
ISSN1330–0008

CODENFIZAE4

TEMPERATURE DISTRIBUTION MEASUREMENT IN AN AXIALLY
SYMMETRIC SOURCE WHICH IS NOT OPTICALLY THIN
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∗Lamp factory, Zagreb

Received 3 October 1994

UDC 533.95

PACS 35.80.+s

We elaborated two spectroscopic methods for the temperature distribution in axi-
ally symmetric source. One method uses the self-reversed spectral line; this method
is based on a comparison of the measured absolute maximum (peak) intensity with
that calculated as a function of axial temperature. Another method which uses a
spectral line without self-reversal, was based on the Kirchhoff’s law and exploits
two-path absorption technique and Abel transformation. For both methods, knowl-
edge of atomic broadening constants and transition probabilities is not crucial.

1. Introduction

There are several methods of spectroscopic temperature measurements in a gas
discharge of cylindrical symmetry, when a plasma is in the local thermal equilibrium
[1-3]. In our study, the diagnostics of temperature was applied for a medium which
has a wide range of optical depths. Some of the spectral lines show self-reversal,
and the others suffer from absorption but do not show self-reversal. The deviation
from optical thinness opens additional possibilities for the diagnostics, as well as
for the determination of the atomic parameters.
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The peak intensity of the self-reversed line is governed by the maximal tempera-
ture along the line of sight. We studied the possibility to determine the temperature
by synthesizing the complete line profile with the help of transfer of radiation and
effective broadening mechanisms. The normalized line profiles used in our calcula-
tions, represented by the convolution of the Lorentz and van der Waals quasi-static
profiles, are position dependent.

The spectral line without the self-reversal can be suitable for the temperature
determination by exploiting the Kirchhoff’s law, that means by simultaneous de-
termination of the emission and absorption coefficients. In order to measure the
absorption coefficient with reasonable accuracy, the line should have an optical
depth within some range of values, say between 0.1 and 0.8.

Fig.1. Experimental setup.

The experiment was suited to the requirements (Fig. 1). The source of radiation
was a high pressure mercury lamp with the discharge closed in a quartz vessel. The
interelectrode distance was 5 cm and the inner radius of the quartz vessel was
measured to be 7.8 mm. The discharge was operated on DC current of 2.9 A and
the voltage drop on the lamp was 120 V.
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Measurement of the absorption coefficient was made possible by the two-path
absorption technique [4], as shown in Fig. 1. A concave mirror M was placed at the
opposite side of the plasma to the monochromator in order to reflect the image of
the plasma on the entrance slit.

A 1.5 m Jobin Yvon THR monochromator was used with the experimentally
determined FWHM of instrumental profile of 2.5 pm with the slit widths set at 15
µm. The optical system was aligned using a He-Ne laser beam. The low pressure
mercury lamp was used for the wavelength calibration.

The high pressure mercury lamp was mounted on a micrometer screw and al-
lowed to move in the y direction, i. e. the direction perpendicular to the optical
axis. Profiles were taken at different lateral positions. Acquisition and processing
of the experimental data was carried out by a lock-in amplifier and PC. The in-
tensity signal was calibrated with a tungsten strip-lamp. The error in absolute
intensity measurements was evaluated from the tungsten strip-lamp measurements
for different currents, and was found to be 3% , the relative intensity error was 1%.

2. Radiation transfer in the axially symmetric source and

a solution for the local absorption coefficient

The radiance emitted along the line-of-sight placed at a distance y from the
axes of symmetry Iλ(y) is given by:
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expression to the Abel transform and its inverse form can be obtained by using the
plasma transmission ω(λ, y). The transmission is determined experimentally with
a mirror which images the source on itself [4] (Fig. 2).

If the plasma radiance is Iλ(y), the direct ray contributes τ1Iλ(y). The same
radiance is reflected from the mirror and is then absorbed in the source, giving the
contribution:
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where ρ is the mirror reflectivity. (Transparencies of the frontal and rear wall, τ1
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and τ2 can be different due to wall structure or turbidity.) The observed radiance
is the sum:

IλM (y) = τ1Iλ(y)
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Transmission ω(λ, y) is given by:

ω(λ, y) ≡ IλM (y)− Iλ(y)

RMIλ(y)
= exp









−2

√
R2

−y2

∫

0

k(λ, r
′

) dx
′









(4)

with the abbreviation RM = τ2
2
ρ having the meaning of an effective mirror reflectiv-

ity. RM is obtained experimentally when comparing single and double path signals
on the far wings of the spectral lines where the total optical thickness is negligible.
In principle, it depends on the transversal distance y and on the wavelength.

Fig. 2. Double-path absorption technique.

The solution for the absorption coefficient is given by the inverse Abel transform
of the transmission:

k(λ, r) =
1

π

R
∫

r

d
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{ln [ω(λ, r)]} dy

√

y2 − r2
. (5)

The absorption coefficient derived in this way gives all information on the line
profile formation. However, precision of the obtained figures is satisfying when the
transmission is in the range of between 10% and 80% [5].
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When the absorption coefficient is determined, the radiative transfer equation
(5) for the double path, rearranged in the following way,
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gives possibility to find the emission coefficient by an iterative procedure (see Ref.
5). Numerical solution of the Abel transform has been performed by many inves-
tigators. We have taken over the Fourier method from Ref. 6. It avoids derivation
and necessity for smoothing the experimental curve.

The absorption measurement technique described above can not be applied to
the lines that exhibit self-reversal minimum in the line centre.

3. Synthesis of the self-reversed line profile

In order to synthesize the line shape Iλ(r), an essential step is the choice of the
normalized position dependent line profile P (∆λ, r), where ∆λ = λ−λ0, and where
λ0 is the centre of the line. The line profile P (∆λ, r) is the same for absorption and
emission in the presence of LTE.

For high pressure mercury discharge, with a pressure of several bars, the main
broadening mechanism is the pressure broadening. The pressure broadening consists
of the broadening by neutral mercury atoms and the broadening by the mercury
ions and electrons (Stark broadening). The mechanism of pressure broadening in
the line centre differs from the broadening in the line wings. For the broadening
in the line centre one usually uses Lorentz profile, P1(∆λ, r) and for the wing
broadening quasistatic van der Waals profile P2(∆λ, r). These profiles are given by
[7,8]:
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The Lorentz profile is composed of two contributions, one corresponding to
the broadening by the neutral atoms and the other corresponding to the Stark

FIZIKA A 3 (1994) 3, 127–139 131
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broadening: ∆λ1/2(r) = CN(r)+CSNe(r). The characteristic width of the van der
Waals quasistatic profile ∆λ0(r) is proportional to the square of the atom number
density: ∆λ0(r) = CWN(r)2.

The total line profile can be approximated by a convolution of these two profiles
[9]. The blue wing of the convolved profile behaves like the Lorentzian wing and the
red wing like the quasistatic van der Waals wing. The profile P2(∆λ, r) contributes
very little to the centre of the line where quasistatic approximation fails, if ∆λ0 is
smaller than ∆λ1/2. The convolution can be solved analytically [9] and is given by:

P (∆λ, r) =
1

π∆λ1/2(1 + a2)
− icπ

2
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We have used rational approximation of the complex error function, w(z), in-
troduced by Fadeyeva and Terent’ev [10], and its connection to the complementary
error function erfc(z) in the complex region. The sixth degree rational approxima-
tion to w(z) is given in Ref. 11.

The expressions for ǫλ(r) and k(λ, r) in LTE were used [12]. Transition prob-
ability was taken from Ref. 13. The connection between temperature and number
densities is given by the equation of state and Saha equation. Radial temperature
distribution was taken as follows:

T (r) = T (0)− [T (0)− T (R)]
( r

R

)q

(12)

with q being a distribution parameter, r the radial distance and R the tube radius.
The wall temperature influence is very small in the range from 800-1200 K and
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skenderović et al.: temperature distribution measurement in . . .

we kept it T (R) = 1000 K. Pyrometric measurements [14] performed on similar
discharge revealed the wall temperature from 900–1000 K.

Substituting all equations in expression (1), Iλ(y) was numerically calculated
for the line 546.1 nm. Then, the shapes Iλ(y) were convolved with the instrumental
profile, and compared with the experimentally obtained ones. We have constructed
a set of line shapes varying the following parameters: pressure p, axial temperature
T (0), temperature profile parameter q, and constants of proportionality CN and
CW . The Stark broadening was of minor influence so the value of CS was taken
from Ref. 3.

The profile of the self–reversed spectral line shows a minimum at the unshifted
wavelength and two maxima. The maxima are of equal intensity in our calcula-
tion. The red maximum is displaced little further than blue one, and the profile is
asymmetric showing an extended red wing – all being consequence of the unilateral
quasi-static van der Waals broadening.

The spectral line profile is influenced by the parameter q primarily at the self-
reversed minimum (Fig. 3). This is the consequence of the temperature distribution.
Increasing q, the distribution becomes broad and flat-topped, with a sharp fall at the
outskirts. Thus the central high temperature and a low density core is surrounded
by the cool and high density envelope.

Fig. 3. Influence of the temperature distribution parameter q on the line intensity
profile of the line 546.1 nm: displacement y = 0, pressure 3 × 105 Pa, T (0) =
5700 K, CN = 0.6× 10−36 m4, CS = 0, 0.3× 10−62 m7, q = 2, 2.5, 3.
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The increase of the axis temperature with the wall temperature fixed at 1000 K
leads to an increase of the temperature at any point in the cross-section. Thus
intensity Iλ(y) rises noticeable (Fig. 4). The increase of the pressure leads to an
increase of the peak separation, at the same time leaving the peak intensities intact
(Fig. 5).

Fig. 4. Influence of the axis temperature T (0) on the line intensity profile of the
line 546.1 nm: q = 2, T (0) = 5500, 5600 and 5700 K. The other parameters are the
same as in Fig. 3.

It was found that the atomic parameters influence the line profile in a more
subtle manner. Increase of the broadening constant CN is followed by a perceptible
broadening of wings and filling of the central minimum. Van der Waals broadening
has effect only on the red wing. The transition probability has no effect on the peak
intensities.
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Fig. 5. Influence of the pressure on the line intensity profile of the line 546.1 nm:
q = 2, p = 105, 3 × 105, 5 × 105 Pa. The other parameters are the same as in
Fig. 3.

4. Temperature determination

4.1. Using self-reversed line 546.1 nm

As seen in Section 3, a very strong dependence of the maximum intensity on
axis temperature, a weak dependence on the temperature profile parameter q, and
no dependence upon the other parameters (pressure, broadening constants, and
transition probability) are important prerequisites for the temperature determi-
nation. The intensities of the maxima as a function of the axis temperature for
different parameters q were plotted for the self-reversed line 546.1 nm in Fig. 6. We
have also measured line intensities Iλ(y) of the same line for different values of the
displacement y.

We have determined the temperature parameter q and the axis temperature
T (0) by the following iterative procedure. Firstly, a value of q0, was picked and
from the curve from Fig. 6 for q0 and from the measured IλMAX(y = 0) the starting
axis temperature T0(0) was determined. With the starting value q0 the intensity
maxima versus temperature T (0) were plotted for the other displacements y =

FIZIKA A 3 (1994) 3, 127–139 135
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0.1R, ..., 0.5R. From these plots the set of q1(y) values for different y was obtained
using Eq. (12) and the average q1 was calculated. Using the average q1, the curve
IλMAX(y) versus T (0) was plotted. A value for T1(0) is graphically determined from
that curve and the measured IλMAX(y = 0). The iterative procedure terminates
when the difference between Tn(0) and Tn−1(0) is within reasonable margin of error.

Fig. 6. Dependence of maximum intensity of the spectral line 546.1 nm on the axis
temperature T (0) for the position y = 0 with parameter q = 2.0, 2.25, 2.50, 2.75
and 3.0.

The obtained results are T (0) = (5615± 35)K, and q = 2.65. The temperature
error follows from the error in absolute intensity.

4.2. Using line 577.0 nm that is not self-reversed

The lower energy level of the transition producing line 577.0 nm is relatively
high above ground level, and the maximum optical thickness (i. e. in the centre of
the line and for displacement y = 0) was equal 0.33 in our case. That makes this line
a good candidate for the determination of absorption coefficients by the procedure
described in Section 2. After obtaining absorption and spectral emission coefficient
the temperature can be calculated from the well-known Kirchhoff’s formula that is
valid in LTE:

136 FIZIKA A 3 (1994) 3, 127–139
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Bλ(T ) =
ǫλ(r)

k(r, λ)
(13)

where Bλ(T ) is the black-body radiation of temperature T .

Both intensities with and without the mirror from the line 576.9 nm were mea-
sured for different positions y. The spectral emission coefficient ǫλ(r) was obtained

as Abel transform of the quantity Iλ(y)/
√

ω(λ, y), i. e., the first approximation to
the equation (6). Abel transform of the quantity − ln [ω(λ, y)] leads to the absorp-
tion coefficient k(λ, r).

The temperature obtained by this line amounts to T (0) = (5695± 120)K. The
error of temperature determined in this way was evaluated as:
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The error ∆ǫλ(r) originates from the error in determination of absolute intensity
Iλ(r), while the error of absorption coefficient is linked to the error of transmission
∆ω(λ, y) and was evaluated as:
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The ∆ω(λ, y) originates from the relative error in measured intensity.

5. Conclusion

The Table 1 compares temperatures obtained using the self-reversed line and
using the line that is not self reversed. The temperature was also determined by
Bartels’ method that uses maximum intensity of the self-reversed line. Since Bartels’
method presumes parabolic radial temperature distribution (q = 2), de Groot and
Jack improved [15] the method allowing for cubic profile (q = 3).

TABLE 1.
Axis temperature obtained by different methods: a) using self-reversed line

546.1 nm, b) using line that is not self-reversed 577 nm, c) using Bartels’ method
(q = 2), d) using Bartels’ method (q = 3).

a b c d
T (0) 5615± 35 5695± 120 5593 5571
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The Bartels method is of approximate nature. Our more elaborated procedure
gives the temperature and parameter q simultaneously. Our result for q (equal to
2.65), shows that the distribution is intermediate between parabolic and cubic, and
should be established for each particular discharge. We have proved that convolu-
tion of the Lorentz and quasi-static van der Waals profiles that are dependent on
the radial position (i.e. have half half-width dependent on temperature and con-
centration), is realistic since the calculated self-reversed profile closely matches the
observed one [16]. For this purpose also, no previous pressure determination was
necessary, unlike the procedure described in Ref. 2.
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MJERENJE TEMPERATURNE RASPODJELE U OSNO-SIMETRIČNOM
IZVORU KOJI NIJE OPTIČKI TANAK
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Razvili smo spektroskopsku metodu za mjerenje temperaturne raspodjele u
osno-simetričnom izvoru. Jedan postupak koristi reverziranu spektralnu liniju;
usporeduje se mjereni apsolutni intenzitet vrhova spektralne linije s izračunatim
intenzitetom u ovisnosti o temperaturi. Drugi postupak koristi spektralnu liniju
bez reverzije, a temelji se na Kirchhoffovom zakonu, mjerenju apsorpcije tehnikom
dvostrukog prolaza i upotrebom Abelove transformacije. Točni podaci o konstan-
tama širenja i vjerojatnostima prijelaza nisu nužni.
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