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In this paper we derive an expression for the ground state energy of N identi-
cal interacting fermions by using Brillouin-Wigner-Feenberg perturbation theory.
It represents a generalization of the Gell-Mann-Brueckner formula which was ob-
tained for dense electron gas.

1. Introduction

In order to understand completely the interacting fermion fluid as a model for
liquid 3He, electron gas, nuclear and neutron matter, different approaches have been
developed. Different approaches to the problem have provided different insights.

New experiments concerning high temperature superconductivity, surface and
interface phenomena rekindled interest in these systems. In this paper we focus
upon the ground state of the homogeneous interacting fermion system. We apply a
powerful many-body perturbation method which was first developed by Feenberg
(F)1,2,3) in order to improve the convergence of Brillouin-Wigner (BW) perturba-
tion theory. It was then shown by Ljolje and coworkers4) that the F perturbation
theory had an additional advantage, i.e. it has proper behaviour on the number of
particles N through second order. They further rearranged the Feenberg formula
for energy and found a new expression which has proper behaviour through the
fifth order. They also applied it to the derivation of the ground and single particle
excited state energies (Bogoliubov spectrum) of a weakly interacting boson fluid.
This approach has been recently used for the calculation of the interaction energy
between a pair of quasiparticles in a bose fluid5).
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Hitherto Brillouin-Wigner-Feenberg perturbation method was applied only to
boson systems. In the present work we apply this general method to fermion sys-
tems. In this way we expect to get new insights in these systems.

In Section 2 we present BWF perturbation energy formula and related topics.
Section 3 is devoted to the derivation of an energy expression for fermions which is a
generalization of Gell-Mann-Brueckner formula6,7). In Section 4 the relation of our
result with Rayleigh-Schrödinger (RS) perturbation theory and some evaluations
are presented: it was done for electron gas and for a system with short range
repulsive and longer range attractive potential. The matrix elements are calculated
in Appendix A. An important part of the proof of the energy expression is carried
out in Appendix B.

2. Survey of Brilloun-Wigner-Feenberg perturbation theory

Let us assume that the Hamiltonian of the system being studied can be put in
the form

H = H0 + V , (1)

and that the eigenstates and eigenvalues of the unperturbed Hamiltonian H0 are
known,

H0|ϕn〉 = εn|ϕn〉 . (2)

The Brillouin-Wigner solution of the equation

H|ϕ〉 = E|ϕ〉 (3)

for energies is

E = εl + Vll +
∑

n ( /=l)

|Vln|
2

E − εn
+

∑

nn′ ( /=l)

VlnVnn′Vn′l

(E − εn)(E − εn′)

+
∑

nn′n′′ ( /=l)

VlnVnn′Vn′n′′Vn′′l

(E − εn)(E − εn′)(E − εn′′)
+ . . . , (4)

where

Vij + 〈ϕi|V |ϕj〉 .

Eq. (4) is solved by successive approximations.

The perturbation theory was Feenberg’s favoured object of study. Feenberg
considered the convergence of the BW perturbation theory and noticed that in
Eq. (4) some matrix elements may occur more than once in a given order. For
instance Vnn′ in the fourth order term for n′′ = n appears as V 2

nn′ . Feenberg found
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a way to avoid such repetition of matrix elements1). The equation for energy which
he obtained reads

E = εl + Vll +
∑

n

⊙ VlnVnl

E − EF
n

+
∑

nn′

⊙ VlnVnn′Vn′l

(E − EF
n )(E − EF

nn′)

+
∑

nn′n′′

⊙ VlnVnn′Vn′n′′Vn′′l

(E − EF
n )(E − EF

nn′)(E − EF
nn′n′′)

+ . . . , (5)

where Feenberg’s energies are

EF
n = εn + Vnn +

∑

n′ ( /=ln)

Vnn′Vn′n

E − EF
nn′

+
∑

n′ /=ln
n′′ /=lnn′

Vnn′Vn′n′′Vn′′n

(E − EF
nn′)(E − EF

nn′n′′)
+ . . .

EF
nn′ = εn′ + Vn′n′ +

∑

n′′ ( /=lnn′)

Vn′n′′Vn′′n′

E − EF
nn′n′′

+ . . . (6)

The mark ⊙ means that all indices are different. Equation (5) with a corresponding
equation for the wave function means what has been called Feenberg perturbation3).

Studying the applicability of BW perturbation method in the many-body the-
ory we came to the conclusion that its terms could be rearranged to improve the
dependence on the number of particles. The result of such rearrangement was a
new BW formula which was later recognized as Feenberg formula4). Because of this
the relation (5) was called BWF perturbation energy. Feenberg’s formula (5) was
applied to the theory of many-bosons in the Bogoliubov approximation4). It was
shown that only the second order term of the F formula was sufficient to reproduce
the ground state and elementary excitation spectrum of the Bogoliubov boson sys-
tem. A relation with Jastrow wave function was established as well8). Regarding
some new experiments concerning the interaction between two rotons9), the inter-
action between two quasiparticles in the Bogoliubov boson system was studied and
it was found that it changed sign, becoming repulsive when density increased5,10).

3. An application of BWF perturbation theory to a

fermion system

We consider N identical formions in the volume Ω. Let the Hamiltonian (1) in
the second quantization form reads

H0 =
∑

ks

eksa
+
ksaks , (7)
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V =
1

2Ω

∑

k1k2q
s1s2

Vqa
+
k1+qs1

ak2−qs2ak2s2ak1s1 , (8)

where

ek =
h̄2k2

2m
.

The operators a+ks and aks satisfy the anticommutation rules

[

aks, a
+
k′s′

]

+
= δkk′δss′ ,

[

aks, ak′s′
]

+
=

[

a+ks, a
+
k′s′

]

+
= 0 . (9)

Because of the relations (9) it becomes essential to keep track of signs. The effect
of destruction and creation operators on a state is given with relations

aks| . . . nks . . .〉 = (−1)Sksnks| . . . nks − 1 . . .〉 ,

a+ks| . . . nks . . .〉 = (−1)Sks(1− nks)| . . . nks + 1 . . .〉 , (10)

where nks = 0, 1 and

Sks = n1 + n2 + . . .+ n(ks)−1 (11)

is the number of occupied states preceding the state n(ks); it is supposed that the
single particle quantum numbers of the occupied states are assumed to be ordered.

We will evaluate the ground state energy of the perturbed system (3). In order
to get the ground state energy one has to take l = 0 in the Feenberg equation (5).
The ground state vector of the unperturbed free fermion system is

|0〉 = | . . . 1k1
. . . 1k2

. . . kf ; 0〉 ,

where

kf = (6π2ρ/ν)1/3, ρ = N/Ω . (12)

is the radius of the Fermi sphere (ν denotes the number of spin orientations repre-
sented in k).

From now on only the holes in the Fermi sea and the particles out of the Fermi
sea will be denoted explicitely in all states. In a vector ket the particles above the
Fermi sea are placed on the right side of the semicolon sign.

Let us analyse Eq. (5) for the fermions with respect to grouping of an infinite
number of terms which describe a special type of physical processes. The zero order
term is proportional to N ,

ε0 =
∑

ks<kf

eks
=

∑

ks<kf

h̄2k2

2m
= N

3

5
ekf

. (13)
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The first order term V00 (and all required matrix elements) is calculated in Ap-
pendix A and it is also proportional to N ,

V00 =
1

2Ω

∑

t1t2<kf

∑

s1s2

(V0 − Vt1−t2δs1s2) . (14)

Let us suppose presently that the order of denominators in the energy relation (5)
is one.

The second order term contains summing over all possibilities of the state

n = |k1σ1 k2σ2; k1 + qσ′
1 k2 − qσ′

2〉 , (15)

and it reads

E2 =
1

Ω2

∑

k1k2q
k1k2 < kf

|~k1 + ~q|, |~k2 − ~q| > kf

∑

σ1σ2

σ′

1
σ′

2

(Vqδσ1σ′

1
δσ2σ′

2
− Vk1−k2+qδσ2σ′

1
δσ1σ′

2
)2

E − EF
n

. (16)

We see that this term contains a factor V 2
q which is a not mixed product of the

matrix elements like VqVk1−k2+q or a product of the matrix elements with mixed
arguments like V 2

k1−k2+q.

Our experience with boson systems show that no mixed terms in the Feenberg
formula lead to the Bogoliubov theory of weakly interacting bosons. Let us do
the same here and find all terms in the Feenberg perturbation formula that in the
numerators contain only V n

q (n = 2, 3, ...) matrix elements. For this purpose we
will analyse in detail the Feenberg formula including the fifth order term.

In the third order term we find two states

n = |k1σ1 k2σ2; k1 + qσ′
1 k2 − qσ′

2〉 ,

n′ = |k1σ1 k3σ3; k1 + qσ′
1 k3 − qσ′

3〉 . (17)

Using the matrix elements from Appendix A, one finds

E3 =
1

Ω3

∑

k1k2k3q
ki < kf

|~k1 − ~q| > kf

|~k2 − ~q|, |~k3 − ~q| > kf

∑

σ1σ2σ3

σ′

1
σ′

2
σ′

3

V 3
q δσ1σ′

1
δσ2σ′

2
δσ3σ′

3

(E − EF
n )(E − EF

nn′)
. (18)

In the fourth order term we have the folowing states:

n = |k1σ1 k2σ2; k1 + qσ′
1 k2 − qσ′

2〉 ,
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m = |k1σ1 k3σ3; k1 + qσ′
1 k3 − qσ′

3〉 ,

m1 = |k2σ2 k3σ3; k2 − qσ′
2 k3 + qσ′

3〉 ,

m2 = |k1σ1 k2σ2 k3σ3 k4σ4; k1 + qσ′
1 k2 − qσ′

2 k3 + qσ′
3 k4 − qσ′

4〉 ,

r = |k1σ1 k4σ4; k1 + qσ′
1 k4 − qσ′

4〉 ,

r1 = |k3σ3 k4σ4; k3 − qσ′
3 k4 + qσ′

4〉 ,

r2 = |k2σ2 k4σ4; k2 − qσ′
2 k4 + qσ′

4〉 ,

r3 = |k3σ3 k4σ4; k3 + qσ′
3 k4 − qσ′

4〉 ,

r4 = |k3σ3 k4σ4; k3 + q′σ′
3 k4 − q′σ′

4〉 .

There are seven combinations of the triplets which can give the factor V 4
q :

1) nmr, 5) nm2r4,

2) nmr1, 6) nm2r,

3) nm1r2, 7) nm2m1,

4) nm1r3.

(19)

The triplet 5) leads to the term of the order N2 and it should be cancelled by a
corresponding part of the “second” order term. The triplets 1) and 3) are indeed
the same; it can be seen after writing the whole expression and changing k2 ↔ k1
in 3). This is the case with 2) and 4), then with 6) and 7). In this way we are led to
the conclusion that in the fourth order term only the triplets 1), 2) and 6) are in the
game. Keeping only unmixed products in the matrix elements of the numerator,
we find

E4 =
1

Ω4

∑

k1k2k3k4q
ki < kf

∑

σ1σ2σ3σ4

σ′

1
σ′

2
σ′

3
σ′

4

V 4
q

{

1

(E − EF
n )(E − EF

m)(E − Er)

+
1

(E − EF
n )(E − EF

m)(E − Er1)
+

1

(E − EF
n )(E − EF

m2
)(E − Er)

}

×δσ1σ′

1
δσ2σ′

2
δσ3σ′

3
δσ4σ′

4
. (20)

In the fifth order term we find the following states:

n = |k1σ1 k2σ2; k1 + qσ′
1 k2 − qσ′

2〉 ,
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m = |k1σ1 k3σ3; k1 + qσ′
1 k3 − qσ′

3〉 ,

m1 = |k1σ1 k2σ2 k3σ3 k4σ4; k1 + qσ′
1 k2 − qσ′

2 k3 + qσ′
3 k4 − qσ′

4〉 ,

m2 = |k1σ1 k2σ2 k3σ3 k4σ4; k1 + qσ′
1 k2 − qσ′

2 k3 + q′σ′
3 k4 − q′σ′

4〉 ,

r = |k1σ1 k4σ4; k1 + qσ′
1 k4 − qσ′

4〉 ,

r1 = |k3σ3 k4σ4; k3 − qσ′
3 k4 + qσ′

4〉 ,

r2 = |k2σ2 k3σ3; k2 − qσ′
2 k3 + qσ′

3〉 ,

r3 = |k1σ1 k3σ3 k4σ4 k5σ5; k1 + qσ′
1 k3 − qσ′

3 k4 + qσ′
4 k5 − qσ′

5〉 ,

r4 = |k1σ1 k2σ2 k3σ3 k5σ5; k1 + qσ′
1 k2 − qσ′

2 k3 + qσ′
3 k5 − qσ′

5〉 ,

r5 = |k1σ1 k3σ3 k4σ4 k5σ5; k1 + qσ′
1 k3 + qσ′

3 k4 − qσ′
4 k5 − qσ′

5〉 ,

r6 = |k1σ1 k2σ2 k3σ3 k5σ5; k1 + qσ′
1 k2 − qσ′

2 k3 + q′σ′
3 k5 − q′σ′

5〉 ,

r7 = |k1σ1 k3σ3 k4σ4 k5σ5; k1 + qσ′
1 k3 + qσ′

3 k4 − q′σ′
4 k5 − q′σ′

5〉 ,

s = |k1σ1 k5σ5; k1 + qσ′
1 k5 − qσ′

5〉 ,

s1 = |k4σ4 k5σ5; k4 − qσ′
4 k5 + qσ′

5〉 ,

s2 = |k4σ4 k5σ5; k4 + qσ′
4 k5 − qσ′

5〉 ,

s3 = |k2σ2 k5σ5; k2 − qσ′
2 k5 + qσ′

5〉 ,

s4 = |k3σ3 k5σ5; k3 + q′σ′
3 k5 − q′σ′

5〉 ,

s5 = |k3σ3 k4σ4; k3 + q′σ′
3 k4 − q′σ′

4〉 ,

s6 = |k3σ3 k5σ5; k3 + q′σ′
3 k5 − q′σ′

5〉 .

There are sixteen different combinations of the states for the numerator:
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1) nmrs, 9) nmr3r1,

2) nmrs1, 10) nmr3s,

3) nm1r1s2, 11) nmr4r2,

4) nm1rs, 12) nm1r5r,

5) nm1rs1, 13) nm1r5s4,

6) nm1r2s3, 14) nm2r6s6,

7) nm1r2s4, 15) nm2r7s,

8) nmr3s, 16) nm2r5s5.

(21)

The combinations 14), 15) and 16) give the terms which are proportional to N2

and therefore they should be cancelled by some terms which appear in the second
and third order. Keeping again only unmixed terms, one finds for the fifth order
term

E5 =
1

Ω5

∑

k1k2k3

k4k5q
ki < kf

∑

σ1σ2σ3σ4σ5

σ′

1
σ′

2
σ′

3
σ′

4
σ′

5

V 5
q

{

13
∑

i=1

1

µi

}

δσ1σ′

1
δσ2σ′

2
δσ3σ′

3
δσ4σ′

4
δσ5σ′

5
, (22)

where

µi = (E − EF
j )(E − EF

k )(E − EF
l )(E − EF

p ) ,

and j, k, l and p represent four states denoting one combination from the set (21).

For higher order terms of the Feenberg perturbation formula one can, in prin-
ciple, do the same.

Let us now consider the denominators, where the differences of the energies
appear. In the zero order term the differences E0−EF0 are just the same as in the
Rayleigh-Schrödinger (RS) perturbation theory. For example if n = |k1σ1, k2σ2; k1+
qσ′

1k2 − qσ′
2〉,

E0 − EF0 =
∑

kσ<kf

h̄2k2

2m
−







∑

kσ<kf

h̄2k2

2m
−

h̄2k21
2m

−
h̄2k22
2m

+
h̄2(k21 + q2)

2m

+
h̄2(~k2 − ~q)2

2m

}

= −
h̄2

m

[(

q2

2
+ ~k1~q

)

+

(

q2

2
− ~k2~q

)]

.

Changing ~k2 → −~k2 (of course this should be done everywhere in the sum over k2),
one finds a symmetrical form

E0 − EF0 = −
h̄2

m

[(

q2

2
+ ~k1~q

)

+

(

q2

2
+ ~k2~q

)]

= −
h̄2

m

(

D
(0)
1 +D

(0)
2 ) ,
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where

D
(0)
i =

q2

2
+ ~ki~q .

In the first order, using the matrix elements from Appendix A and neglecting the
terms of the order 1/N , one finds

E1 − EF1
n = E0 − EF0

n +
1

2Ω

∑

t1t2

∑

s1s2

(V0 − Vt2−t1δs2s1

−
1

2Ω

∑

t1t2

∑

s1s2

(V0 − Vt2−t1δs1s2 −
1

Ω

∑

ts1s2

[

Vt−k1
δs1s2δs1σ′

1

+Vt−k2
δs1s2δs1σ′

2
− Vt−k1−qδs1s2δs1σ′

1
δs2σ′

1
− Vt−k2+qδs1s2δs1σ′

2
δs2σ′

2

]

,

and again in the symmetrical form

E1 − EF1
n = −

h̄2

m

(

D
(1)
1 +D

(1)
2

)

,

where it is introduced

D
(1)
1 =

q2

2
+ ~ki~q +

m

h̄2

1

Ω

∑

ts<kf

(

Vt+ki
− Vt+ki+qδsσ′

i

)

. (23)

If we consider this difference for the state

n = |k1σ1 k2σ2k3σ3 k4σ4; k1 + qσ′
1 k2 − qσ′

2k3 + q′σ′
3 k4 − q′σ′

4〉

in a similar procedure, one finds

E1 − EF1
n = D

(1)
1 +D

(1)
2 +D

(1)
3 +D

(1)
4 .

Thus we showed that any energy difference (including first order approximation)
can be writen as a sum of terms Di. Let us suppose that it is generally correct.

The expression Di depends upon the wave vector ~ki, transferred wave vector ~q
and the potential of the interaction. After this the third, the fourth and the fifth
order terms become

E3 =
1

Ω3

∑

k1k2k3q
ki < kf

∑

σ1σ2σ3

σ′

1
σ′

2
σ′

3

(

−
m

h̄2

)

V 3
q

1

(12)(13)
δσ1σ′

1
δσ2σ′

2
δσ3σ′

3
, (24)
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E4 =
1

Ω4

∑

k1k2k3

k4q
ki < kf

∑

σ1σ2σ3σ4

σ′

1
σ′

2
σ′

3
σ′

4

(

−
m

h̄2

)

V 4
q

{

1

(12)(13)(14)

+
1

(12)(13)(34)
+ +

1

(12)(1234)(14)

} 4
∏

i=1

δσiσ′

i
, (25)

E5 =
1

Ω5

∑

k1k2k3

k4k5q
ki < kf

∑

σ1σ2σ3σ4σ5

σ′

1
σ′

2
σ′

3
σ′

4
σ′

5

(

−
m

h̄2

)

V 5
q

{

1

(12)(13)(14)(15)

+
1

(12)(13)(14)(45)
+

1

(12)(13)(34)(45)
+

1

(12)(1234)(14)(15)

+
1

(12)(1234)(14)(45)
+

1

(12)(1234)(23)(25)
+

1

(12)(1234)(23)(35)

+
1

(12)(13)(1345)(15)
+

1

(12)(13)(1345)(34)
+

1

(12)(1234)(1235)(15)

+
1

(12)(1234)(1235)(23)
+

1

(12)(1234)(1345)(14)

+
1

(12)(1234)(1345)(35)

} 5
∏

i=1

δσiσ′

i
, (26)

where

(ij) = Di +Dj ,

(ijkl) = Di +Dj +Dk +Dl .

The factors including four sums of Di in denominators can be transformed into the
form where each factor in any denominator has two sumands only. For instance, by
the use of the symmetry in the sums, we find

1

(12)(1234)(14)
=

1

2

{

1

(12)(1234)(14)
+

1

(12)(1234)(23)

}

=
1

2

1

(12)(14)(23)
.
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Let us consider the interactions which are spin independent. The relations (24),
(25) and (26) after some algebra, performed in Appendix B, get the form

En =
Sn

2nΩn

(

−
m

h̄2

)n−1 (
Ω

8π3

)n+1 ∫

d~q V n
q

∫

d~k1 . . .

∫

d~knIn , (27)

where n = 3, 4, 5 and

In =

∞
∫

−∞

dt1 . . .

∞
∫

−∞

dtn e−D1|t1|−...−Dn|tn|δ(t1 + . . .+ tn) . (28)

The factor Sn arises from the spin sums.

The expressions (27) and (28) are formally the same as those in the RS pertur-
bation theory of the electron system when the ring approximatinn is treated6,7).
The ring approximation of RS perturbation theory in the relation to our “diagrams
of the states” is discussed in Section 4.

Having in mind our result (27), then the structure of the complete Feenberg
perturbation energy formula and the formal similarity with RS perturbation theory,
we can conclude that the expression (27) is valid for any n ≥ 2.

Let us find a closed form for the energy, summing up the terms of all orders in
the relation (27). If we define

Bn(q) =
1

n

∫

d~k1 . . .

∫

d~kn

∞
∫

−∞

dt1 . . .

∞
∫

−∞

dtn e−D1|t1|−...−Dn|tn|δ(t1 + . . .+ tn) ,

(29)
the relation (27) becomes

En =
Sn

2nΩn

(

−
m

h̄2

)n−1 (
Ω

8π3

)n+1 ∫

d~q V n
q Bn(q) . (30)

Since

δ(t1 + . . .+ tn) =
q

2π

∞
∫

−∞

du eiq(t1+...+tn)u ,

that is

Bn(q) =
q

2πn

∞
∫

−∞

du

{

∫

d~k1

∞
∫

−∞

dt1 e−D1|t1|+igut1

∫

d~k2

∞
∫

−∞

dt2 e−D2|t2|+igut2
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...

∫

d~kn

∞
∫

−∞

dtn e−Dn|tn|+igutn

}

;
ki < kf

|~ki + ~q| > kf

=
q

2πn

∞
∫

−∞

du
[

Qq(u)
]n

, (31)

where

Qq(u) =

∫

d~k

∞
∫

−∞

dt e−D|t|+igut; ki < kf , |~ki + ~q| > kf . (32)

Summing up all terms n ≥ 2 of the relation (30) gives

∞
∑

n=2

En =
Ω

16π3

∫

d~q
q

2π

∞
∫

−∞

du

∞
∑

n=2

Sn

n

(

−
m

h̄2

)n−1 [
VqQq(u)

8π3

]n

=
h̄2Q

16π3m

∫

d~q
q

2π

∞
∫

−∞

du

{

ln

[

1 +
VqQq(u)ms

8π3h̄2

]

−
VqQq(u)ms

8π3h̄2

}

, (33)

with the constraint

−1 <
VqQq(u)ms

8π3h̄2 ≤ 1 . (34)

The total energy in our approximation is then the sum of the relations (13), (14)
and (33).

4. The relation with RS perturbation theory and some

evaluations

The states which occur in the combination for the second, third, fourth and
fifth order term can be related to the Goldstone diagrams. Figure 1 presents, re-
spectively, the second, the third and the fourth order ring diagrams which belong
to the states given by the relations (15), (17) and (19). In Fig. 2 we plotted the
fifth order diagrams which correspond to the combinations of the states (21). Let
us mention that the unconnected diagrams (the combinations 5 in (19) and 14, 15
and 16 in (21)) and the combinations 3, 4 and 7 in (19) which do not represent new
possibilities with the respect to the combinations 1, 2 and 6 are not drawn.
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Fig. 1. The ring diagrams of the second (II), third (III) and fourth (IV) order.

Fig. 2. The ring diagrams of the fifth order.

Fig. 3. Third order Goldstone diagrasms included (among others) in the first order
of D(1).
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The diagrams have different structure and regardless of denoting the lines and
holes they must not be reduced to each other; this is the consequence of the role of
ordering of the states (for instance the diagram 6 in Fig. 2 can be transformed into
diagram 8 after the substitution 2 → 1, 1 → 5, 3 → 4, 4 → 3, 5 → 2; but they have
different ordering and represent the different possibilities of summing in the fifth
order term of BWF formula). In our approach they could be used to define the states
which amount to the energy. Which states belong to a diagram? A state is defined
by the particle-hole lines between two neighbouring interaction lines. For instance,
in the fourth order diagram 1 the bottom state is n = |k1σ1 k2σ2; k1+qσ′

1 k2−qσ′
2〉.

All states which correspond to a diagram are formed in the same way. For example
the fifth order term 1 defines the combination

|k1σ1 k2σ2; k1 + qσ′
1 k2 − qσ′

2〉 , |k1σ1 k4σ4; k1 + qσ′
1 k4 + qσ′

4〉 ,

|k1σ1 k3σ3; k1 + qσ′
1 k3 − qσ′

3〉 , |k1σ1 k5σ5; k1 + qσ′
1 k5 − qσ′

5〉 .

Because of the above approach, the diagrams are sometimes called the “diagrams
of the states”.

Of course in the above mentioned procedure there is no the difference between
direct and exchange terms.

D(1) =
q2

2
+ ~k~q +

m

8π3h̄2

∑

sσ′

δσσ′

∫

kp < kf

|~ki + ~q| > kf

d~p(Vp+k − Vp+k+q). (35)

In addition let us consider the application of our result to 1. electron gas and
2. an appropriate model potential.

1. It is well known that the RS perturbation theory in the ring approximation is
suitable for the description of the high density electron gas. Our approximation in
which we sum up unmixed terms, Vq, (in the numerators), contains RS perturbation
theory in the ring approximation; they are identical if all Di in the denominators
of BWF formula are taken in the zero order approximation with respect to the
interaction.

It is also possible to obtain an analytic form of D(1), which is a step beyond the
ring approximation. Solving the integrals in the relation, we find

D(1) =
q2

2
+ ~k~q +

e2m

8π3ε0qh̄
2

{

1

k
(k2f − k2) ln

kf − k

kf + k

−
1

|~k + ~q|
(k2f − |~k + ~q|2) ln

kf + |~k + ~q|

kf − |~k + ~q|

}

. (36)

It is a pity that the substitution of this equation into the relation for Qq(u) does
not make it easily solvable in an analytic form.
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We emphasize that our approach in the first order of D(1) includes “direct
and exchange scattering with unexcited particles” which were not contained in the
Gell-Alann-Brueckner theory, (Fig. 3), i.e.

1 + 2 → 1′ + 2′ ,

1′ + 3 → 1′ + 3 ,

1′ + 2′ → 1 + 2 .

Numerical calculation including above processes in electron gas at high density will
be presented in our following report.

2. A relatively simple analytic solution of the quantity Qq(u) is possible for a
model potential

Vq =

{

V (−q2 + g2), q ≤ g, V > 0
0, q ≥ g.

(37)

V and g are the parameters of the potential. In r-space this potential reads

V (r) =
V g3

π2r2
j2(gr) , (38)

where j2(gr) is the spherical Bessel function. The potential (38) has short range re-
pulsion, longer range attraction and further decreasing oscillatory shape. To derive
the solution, let us perform the integration in Eq. (35) under the constraints

δ ≫ kf , q < δ, G ≥ 2kf + δ .

In this case the domains of integration for both integrals become the same and we
find

∫

kp < kf

|~ki + ~q| > kf

d~p(Vp+k − Vp+k+q) =
4πk3f
3

V (q2 + 2~k~q) ,

that is

D(1) = K(q2 + 2~k~q) , (39)

where

K = 1 +
mV k3f

3π2h̄2 . (40)

The second term is the correction to the ring approximation. Substituting (39)
into (32) and integrating, one finds

Qq(u) =
2k

K

{

kf +
1

2q

(

u2

K2
+ k2f −

q2

4

)

ln
u2/K2 +

(

kf + q/2
)2

u2/K2 −
(

kf + q/2
)2
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−
u

K

[

arctan

(

K
kf + q/2

u

)

+ arctan

(

K
kf − q/2

u

)]}

. (41)

The limit, when q → 0, is

Q0(u) = lim
q→0

Qq(u) =
4πkf
K

x− arctanx

x
, (42)

where x = kfK/u and it satisfies the inequality

0 ≤ Q0(u) ≤
4πkf
K

. (43)

The relation (43) can be considered as a necessary condition. In order to estimate
a correction to the ring approximation, let us find the constant K for liquid 3He. We
derive V and g from the fitting of Bruch-McGee potential11): V = 2.87 10−71 Jm5,
g = 2.399 1010 m−1. The density of liquid 3He is 1.638 1028 m−3 at T = 0.6 K and
the mass of an atom 5.008 10−27 kg. So we find K = 1+mV/(h̄2ρ) = 1+0.2117. We
see that the correction of K is about 20%. Furthermore, for the above conditions
we find kf = (3π2ρ)1/3 = 7.856 109 m−1 and we have indeed g > 2kf . (We took
helium 3 parameters although we knew that the ring approximation was not enough
to describe this system.)

We see that Feenberg perturbation theory offers a good basis for the investiga-
tion of different physical systems. Furthermore, the analysis in this paper has been
performed using the free particle basis. This method in this form is not applica-
ble to liquid helium because of the strong short range repulsive potential between
atoms. But it is expected that it can be redeveloped within correlated basis12−16)

where it should be applicable to real systems.
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Appendix A

Here we calculate the matrix elements for the states which are included in our
calculation.

Diagonal matrix elements

1. In the state |0〉 we find

V00 =
1

2Ω

∑

p1p2Q
s1s2

〈0|a+p1+Qs1
a+p2−Qs2

ap2s2ap1s1 |0〉 ,

and there are two possibilities of pairing off:
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a) p1 +Qs1 = p1s1 , b) p1 +Qs1 = p2s2 ,

p2 −Qs1 = p2s2 , p2 +Qs2 = p1s1 .

The first pairing gives Q = 0 and second Q = p2 − p1, s1 − s2. The matrix element
becomes

V00 =
1

2Ω

∑

p1p2<kf

∑

s1s2

(V0 − Vp2−p1
δs1s2) . (A.1)

2. The state

n = |k1σ1 k2σ2; k1 + qσ′
1 k2 − qσ′

2〉 (A.2)

has two particles above the Fermi sea and two missing in the sea. Using a similar
procedure, one finds

Vnn =
1

2Ω

∑

s1s2
/=k1k2

< kf

∑

s1s2

(V0 − Vt2−t1δs1s2) +
1

Ω

∑

s1
/=k1k2

< kf

∑

s1s2

[

V0(δs1σ′

1
+ δs1σ′

2
)

−Vt1−k1−qδs1s2δs1σ′

1
δs2σ′

1
− Vt1−k2−qδs1s2δs1σ′

2
δs2σ′

2

]

+O(
1

N
) . (A.3)

3. In the state

n′ = |k1σ1 k2σ2 k3σ3 k4σ4; k1 + qσ′
1 k2 − qσ′

2 k3 + qσ′
3 k4 − qσ′

4〉

one finds (up to the order 1/N)

Vn′n′ =
1

2Ω

∑

t1t2
/=k1 . . . k4

< kf

∑

s1s2

(V0 − Vt2−t1δs1s2) +
1

Ω

∑

t
/=k1 . . . k4

< kf

∑

s1s2

[

V0

(

δs1σ′

1

+δs1σ′

2
+ δs1σ′

3
+ δs1σ′

4

)

−
(

Vt−k1−qδs1σ′

1

+Vt−k2−qδs1σ′

2
+ Vt−k3−qδs1σ′

3
+ Vt−k4−qδs1σ′

4

)

δs1s2

]

+O(
1

N
)

=
1

2Ω

∑

t1t2
< kf

∑

s1s2

(V0 − Vt2−t1δs1s2) +
1

Ω

∑

t
< kf

∑

s1s2

[

(Vt−k1
− Vt−k1−q)δs1σ′

1

+(Vt−k2
− Vt−k2−q)δs1σ′

2
+ (Vt−k3

− Vt−k3−q)δs1σ′

3
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+(Vt−k4
− Vt−k4−q)δs1σ′

4

]

δs1s2 +O(
1

N
) . (A.4)

Nondiagonal matrix elements

4. In the matrix element between the ground state and the state n (A.2)

V0n =
1

2Ω

∑

p1p2Q
s1s2

Vq〈0|a
+
p1+Qs1

a+p2−Qs2
ap2s2ap1s1 |n〉

there are four “pairings” different from zero, which give

V0n =
1

2Ω

∑

s1s2

(

Vqδs1σ1
δs2σ2

δs1σ′

1
δs2σ′

2
+ Vqδs1σ2

δs2σ1
δs1σ′

2
δs2σ′

1

−Vk2−k1−qδs1σ′

1
δs2σ1

δs1σ2
δs2σ′

2
− Vk1−k2−qδs1σ′

2
δs2σ′

1
δs1σ1

δs2σ2
.

If the interaction is spin independent, then

V0n =
1

Ω

(

Vqδσ1σ′

1
δσ2σ′

2
− Vk1−k2+qδσ2σ′

1
δσ1σ′

2
. (A.5)

5. Similarly one finds

Vnn′ =
1

2Ω

∑

s1s2

(

Vqδs1σ′

3
δs2σ′

4
δs1σ3

δs2σ4
+ Vqδs1σ′

4
δs2σ′

3
δs1σ4

δs2σ3

−Vk4−k3−qδs1σ′

3
δs1σ4

δs2σ′

4
δs2σ3

− Vk3−k4−qδs1σ′

4
δs1σ3

δs2σ′

3
δs3σ4

,

or for spin independent interaction

Vnn′ =
1

Ω

(

Vqδσ3σ′

3
δσ4σ′

4
− Vk4−k3−qδσ4σ′

3
δσ3σ′

4
. (A.6)

6. The matrix element between the states n and

n′′ = |k1σ1 k3σ3; k1 + qσ′
1 k3 − qσ′

3〉 ,

is

Vnn′′ =
1

2Ω

∑

s1s2

(

Vqδs1σ′

3
δs2σ2

δs1σ3
δs2σ′

2
+ Vqδs1σ2

δs2σ′

2
δs2σ3

δs1σ′

2

−Vk4−k3
δs1σ′

3
δs2σ2

δs1σ′

2
δs2σ3

− Vk3−k2
δs1σ2

δs2σ′

3
δs1σ3

δs2σ′

2
,

and for spin independent potential

Vnn′′ =
1

Ω

(

Vqδσ3σ′

3
δσ2σ′

2
− Vk3−k2

δσ′

2
σ′

3
δσ2σ3

)

. (A.7)
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Appendix B

The expression (24) for the third order energy in the integral form reads

E3 =
S3

Ω3

(

−
m

h̄2

)2 (
Ω

8π3

)4 ∫

d~q V 3
q J3 , (B.1)

where

J3 =

∫

d~k1d~k2d~k3
1

(D1 +D2)(D1 +D3)
, (B.2)

and summation over spin is performed. Because of the integral symmetry it becomes

J3 =
1

3

∫

d~k1d~k2d~k3

[

1

(D1 +D2)(D1 +D3)
+

1

(D1 +D2)(D2 +D3)

+
1

(D1 +D3)(D2 +D3)

]

.

On the other hand the integral

I3 =

∞
∫

∞

dt1

∞
∫

∞

dt2

∞
∫

∞

dt3 e−D1|t1|−D2|t2|−D3|t3|δ(t1 + t2 + t3)

= 2

[

1

(D1 +D2)(D1 +D3)
+

1

(D1 +D2)(D2 +D3)

+
1

(D1 +D3)(D2 +D3)

]

. (B.3)

The relation (B.2) was proved earlier6,7). So we find

J3 =
1

2 · 3

∫

d~k1d~k2d~k3I3

=
1

2 · 3

∫

d~k1d~k2d~k3

∞
∫

∞

dt1

∞
∫

∞

dt2

∞
∫

∞

dt3 e−D1|t1|−D2|t2|−D3|t3|δ(t1 + t2 + t3) . (B.4)
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This proves the relation (27) for n = 3.

The proof of Eq. (27) for n = 4 is more complicated. Let us transform Eq. (25)
into the integral form

E4 =
S4

Ω4

(

−
m

h̄2

)2 (
Ω

8π3

)5 ∫

d~q V 4
q J4 , (B.5)

where the summation over spin gives the factor S4 and

J4 =

∫

d~k1 . . . d~k4

[

1

(12)(13)(14)
+

1

(16)(13)(34)
+

1

(12)(1234)(14)

]

=
1

4

∫

d~k1 . . . d~k4

{

1

(12)(13)(14)
+

1

(12)(23)(24)
+

1

(12)(23)(34)
+

+
1

(14)(24)(34)
+

1

(12)(34)(13)
+

1

(12)(34)(23)
+

1

(12)(34)(14)

+
1

(12)(34)(24)
+

1

2

[

1

(12)(14)(23)
+

1

(14)(23)(24)

+
1

(14)(23)(13)
+

1

(14)(23)(34)

]}

. (B.6)

Defining again

I4 =

∞
∫

∞

dt1 . . .

∞
∫

∞

dt4 e−D1|t1|...−D4|t4|δ(t1 + . . . t4) , (B.7)

it can be proved

I4 = 2× {wiggle bracket in (B.6)} .

Hence we find

J4 =
1

2 · 4

∫

d~k1 . . . d~k4I4

=
1

2 · 4

∫

d~k1 . . . d~k4

∞
∫

∞

dt1 . . .

×

∞
∫

∞

dt4 e−D1|t1|...−D4|t4|δ(t1 + . . .+ t4) , (B.8)
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and with this we complete the proof of the relation (27) for n = 4.

Of course a similar procedure can be performed to prove Eq. (27) for n = 5. In
the integral form Eq. (26) reads

E5 =
S5

Ω5

(

−
m

h̄2

)4 (
Ω

8π3

)6 ∫

d~q V 5
q J5 , (B.9)

where

J5 =

∫

d~k1 . . . d~k4 ×

{

the expression in the wiggle
bracket of the relation (26)

}

.

A more symmetric form of this relation is

J5 =
1

5

∫

d~k1 . . . d~k5

{

1

(12)(13)(14)(15)
+

1

(12)(23)(24)(25)

+
1

(13)(23)(34)(35)
+

1

(41)(42)(43)(45)
+

1

(51)(52)(53)(54)

+
1

(12)(13)(14)(54)
+

1

(12)(13)(15)(45)
+

1

(12)(15)(14)(34)

+
1

(12)(23)(25)(45)
+

1

(12)(23)(24)(45)
+

1

(52)(53)(51)(24)

+
1

(52)(54)(51)(23)
+

1

(52)(54)(53)(12)
+

1

(41)(45)(43)(12)

+
1

(51)(54)(53)(12)
+

1

(21)(24)(25)(35)
+

1

(23)(24)(25)(15)

+
1

(13)(14)(15)(23)
+

1

(13)(34)(35)(21)
+

1

(42)(43)(45)(12)

+
1

(32)(34)(35)(21)
+

1

(32)(35)(31)(45)
+

1

(42)(41)(45)(23)

+
1

(32)(34)(31)(45)
+

1

(31)(32)(34)(42)
+

1

(12)(13)(34)(45)

+
1

(12)(13)(35)(45)
+

1

(12)(23)(34)(45)
+

1

(12)(23)(35)(45)
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+
1

(12)(15)(34)(35)
+

1

(14)(15)(23)(24)
+

1

(31)(32)(14)(45)

+
1

(13)(23)(15)(45)

}

. (B.10)

Introducing the integral

I5 =

∞
∫

∞

dt1 . . .

∞
∫

∞

dt5 e−D1|t1|...−D5|t5|δ(t1 + . . . t5) ,

and solving it, we find

I5 = 2×

{

the expression in the wiggle
bracket of the relation (B.10)

}

.

After this J5 becomes

J5 =
1

2 · 5

∫

d~k1 . . . d~k5I5

=
1

2 · 5

∫

d~k1 . . . d~k5

∞
∫

∞

dt1 . . .

∞
∫

∞

dt5

× e−D1|t1|...−D5|t5|δ(t1 + . . .+ t5) .

In this way we complete our proof for n = 5.
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ENERGIJA OSNOVNOG STANJA VIŠEČESTINOG FERMIONSKOG
SISTEMA ODRED– ENA POMOĆU FEENBERGOVE PERTURBACIONE

TEORIJE

SREĆKO KILIĆ

Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja, Teslina 12, Split

UDK 538.94

Originalni znanstveni rad

U ovom radu odred–en je izraz za energiju osnovnog stanja sistema od N identičnih
fermiona koji med–udjeluju dvočestičnim potencijalom. Izraz je dobiven upotre-
bom Brillouin-Wigner-Feenbergova računa smetnje. Primijenjen na elektronski plin,
izraz predstavlja poopćenje Gell-Mann-Bruecknerove formule za gust elektronski
plin. Izvršena je i jedna procjena, korekcija u odnosu na Gell-Mann-Bruecknerov
izraz, za tekući 3He. U našem saznanju ovo je prvi rad koji učinkovito opisuje
fermionske sisteme koristeći se Feenbergovim računom smetnje.
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