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We study the thermoelectric power of the carriers in quantum dots of semimetals
under strong magnetic field, taking Bi as an example. The numerical results are pre-
sented for the McClure and Choi, the hybrid, the Cohen, the Lax and the ellipsoidal
parabolic energy band models of Bi. It is observed that the thermopower increases
with decreasing electron concentration, increasing magnetic field and increasing
film thickness, respectively. The oscillations of the TPM in Bi, in accordance with
McClure and Choi model, show up much more significantly as compared to other
models. In addition, the corresponding well known expression for the thermoelec-
tric power in the presence of a classically strong magnetic field in bulk specimens
of parabolic semiconductors has been obtained as a special case of our generalized
expressions.

1. Introduction

The remarkable developments of fine lithographical methods, molecular beam
epitaxy, organo-metallic vapour phase epitaxy and other experimental techniques
have generated significant possibilities of fabrication of new artificial materials
known as quantum wells formed between two plannar heterojunctions1). The het-
erojunctions based on various materials are currently being studied because of the
enhancement of carrier mobility2). The properties make such structures suitable
for the applications in quantum well lasers3), heterojunction FET’s4), high-speed
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digital network5), optical modulators6) and other devices. As the dimension of the
quantum confinement increases from 1D to 3D, the degree of the free-carrier mo-
tion decreases drastically and the density-of-states function changes from the step
function to the Dirac’s delta function (i.e. from a stepped cummulative one to a
complete discrete one)7,8). Though considerable work has already been done, still
the interest for further research of the different other aspects of such systems is
becoming increasingly important. In the present communication we shall study the
thermoelectric power in quantum dots of semimetals, under strong magnetic field
(TPM).

It is well-known that the analysis of the thermoelectric power gives information
about the band structure, the density-of-state function and the effective electron
mass9). The remarkable feature of the TPM is that it is independent of scattering
mechanisms, and in the case of spherical energy surface the shape of the conduction
band can be determined from its experimental investigations9). The TPM can be
connected to the Einstein relation of the diffusivity-mobility ratio10) and the carrier
contribution to elastic constants in degenerate materials having arbitrary disper-
sion laws11). The aforementioned physical properties are considered to be the two
most widely used parameters of electron transport in electron devices. The discov-
ery of quantum Hall effect12) has brought interest to the study of the TPM in fully
quantized systems. In recent years, the different modifications of the TPM have ex-
tensively been investigated13,14). Nevertheless, it appears from the literature that
the TPM in quantum dots of semimetals has yet not been investigated. It is well

known that the E-~k dispersion relation of the carriers in semimetals differ consider-
ably from simpler spherical surfaces of the degenerate electron gas. We shall take Bi
as an example of semimetals. Several models have been developed to describe the
energy spectrum of the carriers in Bi. Earlier works demonstrated15) that the car-
rier properties of Bi could be described by ellipsoidal parabolic model or one band
model. Shoenberg indicated that the Haas-Van Alphen and cyclotron resonance ex-
periments supported the one band model16) though the later work showed that Bi
could be described by the band model since the magnetic field dependence of many
physical parameters of Bi supports the above model17). Magneto-optical results18)

and ultrasonic quantum oscillation data19) favour the Lax ellipsoidal non-parabolic
model20) where as Kao21), Dinger and Lawson22) and Koch and Jensen23) indicated
that the Cohen model24) is in better agreement with the experimental results. In a
work on magnetic surface resonance, Takaoka et al.25) concluded that neither the
Lax model nor the Cohen model is adequate and they proposed the hybrid model.
In 1977, McClure and Choi26) proposed a new model of Bi which is more accurate
and general than those currently in use. They showed that it can fit the data for a
large number of magneto-oscillatory and resonance experiments.

In what follows, we shall formulate the TPM for QDs of Bi in accordance with
the McClure and Choi, the hybrid, the Cohen, the Lax and the ellipsoidal parabolic
energy band model on the basis of the newly formulated carrier energy spectra for
the QDs of each model. We shall study the doping, magnetic field and thickness
dependence of the TPM in QDs of Bi.
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2. Theoretical background

(a) McClure and Choi Model:

The E-~k dispersion law of the carriers in bismuth in accordance with the
McClure-Choi model can be expressed27) as
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where E is the carrier energy as measured from the band-edge in the absence of any
quantization, m1, m2 and m3 are the effective carrier masses at the band edge along
x, y and z-directions, respectively, and m1

2 is the effective mass tensor component
at the top of the valence band (for electrons) or at the top of the conduction band
(for holes).

Therefore, the modified electron energy spectrum in the presence of a strong
magnetic field By along y-direction, in QDs of Bi, whose electron dispersion law is
given by Eq. (1), can be written as
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nx, ny and nz are the size quantum numbers along x, y and z directions, re-
spectively, and 2dx, 2dy and 2dz are the widths of QDs of Bi along the x, y and
z-directions, respectively. Thus we note that the magnetic field which is parallel to
y-axis does not give rise to magnetic quantization. In the absence of magnetic field,
By → 0 and Eq. (2) gets simplified as
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The use of Eq. (2) leads to the expression of the density-of-states function as

N(E) =
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where δ′ is the Dirac’s delta function, gs is the spin degeneracy, gv is the valley
degeneracy and E′ is the root of Eq. (2). The TPM under present condition can be
expressed9) as

G = S0/(en0) , (5)

where S0 is the entropy per unit volume in the present case, e the electron charge
and n0 the electron concentration per unit volume. Using Eqs. (4) and (5) we get
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where T is the temperature, η = (kBT )
−1(EF − E′), EF is the Fermi energy in

the present case and Fj(η) is the one parameter Fermi-Dirac integral as defined by

Blakemore28).

Thus, to evaluate G as a function of electron concentration, we need an expres-
sion for the electron statistics which can, in turn, be written as
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(b) Hybrid model:

The electron dispersion law in accordance with the hybrid model can be
written25) as
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where β(E) = 1 + δ0 + aE(1 − γ), δ = M2/m2, γ = M2/M
1
1 , M2 is the effective

mass tensor component along the bisectrix axis due to the influence of the remote
bands at the bottom of the conduction band (for electrons) or at the top of the
valence bands (for holes) and M1

2 is the effective mass tensor component along the
bisectrix axis due to the influence of the remote bands at the top of the valence
bands (for electrons) or at the bottom of the conduction bands (for holes). Thus
the basic forms of Eqs. (6) and (7) will be unaltered where
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(c) Cohen model:

The energy dispersion law in accordance with the Cohen model24) can be ex-
pressed as

E(1 + αE) =
p2x
2m1

+
p2z
2m3

−
αEp2y
2m1

2

+
αp2y

4m2m1
2

+
p2y
2m2

(1 + αE). (9)
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(d) Lax ellipsoidal model:

The E-~k relation in Bi in accordance with the Lax non-parabolic ellipsoidal
model20) can be written as

E(1 + αE) =
p2x
2m1

+
p2y
2m2

+
p2z
2m3

. (10)

FIZIKA A 1 (199) 3, 207–217 211



ghatak: the thermoelectric power in . . .

The basic forms of Eqs. (6) and (7) will be unaltered for the Lax model where
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(e) The ellipsoidal parabolic model:

The carrier dispersion law for the model is given by
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We wish to note that under the condition α → 0, the McClure and Choi, the Cohen
and the Lax model as given by Eqs. (1), (9) (10), respectively, reduce to Eq. (11).
Also under the limiting conditions α → 0 and δ0 ≫ 1, the hybrid model as given by
Eq. (8) gets simplified to Eq. (11). For the parabolic model, the forms of Eqs. (6)
and (7) will not change in forms where
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For bulk specimens, the quantum numbers, nx, ny and nz would vary from zero to
infinity and, hence, the summation over nx, ny and nz is replaced by the integrals
over nx, ny and nz to express the TPM and n0 in isotropic parabolic ellipsoidal

energy bands as9)
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and
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where η0 = EF0/kBT , EF0 is the Fermi energy in bulk specimens of Bi as measured
from the edge of the conduction band in the vertically upward directions in the
absence of any quantization, Nc = 2(2πmdkBT/h

2)3/2 and md = (m1m2m3)
1/3.

Under the condition of non-degeneracy exp(−η0) ≪ 1 and we get
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and
n0 = gpN0 exp(η0) . (15)

Thus, we can summarize the whole mathematical background in the following
way. We have formulated the expressions for the TPM and n0 in quantum dots
of Bi in accordance with the McClure and Choi, the hybrid, the Cohen, the Lax
and the ellipsoidal parabolic models by using the basic fundamental expression of
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TPM as given by Eq. (5) for all models after formulating the appropriate electron
energy spectra in QDs of Bi under strong magnetic field. We have shown that under
certain limiting conditions all four models reduce to the ellipsoidal energy bands
as given by Eq. (11), and Eqs. (6) and (7) represent the generalized expressions of
TPM and n0 where E′ is the only band structure dependent quantity. Replacing
the summations over nx, ny and nz by integrations over nx, ny and nz we have
obtained the well known expressions of TPM and n0 for bulk specimens of parabolic
semiconductors as given by Eqs. (12) and (13)9). Thus we can write that from the
simple theoretical expressions of TPM and n0 in QDs of bismuth in accordance
with various band models, we have obtained the well known results of TPM and n0

in bulk specimens of both degenerate and nondegenerate parabolic semiconductors,
respectively. The above sentence is the indirect theoretical test of our mathematical
formulations.

3. Results and discussion

Using Eqs. (6) and (7) and taking the parameters29,30) gp = 3, gs = 2,
m1 = m0/172, M2 = 1.28m0, m2 = m0/0.8, m3 = m0/88.5, Eg = 0.153 eV, By = 1
T, T = 4.2 K and dx = dy = dz = 25 nm, we have plotted in Fig. 1 the normalized

Fig. 1. Plot of normalized TPM versus n0 in QDs of Bi in accordance with: curve a

– McClure and Choi model, curve b – hybrid model, curve c – Cohen model, curve

d – Lax model and curve e – the parabolic ellipsoidal model.
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Fig. 2. Plot of normalized TPM in QDs of Bi versus By in accordance with: curve

a – McClure and Choi model curve b – hybrid model, curve c – Cohen model, curve

d – Lax model and curve e – the parabolic ellipsoidal model. (n0 = 1023 m−3 and

dx = dy = dz = 25 nm).

Fig. 3. Plot of normalized TPM of Bi versus film thickness in accordance with:

curve a – McClure and Choi model curve b – hybrid model, curve c – Cohen

model, curve d – Lax model and curve e – the parabolic ellipsoidal model. (By =
1 T, n0 = 1023 m−3).
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TPM versus n0 in cubic QDs of Bi in accordance with various band models. Plots
for the normalized TPM versus By and 2d0 are shown in Figs. 2 and 3, respectively,
in accordance with the mentioned band models of Bi.

It appears from Fig. 1 that the TPM in QDs of Bi decreases with increasing
electron concentration and the McClure and Choi model enhances the TPM in the
whole range of concentrations considered. It appears from Fig. 2 that the TPM
increases with increasing magnetic field. With varying magnetic field, a change
is reflected in the TPM through the redistribution of the electrons among the
size-quantized levels. It may be noted that the 3D quantization leads to the dis-
crete energy levels, somewhat like atomic energy levels, which produces very sharp
changes. This follows from the inherent nature of the 3D quantization of the carrier
gas dealth with here. Under such quantization, there remain no free electron states
inbetween any two allowed set of size-quantized levels unlike that found for 3D
carrier gases in semiconductors under 2D quantization of k space. Consequently,
the crossing of the Fermi level by the size-quantized levels under 3D quantization
would have much greater impact on the redistribution of the electrons among the
allowed states, as compared to the results for 2D quantization. It appears from
Fig. 3 that the TPM increases with increasing film thickness. Though the TPM
varies nonlinearly in all band models of Bi, as evident from all figures, the rates
of variations are totally band structure dependent. It appears from all figures that
the oscillations of the TPM in Bi is greatest for the McClure and Choi model and
least for the ellipsoidal parabolic energy bands.

The Eqs. (6) and (7) are generalized expressions of TPM and electron concen-
tration in QDs of Bi under strong magnetic field. Only E′ is the band-structure

dependent quantity. This is only possible for 3D quantization of ~k space. We wish to
note that we have formulated the TPM in accordance with all types of band models
of Bi for the purpose of relative comparison as evident from all figures which are
self explanatory. Though the experimental verification of the basic content of the
present work is not available in the literature to the best of our knowledge, the
importance of the TPM in semiconductor physics is already well known. Besides,
our analysis is also valid for holes with the proper change in band parameters.
The carrier energy spectra in Bi could be described by the McClure and Choi, the
hybrid, the Cohen, the Lax and the ellipsoidal parabolic models as often used by
various authors to describe the different physical properties of semimetals. We have
formulated the expressions of TPM for all the models. We have shown that under
certain limiting conditions the four models reduce to the ellipsoidal parabolic energy
bands and expressions of n0 and TPM under the same conditions reduce to the well
known expressions as given by Eqs. (15) and (14), respectively. The Cohen model
is used to describe the carrier dispersion law of lead chalcogenide materials31). The
Lax model under the condition of isotropic effective electron mass at the band edge
reduces to the two-band Kane model which is often used in studying the physical
features of III-V semiconductors, excluding n-InAs31). Furthermore under the con-
dition Eg → ∞, together with the above mentioned equality, the two-band Kane
model reduces to the well known form of isotropic parabolic energy bands which
is often used for investigating the electronic properties of wide band gap materi-
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als. Thus the analysis of the present paper is valid not only for Bi but also for all
types of lead chalcogenides, III-V semiconductors excluding n-InAs, and wide-gap
materials. It may be noted that the basic purpose of the present work is not solely
to investigate the TPM in QDs of Bi in accordance with various band models, but
also to formulate the density-of-states function by deriving new carrier energy spec-
trum since the various transport phenomena and the derivation of the expressions
of many important physical properties are based on the appropriate density-of-
states function in such materials. Finally, it may be remarked that the nature of
variations of TPM as shown here would be similar for most of other non-parabolic
semiconductors, since narrow-gap materials having Kane-type energy bands obey
the two-band Kane model, whereas the present analysis is based on the generalized
Kane’s theory31).
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TERMOELEKTRIČNA SILA U KVANTNIM TOČKAMA POLUMETALA U
PRISUSTVU JAKOG MAGNETSKOG POLJA
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Originalni znanstveni rad

Razmatrana je termoelektrična sila u kvantnim točkama u prisustvu jakog mag-
netskog polja. Kao primjer uzet je Bi. Prikazani su numerički rezultati za nekoliko
modela energetskih vrpci Bi. Opaženo je da termonapon raste s padom koncen-
tracije nosilaca naboja, porastom magnetskog polja te povećanjem debljine filma.
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