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In this paper an attempt is made to investigate theoretically the heat capacity in
graphite having quantum confinement in one, two and three dimensions such as
quantum wells, quantum wires, quantum dots and magneto-sized quantization of
band states. The appropriate density of states functions are deduced, taking into
account various types of anisotropies of the energy band constants. It has been
found that the heat capacity oscillates with the film thickness, magnetic film and
doping in various manners. The heat capacity is largest in quantum dots and smalle-
st in quantum wells. The theoretical analysis is in agreement with the experimental
results.
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1. Introduction

In recent years, with the advent of fine lithographical methods [1], molecular
beam epitaxy [2], organometallic vapour-phase epitaxy [3] and other experimen-
tal techniques, low-dimensional structures [4-6], having quantum confinement in
one, two and three dimensions (such as quantum wells, quantum wires, quantum
dots and magneto-sized quantization), have attracted much attention not only for
their potential in uncovering new phenomena in thermal analysis, but also for their
various device applications. In quantum wells (QWs), due to the presence of the
quantum size effect, the electrons are confined in 2D films [2]. In quantum wells
wires (QWWs), the two directions of motions are quantized and electrons can only
propagate in a single direction [8]. In quantum dots (QDs), the wave-vector space is
totally quantized and the 3D quantization occurs [9]. The 3D quantization can also
occur under magneto-sized quantization (MSQ) since in the presence of a quantizing
magnetic field, the density of states becomes the Dirac delta function in QWs due
to the influence of Landau quantization [10]. Although many new effects associated
with quantum confinements have already been reported, there still remain topics
for investigation as the interest for further research on different other aspects of
various thermal compounds is becoming increasingly important. One such impor-
tant property is the heat capacity (HC) of such materials. The HC of the carriers in
different metals and semiconductors have been reported under various physical con-
ditions [11-14]. Nevertheless, it appears that the HC in quantum confined graphite
has yet to be investigated under the aforementioned quantization of band states by
considering the anisotropies of the energy band constants. Besides, since the Mott
insulators and the microelectronic devices are usually being distinguished by the
characteristic of HC, and the speed of operation of the thermal quantum confined
devices is directly proportional to it, it would be of much interest to investigate the
heat capacity in quantum confined graphite, particularly at low temperature where
the aforementioned quantum effects become important and also when the phonon
contribution to such capacity becomes negligible. We shall investigate the HC in
QWs, QWWs, QDs and MSQs of graphite. We shall study the doping, magnetic
field and film thickness dependence of HC in such graphite microstructures.

2. Theoretical background

A. Formulation of HC in QWs of graphite
The total heat capacity can be written [15] as

C=C+0s. (1)
(1 is the lattice heat capacity. For the present case it can be expressed as [15]

0p /T
Cy = (4kpT/03) / y? exp(—y)[1 — exp(—y)]"2dy ()

[}
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where kp is the Boltzmann constant, T is the temperature and 6p is the Debye
temperature. C5 is the electronic heat capacity which can, in turn, be expressed as
[16]

<L:i/ENum[E7#%3+ﬁ?}dk

where N(FE) is the density of states function, Er is the Fermi energy, f, is the
Fermi-Dirac occupation probability factor and E is the total energy of the carriers.
The term (dEr/dT) can be obtained from the expression of carrier concentration
(no = [ N(E)f(E)dE) by substituting (dn./dT) = 0, since at low temperatures,
where such quantum confined devices operate and the quantum effects become
prominent, such substitution becomes justified on physical grounds [18].

Lean, (3)

It appears that the formulation of the HC in the present case requires expressions
of N(E) and n, which are determined by the appropriate electron energy spectrum.
The E —k dispersion relation of the conduction electrons in graphite can be written
[17,21] as

1

E=_
2

1
[Er+ B3] £ [1(E2 — E3)? + n3k%Y2, (4)

where

By = [A — 2y cos ¢ + 275 cos? @] ,
¢ =ck,/2
k2 = k2 + k2 4 &2
B3 = 2yyc08°¢

2 = (V3/2)a(yo + 274 cos ¢) .

where the physical meaning of the band parameters have been defined in Ref. 17.

Therefore, the electron energy spectrum in QWs of graphite can be expressed
as

c(n)k? = [E — A(n)]* — B(n) — C(n)(nm/d.)?, (5)

1
A(n) = i[A — 271 cos(Cnr/2d,) + 275 cos?(Cnm /2d, ) + 275 cos®(Cnr/2d.,)] -
n = 1,2... is the size quantum number along the z-direction,
1
B(n) = Z[A — 275 cos(Cn/2d.) + 275 cos®(Cnr /2d.,) — 272 cos®(Cnr/2d,)]?
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C(n) = (2a*/4)[yo + 274 cos(Cnr/2d.)]* ,

kI =k + k2

and d, is the film thickness along the z direction. The use of Eq. (5) leads to the
expression for the density of states function as

N(B) = 2m)t S (B - Am)O(E - B,)/C(n) (6a)

n=1

where O is the Heaviside step function and F,, can be determined from the equation
E, = A(n) £ [B(n) + C(n)(nr/d.)?|/2. (6b)

Thus, combining Eq. (5) with the Fermi-Dirac occupation probability factor,
the surface electron concentration can be expressed as

Nmax

no = (kpT/2m) Y O~ (n)[kpTFi(n) + Fo(n){En — A(n)}], (6¢)

where n = (kgT)"'(Er — E,), Er is the Fermi energy and Fj(n) is the one-
parameter Fermi-Dirac integral of order j [18,19]. The use of Eq. (6¢) leads to the
expression of E, (the prime denotes the differentiation with respect to T') as

Ep = [pr(n)py " (n)] (7)

where

Nmazx

pr(n) = [=no/T + (kpT/27) Y C*(n)C'(n)[kpTFi(n) + Fo(n) { By — A(n)}

n=1

C(kpT/2m) S O () kT F 1 (n) — ks Fu(m)n — Fo() Bl

Fo{E, = A'(n)} + Fa(n{=(n/T) — (E,/ksT)(En — A(n))}]

and

Nmax

pa(n) = [(kpT/2m) Y O~ (n)[Fo(n) + F_1(n)(ksT) " (Er — A(n))]].
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Combining Egs. (3), (6a) and (7) we get

Nmax

Co= Y [[(Br)+ fo(Er)(2m) ", (®)

n=1

where

o) = { (B/Cm (B - a0 [E2EE + 2] }E_EF

s
f2(Er) = ZQT[fl(EF)] .

r is the set of real positive integers,

d2r

_ 2r __ol=2r
qr = 2(kBT) (1 2 )C(QT) dE%.T ’

and ((2r) is the zeta function of order 2r [20].

3. Formulation of HC in QWW of graphite

Eq. (5) leads to the expression for the electron dispersion law in QWWs of
graphite as

C(n)k; = [E — A(n)*] = B(n) — C(n)(nm/d.)* = C(n)(tr/dy)*, (9)
from which follows
ki = (E?/C(n)) 4+ Ci(n) — Ca(n)E, (10)
where

Ci(n) = C~'(n)[A%(n) — B(n) — C(n)x*{n’d; > + °d,*}] .

t and d,, are the size quantum number and the thickness, respectively, and Cy(n) =
2A(n)/C(n). Therefore, the density of states function is given by

Nmaz tmaz

N(B)= 2= Y0 3 Co(Em)O(E ~ By(n) (1)

n=1 t=1
where
E2
C(n)

Cs(B,n) = [2EC™!(n) = C2(n)]| +Ci(n) — Ca(n)E) /2
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and E4(n) is obtained by putting £ = E4(n) and k, = 0 in Eq. (10). The use of
Eq. (11) leads to the expression of electron concentration per unit length in QWWs
of graphite as

Nmaz tmaz

Y0 D fs(Bron) + fa(Eron)], (12)

n=1 t=1

where
f3(EF,n) = [E% — C_l(n) +Ci1(n) — EFa(’n)}l/Z 5

Er is the Fermi energy in the present case and

EF; qu f3 EFv

Using Eq. (3) the electronic heat capacity for QWW of graphite can be expressed
as

Nmaz tmaz

Y Y Us(Brin) + fo(Er,n)], (13)
n=1 t=1
where
EF—F dFE
and

fe(Ep,n qu f5(Ep,n

where dd% can be obtained from Eq. (12) by putting c(llv% =0.

4. Formulation of HC in QDs of graphite

Following Eq. (10), the modified electron dispersion law for QDs of graphite
can be written as

(mu/dy)? = (E?/C(n)) + Ci(n) = C2(n)E, (14)

where u and d, are the size quantum number and the thickness along the z-
direction, respectively. Eq. (14) leads to the expression for the density of states
function as

Nmaz tmaz Umaz

N(E) (E — Es), do =dg/2, (15)

n=1 t=1 u=1
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where ¢’ is the Dirac delta function and Ej is obtained from Eq. (14) by putting
FE = E5. Thus, the electron concentration can be expressed as

STS Fam),s (16)

where n; = (kgT) ' (Er — E5) and EF is the Fermi energy. From Eq. (16) we can
write

n=1 t=1 u=1 n=1 t=1 u=1
In this case Cs is given by

Nmaz tmaz Umaz

Cy = (dodyd-kpT)™" > Y Y Es{T"'(Er — E5) — Z1}

n=1 t=1 u=1

FEs — E Bs — Er\1 7
X exp <5kBTF) {1 + exp <5kBTF>] . (18)

5. The HC in graphite under magneto-sized quantization

The electron dispersion law assumes the form

2c(m) | % (0 + )| = (B = A~ Bw) - COoam/a )P, (19)

where H is the quantizing magnetic field along z-direction and w is the Landau
quantum number. The density of states function can be written as

Nmaz Wmazx

QeH S N §(E - Eo), (20)

n=1 w=0

where Eg is obtained from Eq. (19) by putting F = Eg. The electron concentration
can be expressed as

Nmaz Wmax

no= 2NN P (21)

n=1 w=0

where
= (Ep — Eg)(kgT) ™!
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and E is the Fermi energy. Eq. (21) leads to the expression dEg/dT = Z5, where

MNmaz Wmax MNmazr Wmax
Zy=[Y_ > Foom) ' D Y (kpna+ E)F_s(n2)].
n=1 w=0 n=1 w=0
In this case Cy is given by
2eH '&utee”
Coy = E¢T Y (Ep — Eg)—
2= 7 ST (Er — )

Es—E Es— Ep\] 2
_ZQ exXp (6I{;B11F> |:]. + exp <6I{;B17F>:| . (22)

6. Results and discussion

Using Egs. (1) to (22) and assuming the following values of the parameters [21]
Yo =3 eV, v1 = 0.392 eV, 79 = —0.019 eV, 73 = 0.21 eV, 74 = 0.193 eV, v5 = 9.11
eV, T =42 K, A = —0.0002 eV, a = 24.6 nm, C = 67.3 nm, 7, = 1073 eV/K,
7 =2-107%eV/K, 74 = —=3-107% eV/K, 74 = —2-107% eV/K, 7}, = 2.1- 1073
eV/K, vt = 1076 eV/K, A’ = —6-107° eV /K, 6p = 300 K, we have calculated
the normalised HC of QWs, QWWs, QDs and MSQ of graphite as functions of
doping, film thickness and the magnetic field for various temperatures. The results
are shown in Figs. 1 to 8. The circles show the experimental results [21]. From the
above discussions and the figures the following features follow:

1. From Fig. 1 it appears that the HC increases with increasing electron concen-
tration per unit area in QWs of graphite in steps which reflect the dependence of
the density of states function under size quantization. Fig. 2 illustrates that the HC
decreases with increasing film thickness also in a step-like fashion. The steps are
not perfect due to the presence of finite temperature. The temperature enhances
the value of the HC in the whole ranges of variables considered in the figures. From
Fig. 1, the influence of the size quantization is immediately apparent. The HC has
become strongly dependent on the thickness of the ultrathin films in contrast with
the HC of bulk specimens of graphite.
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10 L1 L I\ § I 1 | 1 1 1 1 1 1 1

]011 12 13 1011. 1015

n, (m?)

Fig. 1. Plot of the normalized HC in QW3s of graphite versus surface concentration
of electrons at a) 10 K and b) 4.2 K (d,=40 nm).
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20 30 40 50 60

dz(nm)

Fig. 2. Plot of the normalized HC in QWs of graphite versus film thickness d, at
a) 10K and b) 4.2 K (n,=101* m~2).
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2. From Fig. 3, it appears that the HC in QWWs of graphite increases with
increasing electron concentration per unit length in sharp steps. From Fig. 4, it
appears that the HC in QWWs of graphite decreases continuously in the electric
quantum limit with increasing film thickness. Due to the 1D carrier motion, the
value of the Fermi energy is greater as compared with the 2D motion. As a conse-
quence, the value of the HC is enhanced.

32

2’9

20

V7 1 1 N 1 1 1 1 | 1 L 1 | L L ]

100 1o"n iy 102 10" 10"
0

Fig. 3. Plot of the normalized HC in QW Ws of graphite versus linear concentration
of electrons n, at a) 10K and b) 4.2 K (d, = d,=40 nm).
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32
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Fig. 4. Plot of the normalized HC in QWWs of graphite at the electric quantum
limit (n =t = 1) versus film thickness d, at a) 10 K and b) 4.2 K (d,=40 nm and
no =101 m=1).
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From Fig. 5, it appears that the HC decreases with increasing film thickness
in QDs of graphite in the step-like fashion. From Fig. 6, it appears that the HC
increases with increasing electron concentration in a monotonous manner in the
electric quantum limit in QDs of graphite. It may be noted that in QDs, the
3D quantization leads to the discrete energy levels somewhat like atomic energy
levels. That produces very large effects. Under such quantization, there remain no
free electron states and, consequently, the crossing of the Fermi levels by the size
quantized subbands has a much greater effect on the redistribution of the electrons
as compared to that found for the 1D quantization. It is basically this effect that
results in the enhancement of the HC under 3D quantization as found in QDs of
graphite.

35

34

KN

30

20 30 40 50 60
dy{nm)

Fig. 5. Plot of the normalized HC in QQDs of graphite versus film thickness d, at a)
10K and b) 4.2 K (dy, = d,=40 nm and n, = 10! m™3).
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30
10'8 10™ 1020 102! 10%2
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0

Fig. 6. Plot of the normalized HC in (QDs of graphite versus n, at the electric
quantum limit (n =t =w =1) at a) 10K and b) 42K (d; = d, = d,=40 nm).
The circles show the experimental results.
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From Fig. 7, it appears that HC in magneto-sized graphite decreases in an
oscillatory way with the magnetic field. The HC also increases with increasing
electron concentration per unit area for the present case as shown in Fig. 8. This
is another type of 3D quantization which can be produced in graphite.

35

3'0 1 I 1 | ) ) ] J 1 L | i 1 L ¥
10 1"2 1°4 1'8 1'8
H(T)

Fig. 7. Plot of the normalized HC in magneto-sized graphite versus magnetic field
B ata) 10K and b) 42K (n, = 10" m~2, d, = 40 nm).
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3 -

3°0
18 19 20 22

10 10 S 10 104! 10
n, (m™)

Fig. 8. Plot of the normalized HC in magneto-sized graphite versus surface concen-
tration of electrons no at a) 10 K and b) 4.2 K (B=1T, d,=40 nm).

In conclusion, it may be noted that the basic purpose of the present work is
not solely to investigate the HC in graphite but also to formulate the appropriate
density of states function since the different thermal properties of quantum confined
graphite are based on the density of states function in such microstructures.
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UTJECAJ KVANTNOG ZASUZNJENJA NA TOPLINSKI KAPACITET
GRAFITA
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UDK 538.95
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PokusSava se objasniti toplinski kapacitet grafita u kojem postoji kvantno
zasuznjenje u jednoj, dvije ili tri dimenzije, tj. u kvantnim jamama, kvantnim
zicama, kvantnim toCkama, te sistemima s magnetski-ogranicenom kvantizacijom
stanja vrpci zakljuéivanjem o odgovarajucem obliku funkcije gustoée stanja. Pri
tome se uzimaju u obzir razni oblici anizotropije konstanti energetskih vrpci.
Nadeno je da toplinski kapacitet titra kao funkcija debljine sloja, magnetskog polja
i dopiranja. Toplinski kapacitet je najveéi u kvantnim tockama, a najmanji u kvant-
nim jamama. Teorijska analiza u skladu je s rezultatima mjerenja.
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