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An attempt has been made to investigate analitically the mechanical behaviour of
an open-circuited piezoquartz bar, one end of which is subjected to some prescribed
electrical and thermal excitations while the other end is kept fixed. The method
of operational calculus has been utilised and the numerical results are illustrated
graphically. For time-scale ranging from 0 to 1 s variations of the displacement were
found to be of the order of 10−6 to 10−8 m. Significantly, some disturbances persist
at t = 0 for linear and exponential input signal while the displacement ceases at
t = 0 in case of periodic input signal. The nature of the graph is found to be
parabolic in case of exponential input whereas a linear relationship is obtained in
case of periodic and linear input signals.
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1. Introduction

The studies of piezoelectric transducers from the standpoint of mechanics of
continuous media have been initiated by Mason [1], Haskins and Walsh [2], Cady [3],
Redwood [4], etc. The relevant problems are of much importance in view of their
applications in the field of ultrasonics and acoustic engineering. Earlier workers
like Paria [5], Redwood [4], Windlin [6], etc. discussed the situations where the two
fields, viz., mechanical and electrical interact with each other. Certainly the studies
become more interesting if the above interaction is coupled with a thermal field.
In fact, problems in thermo-piezoelectricity have not been considered extensively.
The present study is an attempt to this end and is a follow-up of the papers by
Paria [5], Kundu [7], Samoilov and Shchedrina [8] and Paul and Raman [9].

The present paper deals with a problem of mechanical behaviour of an open-
circuited piezoquartz bar when one end is kept fixed and the other end is subjected
to some electrical and thermal excitations, viz., with the input signals

i) varying linearly with time and acting for a finite interval,

ii) varying exponentially with time and acting for a finite interval, and

iii) varying periodically with time and acting for a finite interval.

2. Formulation of the problem, fundamental equations and
boundary conditions

We consider here an open-circuited bar of piezoelectric material at one end of
which is applied an electrical voltage as well as a time dependent flux of heat. Our
object is to obtain the mechanical response exhibited by the bar. We shall consider
here three different input signals varying with time and acting for a finite interval,
viz., linear, exponential and periodic.

Since the problem involves the interaction of three fields, viz., mechanical, elec-
trical and thermal, we must consider an equation involving all of them. To derive
such an equation, we take the relevant piezoelectric equations, as in Mindlin [6]

T = c
∂Ψ

∂x
− hD − λθ (1)

E = −h
∂Ψ

∂x
+ βD − γθ (2)

where T , Ψ and θ are stress, displacement and temperature in the x-direction, c
is the elastic stress coefficient, h the piezoelectric stress constant, β the electrome-
chanical coupling factor, λ the thermoelastic compliance, γ the thermo-piezoelectric
modulus, D and E are the electric displacement and electric field, respectively.
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The equation of motion in the x-direction is given by

̺
∂2Ψ

∂t2
=

∂T

∂x
, ̺ = density of piezoquartz . (3)

The electric displacement D satisfies the equation

divD = 0 . (4)

To obtain the equation for the displacement Ψ, we must make some simplifying
assumptions, viz.

i) The X-Z faces of the bar are covered with conducting electrodes so that
∂E/∂x = 0.

ii) The dimension X of the bar is several times larger than that of Y or Z.

iii) The X-Z faces of the bar are thermally insulated so that ∂θ/∂x = 0.

iv) The end at x = X is rigidly fixed.

From Eq. (3), with the aid of Eq. (1) andEq. (2) and the assumptions ∂E/∂x = 0
and ∂θ/∂x = 0, we obtain the wave equation

∂2Ψ

∂t2
= α2 ∂

2Ψ

∂x2
(5)

where

α =
βc− h2

β̺
.

Now, the fundamental Eqs. (1), (2) and (5) are to be solved subject to the
following boundary conditions at x = 0 and x = X:

i) the displacement is continuous, i.e. (Ψ)0 = (Ψ1)0

ii) the force is continuous, i.e. (F )0 = (F 1)0 and at x = X, the displacement is
zero, i.e.

iii) (Ψ)x = 0

together with

(a) Φ = Φ0(1− t/τ), 0 ≤ t ≤ τ
= 0 t > τ

(b) V = V0(1− t/τ), 0 ≤ t ≤ τ
= 0 t > τ

(7)
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for the case (i), and

(a) Φ = Φ0 e
ωt{H(t)−H(t− τ)}, τ > 0

(b) V = V0 e
ωt{H(t)−H(t− τ)}, τ > 0

(8)

for the case (ii), and

(a) Φ = Φ0 sinωt, 0 ≤ t ≤ τ
= 0 t > τ

(b) V = V0 sinωt, 0 ≤ t ≤ τ
= 0 t > τ

(9)

for the case (iii).

Here V and Φ represent electrical voltage and heat influx, respectively, and H(t)
is the Heaviside unit function defined by

H(t) = 1, t > 0

= 0, t < 0 .

3. Method of solution

Applying Laplace transform to Eqs. (5), (7), (8) and (9), we obtain

d2Ψ

dx2
=

p2

α2
Ψ (Re p > 0) (10)

where p is the Laplace transform parameter

(a) Φ =
Φ0

p

{

1−
1

τp
+

1

τp
e−pτ

}

,

(b) V =
V0

p

{

1−
1

τp
+

1

τp
e−pτ

}

,

(11)

(a) Φ = Φ0

{

1

p− ω
−

e−(p−ω)τ

p− ω

}

,

(b) V = V0

{

1

p− ω
−

e−(p−ω)τ

p− ω

}

,

(12)

(a) Φ =
Φ0

p2 + ω2

{

ω − p e−pτ sinωτ − ω e−pτ cosωτ
}

,

(b) V =
V0

p2 + ω2

{

ω − p e−pτ sinωτ − ω e−pτ cosωτ
}

.

(13)

The solution of Eq. (10) is given by

Ψ(x, p) = A(p) e−px/α +B(p) e+px/α (14)
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where A(p) and B(p) are constants to be determined from the boundary conditions
Eq. (6).

We may mention here that a wave equation of the form of Eq. (5) is satisfied
even if the material is non-piezoelectric but with a different wave velocity. Therefore,
we assume, after Redwood [4], that two mechanical systems labelled 1 and 2 are
attached to the two extremities of the bar x = 0 and x = X. The displacements
in those materials will be similar to Eq. (14) with different values of A and B, say
A1, B1 and A2, B2 in materials 1 and 2, respectively.

To develop next the relation between electrical, mechanical and thermal quan-
tities, we put as in Paria [5]

F = TY Z , V = EY , Φ =
Kθ

Y

where F , V , Φ represent the mechanical force, electrical voltage and heat influx,
respectively, and K denotes the constant of diffusion. With these substitutions we
obtain the required relation from Eqs. (1) and (2):

F = pα2Y Z̺
(

−Ae−px/α +Be+px/α
)

−
hZ

β
V −

(

λ+
hν

β

)

Y 2Z

K
Φ . (15)

3.1. Displacement for the case (i) (the input signals varying linearly
with time acting for a finite interval)

From Eqs. (6), (11), (14) and (15) we obtain the following relations

B1 = A+B (16)

pα2Y Z̺(−A+B)−
hZ

β

V0

p

{

1−
1

τp
+

1

τp
e−pτ

}

−

−

(

λ+
hν

β

)

Y 2Z

K

Φ0

p

{

1−
1

τp
+

1

τp
e−pτ

}

= pα2
1Y1Z1̺B1 (17)

Ae−pX/α +Be+pX/α = 0 . (18)

Solving Eqs. (16), (17) and (18) we get the values of A and B as

A = epX/αµ

{(

1

p
−

1

τp2
+

1

τp2
e−pτ

)

1

p

}

{

̺
(

c2e
−pX/α − c1e

pX/α
)}

−1

B = e−pX/αµ

{

1

p
−

1

τp2
+

1

τp2
e−pτ

}

1

p

{

̺
(

c1e
pX/α − c2e

−pX/α
)}

−1
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where
c2
c1

=
α2
1Y1Z1 − α2Y Z

α2
1Y1Z1 + α2Y Z

= c0 say (19)

and

µ =
hZ

β
V0 +

(

λ+
hν

β

)

Y 2Z

K
Φ0 .

Substituting the values of A and B in Eq. (14) we obtain

(Ψ)0 = −
µ

c1̺

1

p

{

1

p
−

1

τp2
+

1

τp2
e−pτ

}

(1− c0 e
−2pX/α)−1(1− e−2pX/α) . (20)

The inverse transform of Eq. (20) is given by

(Ψ)0 =−
µ

c1̺

2X

α
(1 + c0)

{

1−
t

τ
+

1

τ
(t− τ)H(t− τ)

}

+

+
µ

c1̺
c0

4X2

α2

{

−
1

τ
+

1

τ
H(t− τ)

}

. (21)

3.2. Displacement for the case (ii) (the input signals varying
exponentially with time acting for a finite interval)

Solving Eqs. (6), (12), (14) and (15) we obtain (after taking the inverse trans-
formation)

(Ψ)0 =−
µ

c1̺

2X

α
(1 + c0)

{

eωt − eωtH(t− τ)
}

+

+
µ

c1̺
c0

4X2

α2

{

ωeωt − eωt δ(t− τ)− ωeωtH(t− τ)
}

. (22)

3.3. Displacement for the case (iii) (the input signals varying
periodically with time acting for a finite interval)

Solving Eqs. (6), (13), (14) and (15) we obtain (after taking the inverse trans-
formation)

(Ψ)0 =−
µ

c1̺

2X

α
(1 + c0) {sinωt− cosω(t− τ)H(t− τ) sinωτ−

−H(t− τ) sinω(t− τ) cosωτ}+
µ

c1̺
c0

4X2

α2
[ω cosωt− sinωτ{δ(t− τ)−

−ω sinω(t− τ)H(t− τ)} − cosωτ{ω cosω(t− τ)H(t− τ)}] . (23)
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Eqs. (21), (22), (23) show the response of the bar under three different time-
dependent input signals.

For numerical computations, the standard values of the material constants have
been taken from Cady [3], Gibbs [10], Jin-Feng Wang et al. [11], Sasaki [12] and
Imano [13], while values like Y , Z, X, ω, V0, Φ0, τ have been chosen suitably to
facilitate the numerical computations as follows:

Φ0 = 4.18 · 103 J Y = Z = 0.01 m
V0 = 300 V X = 0.1 m
ω = 1.57 rad/s τ = 1 s.

The mechanical response of a piezoquartz bar for various input signals correspond-
ing to a time interval from t = 0 to t = 1 s have been shown in Table 1.

Table 1. Variation of the mechanical responses of a piezoquartz bar for three dif-
ferent inputs with time.

Time
(s)

For linear
input signal
(Ψ0)× 10−7 m

For exponential
input signal
(Ψ0)× 10−6 m

For periodic
input signal
(Ψ0)× 10−8 m

t = 0 –5.96 –0.59 0.0
t = 0.1 –5.36 –0.69 –0.16
t = 0.2 –4.76 –0.81 –0.32
t = 0.3 –4.17 –0.95 –0.48
t = 0.4 –3.57 –1.11 –0.65
t = 0.5 –2.98 –1.30 –0.81
t = 0.6 –2.39 –1.52 –0.97
t = 0.7 –1.78 –1.78 –1.14
t = 0.8 –1.19 –2.09 –1.30
t = 0.9 –0.59 –2.44 –1.40
t = 1.0 –0.0 –2.86 –1.63

4. Discussion

The response given by Eqs. (21), (22) and (23) have been illustrated in Figs.
1, 2 and 3, respectively, for a piezoquartz bar. It is observed that for thermal and
electrical input signals which vary linearly with time, the disturbance is linear (Fig.
1). Again, for input signals which vary exponentially with time the response shows
an arc of a parabola (Fig. 2). Further, under periodic input signals, the disturbance
gives out a linear relationship (Fig. 3).

It is interesting to note that in Figs. 1 and 2 some disturbances persist at t = 0
while in Fig. 3 the disturbance ceases at t = 0. This treatment is valid only within
investigated range of time.
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Fig. 1. The response of a piezoquartz bar under input signal varying linearly with

time and acting for a finite interval.

Fig. 2. The response of a piezoquartz bar under input signal varying exponentially

with time and acting for a finite interval.
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Fig. 3. The response of a piezoquartz bar under input signal varying periodically

with time and acting for a finite interval.

The mechanical response of a piezoquartz bar for various input signals corre-
sponding to a time interval from t = 0 to t = 1 s have been shown in Table 1.
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Originalni znanstveni rad

Analitički su istražena mehanička svojstva piezoelektričnog kremenog štapa koji
nije u električnom krugu i kojemu se jedan kraj drži pod stalnim uvjetima a drugi
je podvrgnut izvjesnoj električnoj i toplinskoj uzbudi. Primjenjena je metoda op-
eracijske analize, a numerički rezultati su predočeni grafički. Za vremenske intervale
do 1 s nalaze se pomaci od 10−6 do 10−8 m. Važno je istaći da neki učinci uzbude
ostaju u t = 0 za linearne i eksponencijalne ulazne signale, dok pomaci nestaju u
t = 0 u slučaju periodičkih ulaznih signala. Nalazi se parabolička ovisnost učinaka u
slučaju eksponencijalnog ulaznog signala, a linearna ovisnost u slučaju periodičkih
i linearnih ulaznih signala.
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