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The Brillouin-Wigner-Feenberg perturbation theory has been applied to a many-
body fermion system, an electron gas at high density. The correlation energy has
been calculated. An approximative expression of the term frs, is also derived. In
our approximation, the calculated value of the constant f is equal to 0.8184.

1. Introduction

Rayleigh-Schrödinger (RS) perturbation theory has been successfully applied
to many-body quantum problems [1,2]. For a relatively long period, the Brillouin-
Wigner (BW) perturbation method has been considered unappropriate for treat-
ment of these problems.

In a series of papers [3-6], it was shown how the BW relations can be transformed
into the Feenberg perturbative formulae [7-9] and employed in quantum many-body
theory; this approach in many-body theory is sometimes called Brillouin-Wigner-
Feenberg perturbation (BWF) theory.

The correlation energy of an electron gas at high density is calculated using the
BWF energy expression. It is assumed that the Hamiltonian of N identical fermions
in the volume Ω can be written in the form
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H = H0 + V (1)

and that the eigenstates and eigenvalues of the unperturbed Hamiltonian H0 are
known

H0|ϕn >= εn|ϕn > . (2)

In the BW procedure the solution of the equation

H|Ψ >= E|Ψ > (3)

for energy is given by

E = εl + Vll +
∑

n( /=l)

|Vln|2
E − εn

+
∑

nn′ ( /=l)

VlnVnn′Vn′ l

(E − εn)(E − εn′ )

+
∑

nn
′
n
′′

(/=l)

VlnVnn′Vn′n′′Vn′′ l

(E − εn)(E − εn′ )(E − εn′′ )
+ . . , (4)

where

Vij =< ϕi|V |ϕj > . (5)

This equation is solved by successive iterations.

Studying the BW expression (4) regarding dependence on N , Ljolje [3] showed
that it could be improved if an infinite number of terms from higher order were put
in the second order term. Indeed, if one picks out the term n

′

= n from the third
order, n = n

′′

= n
′

from the fourth order, and so on, and collects them with the
second order term, one finds

∑

n( /=l)

|Vln|2
E − εn − Vnn

.

The same can be done for the higher terms. Finally, repeating the procedure,
BW energy formula is transformed into the Feenberg equation

E = εl + Vll +

⊙
∑

n

VlnVnl

E − EF
n

+

⊙
∑

nn′

VlnVnn′Vn′ l

(E − EF
n )(E − EF

nn′ )
+
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+

⊙
∑

nn′n′′

VlnVnn′Vn′n′′Vn′′ l

(E − EF
n )(E − EF

nn′ )(E − EF
nn′n′′ )

+ . . ., (6)

where

EF
n = εn + Vnn +

∑

n′ /=ln

Vnn′Vn′n

E − EF
nn′

+
∑

n
′
/=ln

n
′′

/=lnn
′

Vnn′Vn′n′′Vn′′n

(E − EF
nn′ )(E − EF

nn′n′′ )

+ · · · ,

EF
nn′ = εn′ + Vn′n′ +

∑

n′′ /=lnn′

Vn′n′′Vn′′n′

E − EF
nn′n′′

+ . . .

·
.

.

(7)

Mark ⊙ means that all summation indices are mutually different. In Ref. 6, the
second quantization procedure has been applied to Feenberg relation (6) and the
following approximative relation for the ground state energy has been obtained

E = ε0 + V00 + Er + E(2)
ex . (8)

The zero and the first order terms have the usual form

ε0 =
∑

ks
<kf

eks =
∑

ks
<kf

h̄2k2

2m
= N

3

5
ekf

, (9)

and

V00 =
1

2Ω

∑

t1t2
<kf

∑

s1s2

(V0 − Vt1−t2δs1s2), (10)

The generalized ring energy is given by

Er =
Ω

16π3

∫

d~g
g

2π

+∞
∫

−∞

du

∞
∑

n=2

sn

n

(

−m

h̄2

)n−1 [
VgQg(u)

8π3

]n
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=
h̄2Ω

16π3m

∫

d~g
g

2π

+∞
∫

−∞

du

{

ln

[

1 +
VgQg(u)ms

8π3h̄2

]

− VgQg(u)ms

8π3h̄2

}

, (11)

where

Qg(u) =

∫

d~k

+∞
∫

−∞

dte−D|t|+igut, k < kf , |~k + ~g| > kf . (12)

D ≡ D(1) = D(0) +
m

8π3h̄2

∑

sσ′

δsσ′

∫

kp<kf

|~k+~g|>kf

d~p (V~p+~k − V~p+~k+~g), (13)

D(0) = (g2/2) + ~k~g represents pure Gell-Mann–Brueckner (G-MB) denominator
[10] and s denotes the number of spin possibilities (for electron it is 2). Finally, the
exchange part of the second order energy term is

E(2)
ex = − 2

Ω2

∑

k1k2q
k1,k2<kf

|~k1+~q|,|~k2−~q|>kf

∑

σ1σ2

σ
′

1
σ
′

2

V~qV~k1−~k2+~qδσ1σ
′

1
δσ2σ

′

2
δσ2σ

′

1
δσ1σ

′

2

E − EF
n

. (14)

2. Correlation energy

For an electron gas, placed in a uniform distributed positive background, chosen
to ensure that the electron system is neutral, one obtains

ε0 = N
e2

2a0

1

r2s

3

5

(

9π

4

)2/3

, (15)

V00 = −N
e2

2a0

1

rs

3

2π

(

9π

4

)1/3

, (16)

where Vt = 4πe2/t2, a0 = h̄/me2, rs = r0/a0, kf = (9π/4)1/3(1/rsa0) and r0 is the
radius of a sphere of a volume equal to the volume per particle.

The generalized ring energy is given by

Er = N
e2

2a0
JR(rs), (17)
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kilić, persi and rivier: correlation energy . . .

where

JR(rs) =
1

r2s
C1J(rs), C1 =

3

4π

(

9π

4

)2/3

,

J(rs) =

∞
∫

0

dq q3
+∞
∫

−∞

dω{ln[1 + L(q, ω)]− L(q, ω)}, (18)

and

L(q, ω) = C2
1

q2
rs

{

Ia(rs), q ≤ 2
Ib(rs), q ≥ 2

, C2 =
2

π

(

4

9π

)1/3

s.

The functions Ia and Ib are given by

Ia =

√
1−(g/2)2
∫

0

rdr

√
1−r2
∫

−q+
√
1−r2

F1(q, ω, r, z)dz+

+

1
∫

√
1−(g/2)2

rdr

√
1−r2
∫

−
√
1−r2

F1(q, ω, r, z)dz, (19)

Ib =

1
∫

0

κ2dκ

π
∫

0

F2(q, ω, κ, ϑ) sinϑdϑ, (20)

where

F1 =
d̃0 + Crsd1(α, β)

(d̃0 + Crsd1(α, β))2 + q2ω2
, (21)

F2 =
d0 + Crsd1(κ, λ)

(d0 + Crsd1(κ, λ))2 + q2ω2
, (22)

d̃0 =
q2

2
+ qz, d0 =

q2

2
+ κq cosϑ, α =

√

r2 + z2,
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β =
√

r2 + z2 + q2 + 2qz, λ =
√

κ+ q2 + 2κq cosϑ,

d0(κ) =
q2

2
+ ~κ~q

d1(x, y) =
1

x
(1− x2) ln

1 + x

1− x
− 1

y
(1− y2) ln

1 + y

− 1 + y
, (23)

~κ =
~k

kf
, ~q =

~g

kf
, C = (18π4)−1/3, Vg = Vq/k

2
f .

For the exchange energy one obtains

E(2)
ex = N

e2

2a0
ε(2), (24)

where

ε(2) =
3

24π5

∫

dq

∫

κ1,κ2<1

|~κ1+~q|,|~κ2+~q|>1

dκ1

∫

d~κ2
1

q2
1

(~q + ~κ1 + ~κ2)2
1

F3(~q,~κ1, ~κ2)
, (25)

and

F3 = d0(κ1) + d0(κ2) + Crs[d1(κ1, |~κ1 + ~q|) + d1(κ2, |~κ2 + ~q|)]. (26)

The nine–dimensional integral (25) can be transformed into a five–dimensional one:

ε(2) =
3

π

1
∫

0

κ2
1dκ1

1
∫

0

κ2
2dκ2

π
∫

0

sinϑ1dϑ1

π
∫

0

sinϑ2dϑ2·

·
∞
∫

q1

dq
1

√

f2
1 − f2

2

1

F3(~q,~κ1, ~κ2)
, (27)

where

f1 = κ2
1 + κ2

2 + q2 + 2q(κ1 cosϑ1 + κ2 cosϑ2) + 2κ1κ2 cosϑ1 cosϑ2, (28)
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f2 = 2κ1κ2 sinϑ1 sinϑ2, (29)

ql = Max(ql1 , ql2), (30)

and

qli =

√

1− κ2
i sin

2 ϑi − κi cosϑi. (31)

Two four-dimensional integrals in Eq. (18) and a five-dimensional integral in
Eq. (27) were calculated numerically. We used Gaussian quadrature. The sum of
the results is the correlation energy. It is presented in Table 1 (second column).
The corresponding G-MB and Pines energies are also given in Table 1. Some values
of the exchange energy are given in the fifth column of the Table 1.

TABLE 1.
Comparison of results of calculations of correlation energies; the value of rs is in

a0 and energies are in rydbergs (Ry= 2.18× 10−18 J).

rs εc εG-MB εPines ε(2)

1 -0.1095 -0.096 -0.158

0.1 -0.240 -0.2392 –0.3012 0.0470

0.01 -0.3809 -0.3824 -0.4444 0.0484

0.001 -0.5238 -0.5257 -0.5877 0.0486

Starting from relation (10), it is possible to find an approximative relation for
the correlation energy which consist of G-MB term and the next one proportional
to rs. Namely, integrating over t in Eq. (12), one finds an expression in which
subintegral function can be expanded. Doing this and keeping the first two terms,
we derive

Qq(ω) = 2kf{G(q, ω) + CrsK(q, ω)} (32)

where

G(q, ω) =

∫

κ<1
|~κ+~q|>1

d~κ
d0

d20 + q2ω2
, (33)

and
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K(q, ω) =

∫

κ<1
|~κ+~q|>1

d~κ
d1

d20 + q2ω2

(

1− 2d20
d20 + q2ω2

)

. (34)

Square bracket in (10) now becomes

[ ] = C3rs{G(q, ω) + CrsK(q, ω)} (35)

where C3 = (4/9π)1/3s/(πq)2.

Using the binomial theorem and keeping the two largest terms with respect to
G(q, ω), we find

[ ]n = rnsC
n
3 G(q, ω)n + rnsC

n
3 G(q, ω)n−1CrsK(q, ω)n. (36)

An approximative expression for generalized ring energy is obtained introducing
the above expression in (10) and summing up:

Er = N
e2

2a0

C1

r2s

∞
∫

0

q3dq

+∞
∫

−∞

dω {[ln (1 + rsC3G(q, ω))

−rsC3G(q, ω)]− Cr3sC
2
3K(q, ω)G(q, ω)

}

. (37)

The last term in Eq. (37) is proportional to rs. It can, therefore, be written as frs.
After integration and substitution of the constants one obtains f = 0.8184.

3. Conclusion

As is known [11], in the limit of high densities, rs ≪ 1, the correlation energy
may be expressed by the following series

Ec = N
e2

2a0
(c ln rs + d+ ers ln rs + frs + . . .) . (38)

In this way we find the value of the constant f . This is an approximative value
inferred from the special class of processes. Namely, the denominator in the second
order term of Eq. (5) includes all processes which begin and vanish through the
state |n >= |1k, 1h, ...; 1k+q, 1h−q >. In our approximation, which is up to the first
order for the denominators, only a class of the above process is included. So we can
say that within this approach, we picked up all the processes dealing with “direct
and exchange scattering with unexcited particles” (G-MB). Inserting the second

206 FIZIKA A 3 (1994) 3, 199–208
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order approximation in the denominators of the relation (5) would include other
processes.

The ground state energy of a homogeneous electron gas has been studied using
different approaches [12-19]. We applied the BWF perturbation method to the high-
density electron gas. A systematic numerical analysis of the expression (17) and
the corresponding third order term are expected to give an evaluation of the series
(38). Our preliminary calculation shows that the series (38) should be convergent
for values of rs, less than one.
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U radu je pokazano kako se Brillouin-Wigner-Feenbergov račun smetnje može pri-
mijeniti u teoriji elektronskog plina veće gustoće. Odreden je aproksimativan izraz
za korelacijsku energiju i posebno član linearan u parametru razvoja rs. Numerička
vrijednost konstante proporcionalnosti iznosi f = 0.8184.
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