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We present a simple theoretical analysis of the Burstein-Moss shift in ultrathin
films of bismuth in presence of crossed electric and quantizing magnetic fields in
the presence of spin and broadening of Landau levels. The numerical results are
presented for McClure and Choi, hybrid, Cohen, Lax and ellipsoidal parabolic
energy band models. It was found that the shift increases for thinner films and
in weaker magnetic field. In addition, the shift increases with increasing electron
concentration, and the quantum oscillations, in accordance with the Mc Clure and
Choi model, show up much more significantly than with other models of bismuth.

1. Introduction

Bismuth has been the subject of a large number of experimental and theoretical
investigations at low temperatures due to the fact that it is easy to observe various
phenomena when subjected to different physical conditions [1-20]. Bismuth is con-

FIZIKA A 3 (1994) 2, 77–90 77



s. banik et al.: a simple analysis of the burstein-moss shift . . .

sidered to be a semimetal because its electronic properties are between those of a

metal and semiconductor. The E−~k dispersion relations of carriers in bismuth dif-
fer considerably from simpler spherical constant-energy surfaces of the degenerate
electron gas. Initial work demonstrated that carriers in bismuth could be described
by the ellipsoidal parabolic model or one-band model [2-3]. Several workers [4-5]
have observed that many nonlinear effects in the high-frequency region or in strong
magnetic fields in bismuth can be described by the Lax ellipsoidal nonparabolic
model [6], whereas Dinger and Lawson [7] indicated that the Cohen model [8] is in
better agreement with the experimental results on cyclotron resonance. In a work
on magnetic surface resonance, Takoaka et al. [9] concluded that neither the Lax
model nor the Cohen model are adequate. They proposed a hybrid band model of
bismuth and showed that the Lax and Cohen models are simplified limiting cases
of their hybrid dispersion relation [9]. In 1977, McClure and Choi [10] presented
a new model of bismuth that was more general than the previous models. They
showed that their model fit the data for a large number of magneto-oscillatory and
resonance experiments. Though considerable work has already been done, there
still remain scopes to be investigated while the interest for further research of the
different other electronic properties of Bi is becoming increasingly important. One
such important feature is the Burstein-Moss shift (hereafter referred to as BMS)
that has been relatively less investigated under the conditions of quantum confine-
ment [21]. It appears that the same shift in ultrathin films of Bi has yet to be
studied for the more interesting case which occurs from the presence of crossed
electric and quantizing magnetic field. The crossed-field configuration is of funda-
mental importance for classical and quantum transport phenomena in crystalline
solids at low temperatures [22]. Optical investigations of solid in crossed electric
and magnetic fields started with the work of Hensel and Peter [23], who indicated
that the influence of an electric field on the Landau levels should lead to observable
effects in cyclotron resonance experiments.

In ultrathin films, when the film dimension is comparable with the de-Broglie
wavelength of the carriers, the restriction of the motion of the carriers in the direc-
tion normal to the film (say, the y-direction) may be viewed as carrier confinement
in an infinitely deep one-dimensional square potential well, leading to the quanti-
zation (known as the quantum size effect, QSE) of the wave vector of the carriers
along y-axis, which produces a discrete energy spectrum. The other criteria to be
met in order to observe QSE are that the film thickness be extremely uniform and
the lifetime of the electronic particle be long enough that the new QSE properties
are not broadened beyond recognition [24]. The QSE in ultrathin films of bismuth
under the above conditions has been experimentally observed [24].

In Section 2.1. we shall derive the BMS in ultrathin films of bismuth in the
presence of crossed electric and magnetic fields by using the McClure and Choi
model. We shall then derive an expression for the appropriate electron concentration
by using the same model for the purpose of investigating the dependence of BMS
on doping. The results for the corresponding BMS by using a hybrid model are
given in Section 2.2, from which the simplified limiting cases of the Cohen, Lax and
parabolic models can easily be derived. The doping, film thickness and magnetic
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field dependences of the BMS in various band models have also been investigated.

2. Theoretical background

2.1. Derivation of the BMS in ultrathin films of bismuth using the

McClure-Choi model under crossed-field configuration

Following McClure and Choi [10], the dispersion relation of the carriers in bulk
specimens of bismuth [11] can be expressed as
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where E is the carrier energy in the absence of any quantization, α = 1/Eg, Eg

is the band gap, ~p = h̄~k, ~p is the momentum vector of the carriers, h̄ = h/2π, h

is the Planck’s constant, ~k is the wave vector, p2 = p2x + p2y + p2z, px, py and pz
are the components of the momentum along x, y, and z directions, respectively,
mic,v (i = 1, 2 and 3) are the effective masses at the band edge along px, py and pz
directions for electron or holes, respectively, m

′

2c is the longitudinal effective mass

of the holes for the valence bands in the case of electrons and m
′

2v is the longitudinal
effective mass of the electron for the conduction band in the case of holes. In the
presence of an electric field E0 along the trigonal axis and a quantizing magnetic
field B along the bisectrix axis, the modified electron and hole energy spectra can
be expressed by extending the method of Zawadski and Lax [25] as follows
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where n and n
′

are the Landau quantum numbers for electrons and holes, respec-
tively, e is the carrier charge, ω0c,v = eB(m1c,v m3c,v)

−1/2 and gc,v are the band
edge g-factors for electron and holes, respectively. In an ultrathin film, the car-
riers are assumed to be confined in a one-dimensional potential well of a width
d0, leading to the quantization of the wave vector in the direction normal to the
film (here in the y-direction). Therefore, in the presence of size quantization, the
modified carrier energy spectra in ultrathin films of bismuth under crossed-field
configuration can be written, as follows
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where l and l
′

are the size quantum numbers for electrons and holes, respectively.

Thus, the BMS can be written as

∆ = EF + Eg + E1, (6)
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where EF is the Fermi energy and E1 can be expressed from (4) and (5) as
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It appears that the evaluation of the BMS as a function of carrier concentration
requires an expression of electron statistics which can be expressed, including spin
and broadening, as

n0 =
gveB

h

nmax
∑

n=0
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1 +A0 cos l0
1 +A2

0
+ 2A0 cos l0

(8)

where gv is valley degeneracy,

A0 = exp (−ηnl), ηnl =
EF − Enl

kBT
,

Enl is obtained by putting px = 0 in (4), kB is the Boltzmann constant, T is the
temperature, l0 = Γ/kBT and Γ is the broadening parameter [26].

2.2. The BMS in hybrid model and in several limiting cases

The hybrid model of bismuth can be written [9] as follows
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where

β(E) = 1 + α(E)(1− γ) + δ,
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2v,c, M2v,c is the transverse effective mass of the holes (electrons) and
δ = M2v,c/m2v,c. The modified carrier energy spectra in ultrathin films of bismuth
under crossed-field configuration can, according to the hybrid model, be expressed
as
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The general forms of the BMS and the electron statistics of bismuth for the hybrid
model are given by (6) and (8), respectively, where E1 and Enl are expressed by
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For γ = 0 and δ = 0, (9) is simplified to the Lax model, whereas for δ = 0
the same equation leads to the Cohen model as stated in the literature [9]. Thus,
simply by changing E1 and Enl, we can obtain the BMS and the electron statistics
in ultrathin films of bismuth under crossed-field configuration for either the Lax or
the Cohen model.

If α → 0 (as for the parabolic energy bands), (1) gets simplified as

E =
p2x

2m1c,v
+

p2y
2m2c,v

+
p2z

2m3c,v
, (14)

which is the ellipsoidal-parabolic model of bismuth. In addition, under the con-
ditions α = 0 and γ ≫ 1, the hybrid model as given by (9) is simplified to (14).
Therefore, under the above conditions, the dispersion relations of the carriers in
ultrathin films of bismuth under the crossed-field configurations can be expressed,
as in the parabolic model, by
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Even for parabolic energy bands the general forms of BMS and n0 are given by (6)
and (8), respectively, where
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Finally, under the conditions E0 = 0, α = 0, m1 = m2 = m3 = m∗ and neglecting
broadening, the expression of electron concentration assumes the form [27]
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and Fj(ηnl) is the Fermi-Dirac integral of order j [28].
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3. Results and discussion

Using Eqs (6), (8), (12), (13), (17) and (18) and taking the following values of the

parameters [9-16] gv = 3, m1c = m0/172, m2c = m0/0.8 = m
′

2c, m
′

3c = m0/88.5,
Eg = 0.0153 eV, M2v = 1.28m0, M2c = 1.2m0, d0 = 40 nm, gc = 55, gv = 20,
Γ = 10−4 eV, B = 2.3 T, m1v = m2v = m0/14.9 = m

2v′ , m3v = m0/1.41, and
T = 4.2 K we have calculated the BMS in ultrathin films of bismuth under the

Fig. 1. Plot of the BMS at 4.2 K as a function of the electron concentration in
ultrathin films of bismuth in the presence of crossed electric and magnetic fields for
d0 = 40 nm and B = 1 T. The curves show the results of calculations based on the
(a) McClure and Choi model, (b) hybrid model, (c) Lax model, (d) Cohen model
and (e) the anisotropic parabolic model.
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crossed-field configuration as a function of electron concentration. The results based
on the McClure and Choi, hybrid, Cohen, Lax and parabolic-ellipsoidal band mod-
els are shown in Fig. 1. Using the same parameters, we present in Figs. 2 and 3 the
computed BMS as a function of film thickness and of magnetic field, respectively,
for the aforementioned band models of bismuth. Fig. 1 shows that the BMS is
an oscillatory function of the electron concentration. The oscillatory dependence
of the BMS on the electron concentration is most prominent in the McClure and
Choi model. The dependence of the BMS on the surface electron concentration is
determined by the particular band structure because of its direct relevance to the
Fermi energy.

Fig. 2. Plot of the BMS at 4.2 K as a function of the film thickness in ultrathin films
of bismuth in the presence of crossed electric and magnetic fields for n0 = 2× 1014

m−2 and B = 1 T. The curves show the results of calculations based on the (a)
McClure and Choi model, (b) hybrid model, (c) Lax model, (d) Cohen model and
(e) the anisotropic parabolic model.
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From Fig. 2 we note that the BMS is strongly dependent on the thickness of
the film. The influence of the size quantization is immediately apparent from Fig.
2, since the BMS is strongly dependent on the thickness of the ultrathin films
under crossed-field configuration in contract with bulk specimens of bismuth. The
appearance of the humps in Figs. 1 and 2 is due to the redistribution of electrons
among the quantized energy levels.

Fig. 3. Plot of the BMS at 4.2 K as a function of 1/B in the presence of crossed
electric and magnetic fields for n0 = 2 × 1014 m−2 and d0 = 40 nm, respectively.
The curves show the results of calculations based on the (a) McClure and Choi
model, (b) hybrid model, (c) Lax model, (d) Cohen model and (e) the anisotropic
parabolic model.
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In Fig. 3 we observe that the BMS oscillates with the reciprocal magnetic field.
The results of calculations of the quantum oscillations of the BMS in bismuth, as
shown in the figures, are considerably larger for the McClure and Choi model than
for other models.

4. Conclusions

We have formulated the BMS in ultrathin films of bismuth in a crossed-field
configuration by deriving the respective expression of the carrier statistics for the
McClure and Choi, the hybrid, the Cohen, the Lax and the ellipsoidal-parabolic
models. If α = 1/Eg → 0, the result based on the McClure and Choi model, as given
by (1) reduces to (14), that is, the equation for anisotropic parabolic energy bands.
Also, under the limiting conditions α → 0 and δ ≫ 1, the result for the hybrid
model as given by (9) reduces to (14). The Cohen and Lax models, which are the
special cases of the hybrid models, also reduce to (14) under the condition α → 0.
Therefore, under these limiting conditions, the results for n0 and BMS for all the
four models get simplified to the recpective expressions for the anisotropic parabolic
model. The Cohen model is used to describe the dispersion relation of the carriers
of lead chalcogenide materials [28]. The Lax model under the condition of effective
isotropic carrier effective mass at the edge (i.e. m1 = m2 = m3 = m∗) reduces to the
two-band Kane model, which is often used in studies of the physical properties of III-
V compound semiconductors, excluding n-InAs [28]. Besides, under the condition
Eg → ∞, together with the aforementioned equality, the two-band Kane model
gets simplified to the well-known form for isotropic parabolic energy bands: E =
h̄2k2/2m∗, which is used often for investigating electronic properties of wide-gap
materials. Thus, the analysis of our paper is valid, not only for semimetals like
bismuth, but also for other types of semiconductors having various band structures.

The variations of the BMS are entirely band structure dependent. The BMS in
ultrathin films of semimetals under crossed-field configuration can be assessed from
our present work. We have not considered other types of semimetals or other phys-
ical variables. With different sets of energy band parameters we shall get different
numerical values of BMS, though the nature of variations will be unaltered.

Our result will be changed for arbitrary crossed-field configuration. It may be
noted that, although the effects of electron-electron interactions should properly
be considered, this simplified analysis exhibits the basic qualitative aspects of the
BMS in ultrathin films of bismuth under crossed-field configuration. It may fi-
nally be remarked that the basic aim of the present paper was not to investigate
only the BMS in ultrathin films of bismuth under crossed-field configuration, but
also to formulate the electron concentration in accordance with the various band
models, by including spin and broadening, since the various transport and other
phenomena in semimetals and the derivation of the expressions of many important
physical parameters are based on the temperature-dependent electron statistics in
such materials.

88 FIZIKA A 3 (1994) 2, 77–90



s. banik et al.: a simple analysis of the burstein-moss shift . . .

References

1) M. Sengupta and R. Bhattacharya, J. Phys. Chem. Solids 46 (1985) 9;

2) D. Shoenberg, Proc. R. Soc. Lond. 170 A (1939) 341;

3) B. Abeles and S. Mieboom, Phys. Rev. 101 (1956) 544;

4) M. P. Vechi, J. R. Pereira and M. S. Dresselhaus, Phys. Rev. 14 B (1976) 298;

5) J. P. Michemaud, J. Heremans, M. Shayegan and C. Haumont, Phys. Rev. B 26 (1982)
2552;

6) B. Lax, Rev. Mod. Phys. 30 (1958) 122;

7) R. J. Dinger and A. W. Lawson, Phys. Rev. B 1 (1970) 2418;

8) M. H. Cohen, Phys. Rev. 121 (1961) 387;

9) S. Takoaka, H. Kawamura, K. Murase and S. Takano, Phys. Rev. B 13 (1976) 1428;

10) J. W. McClure and K. H. Choi, Solid State Commun. 21 (1977) 1015;

11) M. H. Chen and C. C. Wu, J. Low Temp. Phys. 64 (1986) 65;

12) C. C. Wu and C. J. Lin, J. Low Temp. Phys. 49 (1985) 83;

13) C. C. Wu and C. J. Lin, J. Low Temp. Phys. 57 (1984) 469;

14) J. W. McClure and D. Shoenberg, J. Low Temp. Phys. 22 (1976) 233;

15) J. W. McClure, J. Low Temp. Phys. 25 (1976) 527;

16) C. C. Wu and C. J. Lin, J. Low Temp. Phys. 57 (1984) 467;

17) K. P. Ghatak and S. N. Biswas, Proc. Mat. Res. Soc. 216 (1990) 465;

18) S. N. Biswas and K. P. Ghatak, Fizika 18 (1986) 121;

19) K. P. Ghatak and M. Mondal, Z. Naturforsch. 41 (1986) 881;

20) A. A. Abrikosov, J. Low Temp. Phys. 8 (1972) 315;

21) K. P. Ghatak, Proc. of SPIE 1594 (1992) 98;

22) W. Zawadski, S. Kalahan and U. Merkt, Phys. Rev. B 33 (1986) 6916;

23) J. C. Hensel and M. Peter, Phys. Rev. 11 (1959) 411;

24) R. Dingle, Festkörperprobleme 15 (1975) 22;

25) W. Zawadski and B. Lax, Phys Rev. Lett. 16 (1966) 1001;

26) A. I. Ponomarev, G. A. Potapov, G. I. Kharees and I. M. Tsidilkovskii, Sov. Phys.
Semicond. 13 (1979) 502;

27) M. Mondal and K. P. Ghatak, Phys. Stat. Sol. (b) 126 (1984) K41;

28) K. P. Ghatak and M. Mondal, Phys. Stat. Sol. (b) 170 (1992) 57;

FIZIKA A 3 (1994) 2, 77–90 89



s. banik et al.: a simple analysis of the burstein-moss shift . . .

JEDNOSTAVNA ANALIZA BURSTEIN-MOSSOVOG POMAKA U VEOMA
TANKIM SLOJEVIMA BIZMUTA U UKRŠTENOM ELEKTRIČNOM I

KVANTIZIRAJUĆEM MAGNETSKOM POLJU
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Učinjen je pokušaj jednostavne teorijske analize Burstein-Mossovog pomaka u
veoma tankim slojevima bizmuta u ukrštenom električnom i kvantizirajućem mag-
netskom polju. U razmatranje je uključen i spin te širenje Landauovih nivoa. Nu-
merički rezultati prikazani su za modele McClurea i Choia, Cohenov, Laxov, te
za model eliptičnih paraboličnih energetskih vrpci. Postavljene su relacije za svaki
model. Nadeno je da pomak raste smanjenjem debljine sloja i porastom jakosti
magnetskog polja. Takoder, pomak raste s povećanjem koncentracije elektrona.
Kvantne oscilacije pokazuju se značajnim, što je u skladu s modelom McClurea i
Choia, za razliku od predskazanja drugih modela.
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