supernatant, 5 µL of  BHT (0.2 %, w/v), 750 µL of  phosphoric acid 
(1 %, v/v), 250 µL of  TBA (0.6 %, w/v), and 445 µL of  ultrapure 
water (18 MΩ; obtained from a Thermo Scientific Smart2Pure 3 
UV/UF water purification system, Thermo Fisher Scientific Inc., 
Waltham, MA, USA). We stirred it and incubated in a boiling water 
bath for 30 min, then stopped the reaction by cooling in water, and 
then injected 20 µL of  the prepared solution into a HPLC consisting 
of  a degasser, isocratic pump, thermostated column space, and UV 
detector (LC-20AD, Shimadzu). The pre-column and analytical 
column were C-18 reverse phases (LiChrospher, Merck, Darmstadt, 
Germany) with 5 µm particles. The dimensions of  the pre-column 
were 4.0 × 4.0, and of  the columns 4.0 x 125.0 mm.

Mobile phase consisted of  50 mmol/L KH2PO4 and methanol 
(60:40, v/v, pH 6.8). The flow rate was 1 mL/min. MDA was 
measured with a UV detector at 532 nm and column temperature 
was 32 °C. Under these conditions, the MDA retention time was 
2.5 min. Its brain and liver tissue concentrations are expressed as 
micromoles per litre (µmol/L).

Measurement of  reduced glutathione in plasma, liver, and 
brain

Rat plasma, brain, and liver GSH concentrations were measured 
according to the Ellman’s spectrophotometric method (40), which 
is based on glutathione (thiol) coupling with 5,5’-dithiobis-(2-
nitrobenzoic acid) (DTNB). In this rapid reaction, a disulphide bond 
is cleaved to form 2-nitro-5-thiobenzoate (NTB), which is ionised 
to NTB2- and whose yellow colour is read at 412 nm. We added 
100 µL of  trichloroacetic acid (TCA, 5 % solution) to 300 µL of  
supernatant and first stirred the mixture with a shaker and then 
centrifuged it at 10,000 g for 10 min. Reaction mixtures consisted 
of  850 µL of  phosphate buffer and 50 µL of  DTNB added to100 µL 
H2O for the blank sample or to 100 µL standards for standard 
samples or to 100 µL of  tissue or plasma supernatant and were 
measured at 412 nm using a Cecil 9000 spectrophotometer (Cecil 
Instruments Limited, Cambridge, UK). All measurements were done 
in triplicate. The concentration of  GSH was calculated from the 
calibration diagram and is expressed as micrograms per millilitre 
(µg/mL).

Statistical analysis

All data were analysed with the GraphPAD Prism software, 
version 6 (GraphPAD Software, San Diego, CA, USA). For 
normolipidaemic rats, the results are shown as arithmetic 
means ± standard deviations (x̄±SD) and p-values. For 
hyperlipidaemic rats the results are shown as arithmetic 
means ± standard deviations and p-values of  Dunnett’s multiple 
comparison test, which is considered optimal for comparison of  
different drug doses with a single control group. All applied tests 
were two-way. P values of  less than 0.05 are considered statistically 
significant (41).

RESULTS

MDA and GSH concentrations in normolipidaemic rats 
after simvastatin treatment

Table 1 shows MDA and GSH concentrations in the plasma, 
liver, and brain of  normolipidaemic rats receiving either of  the two 
simvastatin doses. Compared to control, only the higher dose 
(50 mg/kg/day) significantly lowered MDA concentrations (20 %; 
p=0.044) in the plasma, neither dose lowered it significantly in the 
liver, and only the lower dose (10 mg/kg/day) decreased it 
significantly in the brain 59 % (p<0.001).

GSH concentrations increased significantly (63 %; p=0.002) 
only in the liver of  rats receiving the lower simvastatin dose (10 mg/
kg/day).

MDA and GSH concentrations in normolipidaemic rats 
after fenofibrate treatment

Table 2 shows MDA and GSH concentrations in the plasma, 
liver, and brain of  normolipidaemic rats receiving either fenofibrate 
dose (30 or 50 mg/kg/day). Both significantly lowered MDA 
concentrations in the plasma [39 % (p=0.017) and 42 % (p<0.001), 
respectively], but neither changed them significantly in the liver or 
brain.

The higher fenofibrate dose significantly increased plasma GSH 
(31 %; p=0.03), and both doses significantly lowered it in the liver 
[54 % (p=0.013) and 60 % (p<0.001), respectively]. Neither dose 
significantly affected brain GSH concentrations.

MDA and GSH concentrations in hyperlipidaemic rats after 
simvastatin and fenofibrate treatment

Table 3 shows plasma, liver, and brain MDA and GSH 
concentrations in hyperlipidaemic rats receiving either the higher 
simvastatin (50 mg/kg/day) or lower fenofibrate dose (30 mg/kg/
day). Compared to control, simvastatin did not significantly affect 
MDA concentrations in any of  the organs, but fenofibrate 
significantly lowered them in the plasma (33 %; p=0.009) and 
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increased them in the brain (39 %; p=0.032). It did not change MDA 
concentrations in the liver.

As for GSH concentrations, both drugs had a significant 
(lowering) effect only in the liver (45 % and 80 % vs control, 
respectively).

DISCUSSION

Our results show that the effects of  simvastatin on either MDA 
or GSH concentrations are dose-independent and confirm earlier 
reports that simvastatin can have antioxidative properties. The effect 
of  lowering MDA in the plasma and tissues may be owed to statins’ 
potential to suppress specific oxidation pathways and reduce lipid 
peroxidation, upregulate antioxidant enzymes (catalase, glutathione 
peroxidase, and superoxide dismutase), or downregulate key pro-

oxidant enzymes such as nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase (42–44). We believe that in 
normolipidaemic rats this effect is owed to lower lipid peroxidation 
in the presence of  statins. One systematic review (45) with a meta-
analysis has shown that statins significantly increase glutathione 
peroxidase and superoxide dismutase levels in patients.

The antioxidative properties of  simvastatin are also supported 
by our GSH findings in normolipidaemic rats, which confirm earlier 
reports (22, 46).

The dose-independent lowering effects of  fenofibrate on 
plasma, liver, and brain MDA concentrations in normolipidaemic 
rats are similar to those of  simvastatin (Table 2) and are also 
supported by other studies in vivo (24, 47–49). However, Beltowski 
et al. (24) report a dose-dependent effect and suggest that 
fenofibrate, as a peroxisome proliferator, can increase the 
concentrations of  hydrogen peroxide and oxidative stress locally, 

Table 1 The effects of  simvastatin (10 mg/kg and 50 mg/kg daily for 3 weeks) on MDA and GSH levels in the plasma, liver, and brain of  normolipidaemic rats

Variable Source Controla Simvastatina

(10 mg/kg/day)
P valueb

(95 % CI)c Controla Simvastatina

(50 mg/kg/day)
P valueb

(95 % CI)c

MDA
(µmol/L)

Plasma 0.26±0.051 
(n=8)

0.24±0.046
(n=8)

0.471
(-0.05–0.08)

0.30±0.236
(n=7)

0.24±0.036
(n=6)

0.044
(-0.14–0.06)

Liver 105.2±15.12 
(n=6)

92.3±19.26
(n=10)

0.166
(-33.31–6.32)

103.6±17.94
(n=8)

104.8±22.54
(n=8)

0.909
(-20.65–23.04)

Brain 2.67±0.204 
(n=8)

1.11±0.231
(n=10)

<0.001
(-1.77–1.33)

2.28±0.508
(n=8)

1.80±0.218
(n=6)

0.050
(-0.97–0.01)

GSH
(µg/mL)

Plasma 57.3±17.68 
(n=6)

47.4±15.81
(n=9)

0.324
(-30.81–10.96)

51.0±17.68
(n=8)

47.7±26.80
(n=7)

0.778
(-28.32–21.61)

Liver 133.5±21.24 
(n=6)

218.1±43.03
(n=5)

0.002
(39.80–129.6)

229.0±36.05
(n=6)

258.0±135.2
(n=6)

0.623
(-96.57–43.02)

Brain 17.2±4.61
(n=8)

22.1±9.08
(n=10)

0.179
(-2.52–12.47)

20.2±4.23
(n=8)

23.6±5.01
(n=9)

0.152
(-1.41–8.24)

GSH – reduced glutathione; MDA – malondialdehyde. Bold P values are significant at the <0.05 level. a mean ± SD. b P value of  independent two-sample 
t-test. c 95 % confidence interval for difference between means

Table 2 The effects of  fenofibrate (30 mg/kg and 50 mg/kg daily for 3 weeks) on MDA and GSH levels in the plasma, liver, and brain of  normolipidaemic rats

Variable Source Controla Fenofibratea

(30 mg/kg/day)
P valueb

(95 % CI)c Controla Fenofibratea

(50 mg/kg/day)
P valueb

(95 % CI)c

MDA
(µmol/L)

Plasma 0.33±0.127 
(n=5)

0.20±0.033
(n=8)

0.017
(-0.23–0.03)

0.31±0.048 
(n=8)

0.18±0.022
(n=8)

<0.001
(-0.17–0.08)

Liver 62.2±14.43 
(n=7)

62.4±15.37
(n=10)

0.971
(-34.18–14.22)

85.0±10.70 
(n=8)

71.1±11.95
(n=8)

0.188
(-23.18–7.57)

Brain 3.51±0.596 
(n=8)

3.30±0.40
(n=10)

0.404
(-0.69–0.29)

2.89±1.018 
(n=8)

2.20±0.13
(n=7)

0.120
(-1.30–0.09)

GSH
(µg/mL)

Plasma 69.6±20.85 
(n=5)

76.5±15.63
(n=4)

0.602
(-22.93–36.68)

70.4±12.23 
(n=6)

92.4±18.32
(n=7)

0.030
(2.60–41.41)

Liver 71.8±36.16 
(n=8)

33.3±17.71
(n=9)

0.013
(-67.33–9.57)

72.6±16.31 
(n=6)

29.2±10.27
(n=10)

<0.001
(-57.51–29.24)

Brain 16.7±2.54
(n=7)

15.2±3.54
(n=9)

0.349
(-4.95–1.87)

20.6±5.58
(n=8)

23.5±2.57
(n=10)

0.169
(-1.34–7.03)

GSH – reduced glutathione; MDA – malondialdehyde. Bold P values are significant at the <0.05 level.a mean ± SD. b P value of  independent two-sample 
t-test. c 95 % confidence interval for difference between means
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but without increasing lipid peroxidation products in the plasma. 
Aberg et al. (48) and Arnaiz et al. (49) propose that clofibrate and 
fenofibrate increase the concentrations of  ubiquinols as the only 
liposoluble endogenous antioxidants in several animal tissues that 
inhibit lipid peroxidation (48, 49). In humans, Tkác et al. (50) 
reported that fenofibrate treatment increased glutathione peroxidase 
activity in patients with combined dyslipidaemia.

However, we have also observed a significant decrease in liver 
GSH in normolipidaemic rats, which begs the question if  fenofibrate 
can also produce prooxidant effects, as some studies suggest (27, 
51). We, however, believe that this drop in liver GSH has to do with 
its binding with one or more fenofibrate metabolites, as 
demonstrated by Shore et al. (52) for one metabolite (1-O-clofibryl 
glucuronide) of  clofibrate, which belongs to the same class of  
antilipidaemic drugs.

As for the second aim of  our study, our results show that the 
same doses of  simvastatin and fenofibrate produce different effects 
on MDA and GSH concentrations in normolipidaemic and 
hyperlipidaemic rats. In hyperlipidaemic rats simvastatin (50 mg/
kg/day) did not change MDA concentrations and significantly 
decreased liver GSH, which points to oxidative stress, as reported 
in some earlier studies (28, 29). Some recent studies, however, report 
antioxidant action of  statins in hyperlipidaemic rats (22, 46). These 
discrepancies may be owed to differences in experimental methods, 
including rat strain, dosing, and duration of  statin treatment.

Treatment with fenofibrate, in turn, yielded comparable plasma 
and liver MDA lowering in hyperlipidaemic and normolipidaemic 
rats. Its tendency to lower MDA was also reported in the plasma 
of  rats with hypertriglyceridaemia (53). We believe that the decrease 
in plasma and liver MDA concentrations in hyperlipidaemic rats 
may be evidence that no lipid peroxidation occurs during fenofibrate 
treatment.

However, brain MDA concentrations in normolipidaemic rats 
dropped (although not significantly), whereas in hyperlipidaemic 
rats they significantly increased. Considering that we found no 
studies reporting fenofibrate effects on brain MDA in vivo, we find 
it difficult to explain our finding, especially in regard to recent studies 
reporting the neuroprotective, anti-inflammatory, and antioxidative 
effects of  fenofibrate in some neurodegenerative diseases through 
their agonistic action mainly on PPAR-α receptors (11, 16). It is 
possible that higher brain MDA concentrations in hyperlipidaemic 
rats have something to do with changes in these receptors, as pointed 
out by Wójtowicz et al. (11). New preclinical studies might clear this 
out, especially in view of  the fact that fenofibrate did not significantly 
increase brain GSH in either rat strain. Speaking of  GSH, fenofibrate 
effects were similar between normolipidaemic and hyperlipidaemic 
rats only in the liver.

CONCLUSIONS

To conclude, our results show similar antioxidative but dose-
independent effects of  simvastatin and fenofibrate on MDA and 
GSH in the plasma and brain of  normolipidaemic rats. However, 
these effects are not repeated in hyperlipidaemic rats, save for a 
significant decrease in liver GSH concentrations by fenofibrate in 
both rat strains, which points to GSH binding with the same 
fenofibrate metabolite in the liver.

Considering our findings and the current knowledge about the 
importance of  oxidative stress parameters, GSH in particular, in 
different neurological and cardiovascular conditions and the 
widespread use of  statins and fibrates, we believe that further 
preclinical and clinical research is needed to shed more light on their 
action on oxidative stress parameters.

Table 3 The effects of  simvastatin (50 mg/kg daily for 3 weeks) and fenofibrate (30 mg/kg daily for 3 weeks) on MDA and GSH levels in the plasma, 
liver, and brain of  hyperlipidaemic rats

Variable Source Controla Simvastatina

(50 mg/kg/day)
P valueb

(95 % CI)c
Fenofibratea

(30 mg/kg/day)
P valueb

(95 % CI)c

MDA
(µmol/L)

Plasma 0.39±0.114
(n=6)

0.40±0.036
(n=6)

0.960
(-0.11–0.09)

0.26±0.036
(n=7)

0.009
(0.04–0.24)

Liver 92.1±30.00
(n=6)

100.4±19.45
(n=6)

0.828
(-46.89–30.43)

82.8±31.26
(n=7)

0.774
(-27.96–46.55)

Brain 9.7±1.67
(n=6)

8.6±2.42
(n=6)

0.641
(-2.32–4.61)

13.5±3.08
(n=6)

0.032
(-7.26–0.33)

GSH
(µg/mL)

Plasma 251.7±127.4
(n=4)

224.2±57.58
(n=5)

0.845
(-117.2–172.2)

304.6±0.033
(n=4)

0.593
(-205.5–99.61)

Liver 59.4±22.00
(n=6)

33.0±24.04
(n=5)

0.045
(0.57–52.34)

12.2±5.98
(n=8)

0.001
(24.13–70.30)

Brain 8.9±1.73
(n=6)

9.1±1.80
(n=6)

0.876
(-3.26–2.28)

9.1±2.30
(n=7)

0.847
(-3.19–2.14)

GSH – reduced glutathione; MDA – malondialdehyde. Bold P values are significant at the <0.05 level. a mean ± SD. b P value of  Dunnett's multiple 
comparison test with control. c 95 % confidence interval for difference between means
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Učinci simvastatina i fenofibrata na malondialdehid i reducirani glutation u plazmi, jetri i mozgu normolipidemičnih i 
hiperlipidemičnih štakora

Cilj ovog istraživanja bio je istražiti učinke različitih doza simvastatina i fenofibrata na malondialdehid (MDA) i reducirani glutation (GSH) 
u plazmi, jetri i mozgu mužjaka normolipidemičnih (Wistar) i hiperlipidemičnih (Zucker) štakora. Na prvim dvjema eksperimentalnim 
skupinama normolipidemičnih štakora simvastatin je primijenjen u dozama 10 ili 50 mg/kg dnevno, a fenofibrat na trećoj i četvrtoj skupini 
u dozama od 30 i 50 mg/kg/dan. Prva eksperimentalna skupina hiperlipidemičnih štakora primala je simvastatin 50 mg/kg/dan, a druga 
fenofibrat 30 mg/kg/dan. Kontrolne skupine normolipidemičnih i hiperlipidemičnih štakora primale su fiziološku otopinu. Simvastatin, 
fenofibrat i fiziološka otopina primjenjivani su oralno tijekom tri tjedna. U plazmi i mozgu normolipidemičnih štakora simvastatin i 
fenofibrat pokazali su slične i o dozi neovisne učinke na koncentracije MDA i GSH. Općenito, MDA je bio smanjen, a koncentracija GSH 
bila je povećana. U hiperlipidemičnih štakora simvastatin nije utjecao na koncentraciju MDA i GSH, ali je prouzročio značajno smanjenje 
GSH u jetri. Fenofibrat je smanjio MDA u plazmi i jetri te povećao MDA u mozgu. U oba soja štakora fenofibrat je značajno smanjio 
koncentraciju GSH u jetri, vjerojatno zbog konjugacije GSH s nekim metabolitima fenofibrata. Prema našim rezultatima, simvastatin 
djeluje antioksidacijski samo u normolipidemičnih štakora, a antioksidacijski učinak fenofibrata prisutan je u oba soja.

KLJUČNE RIJEČI: lijekovi za snižavanje lipida; oksidacijski stres; peroksidacija lipida; Wistar štakori; Zucker štakori


