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An attempt is made to study the effective electron mass at the Fermi level in semi-
conductor superlattices under cross–field configuration and to compare it with that
of the constituent materials, taking GaAs/AlAs superlattice as an example. It is
found that the effective electron masses along both directions depend also on the
magnetic quantum number. The characteristic feature of the cross–field is to intro-
duce index–dependent oscillatory mass anisotropy in the constituent materials. The
numerical values of the mass in superlattices are greater than of the forming com-
pounds. The corresponding well–known results in the absence of electric field have
also been obtained from our generalized analysis under certain limiting conditions.

1. Introduction

The effective mass of the carriers in semiconducting materials, which is strongly
connected with the carrier mobility, is known to be one of the most important
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parameters of semiconductor devices [1]. In materials with parabolic dispersion
relation, the effective mass is independent of energy, whereas for non–parabolic
specimens the same mass varies significantly with carrier energy. It must be men-
tioned that among the various definitions of the effective electron mass [2], it is
the momentum effective mass that should be regarded as the basic quantity [3].
This is due to the fact that it is the momentum effective mass that apears in the
description of the transport phenomena and all other properties of the electron
gas in a band with arbitrary band non–parabolicity [3]. It can be shown that it is
this effective mass which enters in various transport coefficients and plays the most
dominant role in explaining the experimental results of different types of scattering
mechanisms [4]. The carrier degeneracy in semiconducting materials influences the
effective mass when it is energy dependent. Under degenerate conditions and at low
temperatures, where the quantum effects become prominent, only the electrons at
the Fermi surface of n-type materials participate in the conducting process. Hence,
the effective momentum mass of the electrons (hereafter referred to as EMM) corre-
sponding to the Fermi energy would be of interest in electron transport under such
conditions. The Fermi energy is again determined by the electron energy spectrum
and the electron statistics and, therefore, these two features would determine the
dependence of the EMM on the degree of degeneracy.

In recent years, various dispersion relations for different specimens have been
proposed, which have created the interest for studying the EMM in such elec-
tronic materials under various physical conditions [5-10]. Besides, with the advent
of molecular beam epitaxy, fine line lithography, organometallic chemical vapour
phase deposition and other experimental techniques, it has become possible to grow
semiconductor superlattices (SL’s), the new type of electronic materials. The SL
has found wide applications in many new device structures, such as photodiodes
[11], photodetectors [12], transistors [13], light emitters [14], electro–optic modula-
tors [15] and other devices. Though extensive work has already been done on the
various electronic properties of such heterostructures, nevertheless it appears from
the literature that the EMM under cross–field configuration in SL’s has yet to be
studied. In this connection we wish to note that the investigations of the electrons
in electronic materials in the presence of the crossed electric and magnetic fields
offer interesting physical possibilities, both experimental and theoretical [16]. The
cross–field configuration is fundamental for studying the classical and quantum
transport in solids [17]. In this paper, we investigate the doping and magnetic field
dependences of the EMM in SL and that of the corresponding bulk materials in
the presence of crossed electric and quantizing magnetic fields, taking GaAs/AlAs
SL as an example.

2. Theoretical background

In the presence of a quantizing magnetic field B along the SL direction and the
crossed electric field E0 along the x-axis, the Hamiltonian H takes the form
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H =
p̂2x
2m∗
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2m∗
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(

2πp̂z
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)
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where the hats denote the respective operators and the other symbols are defined
in Ref. 18. The modified electron energy spectrum for SL’s, including spins, reads
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where ǫ is the electron energy in the presence of crossed electric and magnetic fields
as measured from the edge of the material with smaller band gap in the absence
of crossed–field configuration, n = 0, 1, 2, ... is the Landau quantum number, ω0 =
eB/m∗ is the cyclotron frequency, g0 is the band edge g factor and µ0 is the Bohr
magneton. In non–parabolic energy bands, the EMM along any direction has to be
obtained by dividing the momentum along this direction by the velocity along this
specified direction [8]. Thus the use of Eq. (2) leads to the expressions of EMM’s
along z and y directions, respectively, as
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where d0 is the SL period,

D±(n,EF ) =
1

E1s

[(
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2
− e2E2

0

2m∗ω2
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and EF is the Fermi energy in the present case. It appears from Eqs. (3) and (4)
that the evaluations of m∗

z(n,EF ) and m∗
z(n,EF ) as functions of doping require an

expression for electron concentration. Considering only the lowest miniband, since
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for an actual SL only the lowermost miniband is significantly populated at low
temperatures where the quantum effects become prominent, the electron statistics
can be expressed extending results of Ref. 19 to the present case, including both
spin and broadening effects, as

n0 =
−1

2d0π2

nmax
∑

n=0



Real part of

∞
∫

A0





x1
∫

x2

kz(E
′
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dǫ



 (5a)

where

A0 =
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1
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2
g0µ0B − e2E2

0

2m∗ω2

0

+ E0s − E1s,

E
′

= EF + iΓ, i =
√
−1, Γ = πkBTD, kB is the Boltzmann constant, TD is

the Dingle temperature, x2 = −m∗E0/2Bh̄, x1 = eBd0h̄
−1 + x2 and f0(ǫ) is the

Fermi–Dirac occupation probability factor.

The generalized Sommerfeld’s lemma can be written as [20]

∞
∫

A

φ(ǫ)
∂f0(ǫ)

∂ǫ
dǫ = φ(EF ) +

t
∑
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where r is the set of real positive integer whose upper limit is t,

∇r = 2(kBT )
2r(1− 21−2r)ζ(2r)

d2r

dE2r
F

,

T is the temperature, ζ(2r) is the zeta function of order (2r) and A is the constant.

Thus using Eqs. (2), (5a) and (5b) we get
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where
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We shall now derive the expressions for the EMM’s and n0 in the corresponding
bulk materials having parabolic energy bands for the purpose of comparison with
superlattices under cross–field configuration. The dispersion relation for the bulk
material can be written as [17]
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The use of Eq. (6) leads to the expressions of EMM’s and n0, respectively, as
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In the absence of spin broadening, Eq. (9) can be expressed as
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−1(EF−

E2), E2 = [
(

n+ 1

2

)

h̄ω0 − eE0Lx + (m∗E2

0
/2B2)], η2 = (kBT )

−1(EF − E3) and
E3 = E2 + eE0Lx. Under the condition E0 → 0, Eq. (10) gets simplified to the
well–known form [22]:

n0 = NCΘ

nmax
∑

n=0

F−1/2(η) (11)

where

NC = 2

(

2πm∗kBT

h2

)3/2

, Θ =
h̄ω0

kBT

and

η =
1

kBT

[

EF −
(

n+
1

2

)

h̄ω0

]

.

38 FIZIKA A 4 (1995) 1, 33–44



ghatak and banik: influence of crossed electric and . . .

3. Results and discussion

Using the appropriate equations together with the parameters E01 = 0.05 eV,
m∗ = 0.067m0, d0 = 6 nm, T = 4.2 K, TD = 9.3 K, g0 = 2 and E0 = 103 V/m
[23] for GaAs/AlAs SL, we have plotted the normalized m∗

z(n,EF ) for the first two
magnetic subbands as functions of n0 and 1/B (Figs. 1 and 2, respectively). Using
the same parameters as used in obtaining Figs. 1 and 2, we have further plotted
m∗

y(n,EF ) for the first two magnetic subbands as functions of n0 and 1/B (Figs. 3
and 4, respectively), where we have also plottedm∗

y(n,EF ) for GaAs for the purpose
of comparison. From the above discussions and figures, the following features follow:

Fig. 1. Plot of the normalized m∗
z(n,EF ) versus n0 for the first two magnetic

subbands in GaAs/AlAs SL under cross–field configuration (B = 2 T).

1. The band non–parabolicity in a non–parabolic material can alone explain
the energy dependence of the effective electron mass along the direction of mag-
netic quantization but can not account for the dependence of the same mass on
the magnetic quantum number at any given value of the electron energy [8]. It
appears from Eq. (3) that the EMM along the z-direction in SL structure depends
on the Fermi energy, Landau number and the spin splitting. This is a characteristic
feature of the SL structure only and is independent of band non–parabolicity. The
effective mass in the constituent bulk materials is a constant quantity along the z-
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direction. It appears from Fig. 1 that m∗
z(n,EF ) for the SL structure increases in an

oscillatory way with increasing electron concentration and the index–dependent ef-
fective masses exhibit converging tendency for relatively higher values of the carrier
degeneracy.

Fig. 2. Plot of the normalized m∗
z(n,EF ) versus 1/B for the first two magnetic

subbands in GaAs/AlAs SL under cross–field configuration (n0 = 1023 m−3).

2. It appears from Fig. 2 that m∗
z(n,EF ) oscillates with the reciprocal quan-

tizing magnetic field. The oscillations are due to the Shubnikov–de Haas (SdH)
effect. The SdH oscillations, which occur in degenerate materials, would further be
influenced by the index dependent EMM in the present case and the contribution
of the EMM on the oscillatory mobility would be important.
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Fig. 3. Plot of the normalized m∗
y(n,EF ) versus n0 for the first two magnetic

subbands in GaAs/AlAs SL under cross–field configuration. The plots e, f, g and
h exhibit the same dependence for GaAs (B = 2 T).

3. The dependence of m∗
y(n,EF ) on the magnetic quantum number and the

Fermi energy is an inherent property of cross–fields. It appears from Eqs. (4) and
(8) that under the condition E0 → 0, m∗

y(n,EF ) → ∞ as it should. This state-
ment is valid for both SL and the constituent materials under cross–field config-
uration. It appears from equations (7) and (8) that the cross–fields introduce the
mass anisotropy which depends on the Fermi energy, spin–splitting and the Landau
quantum number.

4. The electron concentration and the magnetic field influence m∗
y(n,EF ) for

both SL and the constituent materials under cross–field configurations, though the
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nature of variations are different for different plots. The EMM’s corresponding to
n = 0 exhibits the greatest numerical values as appears from all the figures.

Fig. 4. Plot of the normalized m∗
z(n,EF ) versus 1/B for the first two magnetic

subbands in GaAs/AlAs SL under cross–field configuration. The plots e, f, g and
h exhibit the same dependence for GaAs (n0 = 1023 m−3).

Experimental data for comparison to our results are not available to the best of
our knowledge. The expressions as given by Eqs. (3), (4), (5c), (8) and (9) are new
and would be useful in analysing the experimental results when they appear. The
variations of the EMM’s are totally band structure dependent. With different sets
of energy band constants, we shall get different numerical values of the EMM’s,
but the nature of variations will be unaltered. We have not plotted the EMM with
other physical variables of considered other subbands for the purpose of condensed
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presentation. Finally, it may be noted that the basic aim of our present paper is not
solely to demonstrate the effect of cross-field configuration on the EMM of the SL
and the electron concentration in the respective cases since the formulations of the
various transport coefficients depend on the electron statistics in such materials.
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UTJECAJ UKRIŽENOG ELEKTRIČNOG I MAGNETSKOG POLJA NA
EFEKTIVNU ELEKTRONSKU MASU U POLUVODIČKIM

SUPER–REŠETKAMA
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Proučavana je efektivna elektronska masa na Fermijevu nivou u poluvodičkim
super–rešetkama u konfiguraciji ukriženih polja i usporedena je s odgovarajućim
veličinama sastavnih materijala, uzimajući kao primjer super–rešetku GaAs/AlAs.
Ustanovljeno je da efektivna elektronska masa duž oba smjera ovisi takoder o mag-
netskom kvantnom broju. Karakterističan oblik ukriženih polja dovodi do oscila-
torne anizotropije mase koja ovisi o indeksu gradbenih materijala. Numeričke vri-
jednosti mase u super–rešetkama su veće nego u pojedinim komponentama. Dobro
poznati rezultati za slučaj odsustva električnog polja takoder su dobiveni iz našeg
općenitog razmatranja u nekim graničnim uvjetima.
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