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THE MATTHEW EFFECT OF A FAULT CLASSIFICATION
MECHANISM AND ITS APPLICATION

Summary

When using the classification algorithm to classify a single sample, the classification
accuracy often cannot achieve an ideal effect. To solve this problem, the following two
aspects of research work are carried out and presented in this paper. On the one hand,
according to the memory characteristics of mechanical faults, a voting classification
mechanism for the sample sequence to be classified is proposed. It is found that the
classification mechanism of the sample sequence to be classified with memory has the
Matthew effect of accumulated advantage. Using this effect, one can improve the accuracy of
fault classification. On the other hand, because the length of the sample sequence to be
classified increases, the delay of the classification results increases. To solve this problem, the
classification algorithm is optimized to minimize the delay on the assumption that the
classification accuracy meets the expected requirements.
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1. Introduction

With the increasing complexity of industrial processes and large-scale production, it is
of great significance to identify and diagnose the fault in industrial processes [1]. Since
Niederlinski proposed the idea of fault diagnosis and fault tolerance in the 1970s [2], fault
diagnosis methods have been classified into three categories: based on knowledge, based on a
model, and based on signal processing [3].

The model-based fault diagnosis method was originally developed by Beard in 1971 [4].
In the method, hardware redundancy is replaced by analytical redundancy [4]. In terms of
comprehensive result recordings, there are a few studies on model-based fault diagnosis
methods [5-8]. Regarding the stability problem of input and output limits, an operator-based
fault detection method is proposed in the study [6] to detect the fault of the drive and the input
constraint in an aluminium plate heating process. A model-based method for fault diagnosis in
controlling systems and robot systems is presented in [7, 8].

The studies [9-11] proposed a model-based sensor approach to determine fault
detectability and isolability of a linear time-invariant system based on a parity equation. The
approach was applied to examine the fault detectability and isolability of the motor-driven
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power steering system. In the study [12], a discrete hidden Markov model fault diagnosis
strategy was proposed to solve the fault classification problems. These model-based fault
diagnosis methods are suitable for systems that have a sufficient number of sensors and
information. The mechanism of the process could be fully exploited to establish an accurate
quantitative mathematical model [13,14]. In the study [15], Descartes’ three-dimensional
coordinate system of fault diagnosis is put forward; it carries out the function of real-time
diagnosis of the measurement system.

Knowledge-based fault diagnosis methods are presented in [16-20]. Ding et al. [16]
proposed the static key performance index prediction and diagnosis method, which improved
the probability of prediction and diagnosis of complex industrial process faults. The method is
also applied to fault diagnosis of industrial hot strip mills. In the study [17], a new method
based on potential kernel function technology, pseudo-sample speculation, and intermittent
process fault identification and diagnosis is proposed; the method deals with the problems of
pass and fail in operation. A two-stage approach to fault diagnosis using knowledge is
proposed in the study [18]. A novel unsupervised domain adaptation approach that reduces
distribution shifts for cross-domain fault detection is presented in [19]. The knowledge-based
fault diagnosis method is suitable for systems that do not have a sufficient number of sensors,
sufficient information, or an analytical model [20].

Fault diagnosis methods based on data processing are dealt with in [21-28]. Estima and
Cardoso [21] proposed a diagnosis method to solve the problem of a motor being prone to
serious faults by measuring the motor current phase and its corresponding reference signal. In
order to improve the reliability of the sensor and the safety of the whole system in the aircraft
control system, Samara et al. [22] proposed a statistical method in which the covariance of the
induced signal is applicable to feature extraction. Wen et al.[23] presented a signal-to-image
conversion method, and applied the convolution neural network models to the fault diagnosis
field. In the study [24] a novel fault detection method, the K-nearest neighbour algorithm
(KNN), is proposed to isolate multiple sensor faults under a less strict condition. In the study
[25], a novel multi-resolution convolution neural network for biometric human identification is
dealt with; the method also effectively handles the blind signal processing. A variant of deep
residual networks to improve diagnostic performance is presented in the study [26]. Finally, the
studies [27,28] presented a data-driven multi-label pattern identification approach to identify
complicated faults rapidly and accurately . Moreover, the proposed approach has the potential to
be extended to other diagnosis cases in which the dynamics of multiple variables is involved.

With the increase in the number of process parameters, fault diagnosis data-driven
approach is becoming increasingly popular [29]. The fault diagnosis method based on data
can perform fault diagnosis by analysing and processing the process monitoring data. The
fault diagnosis is implemented without prior knowledge of the system and the accurate model
of the system. Since data acquisition is easier than accurate system modelling, the data-driven
fault diagnosis method is a more feasible approach [30-31]. Many researchers have studied
the data-driven fault diagnosis method, which involves many techniques, such as multivariate
statistical analysis [32], neural network [33], evidence theory [34-36], and support vector
machine (SVM) [37,38].

Scientists have extensively researched mechanical fault diagnosis [15,28,29,39,40], but
no relevant research on the memory characteristics of mechanical fault diagnosis has been
carried out. In this paper, we first study the memory characteristics of mechanical faults, and
then propose a fault classification model based on the memory characteristics of mechanical
faults. In this model, the diagnosis delay is minimized on the basis of ensuring the accuracy of
fault diagnosis.
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2. Definitions and Properties of the Sample Sequence with Memorability

2.1 Definitions of the Sample Sequence with Memorability

As shown in Fig. 1, class 1 indicates a normal state and class 2 indicates a fault state. The
gear-tooth-missing fault is taken as an example; if the gear-tooth-missing fault occurs at the
(k, + 1th time point, the mechanical equipment cannot fix itself. Therefore, the running state of

the mechanical equipment was kept in the fault state until the gear-tooth-missing fault was
repaired at the (k, +1)th time point. That is, all samples from sample, ., to sample, belong to

class 2. Similarly, all samples from sample,_,,to sample, belong to class 1.

Set {samplel,samplez,---,samplen,---} represents a set of consecutive samples of the

running mechanical equipment to be measured. If the running mechanical equipment state has
not changed, all samples of the set {samplel,samplez,---,samplen,---} are of the same

category. The sample sequence with memorability is defined as follows.

Definition 1 Formula (1), S, (m=1, 2, ---)is called the sample sequence with memorability,

and set L, is called the memorability length of S .
S,={sample,,--,sample, }, ---, S, ={sample,,---,sample, .}, - (1)

As shown in Formula (2), the sample in the set S, is a time series. We need to focus on

the first sample, sample, and the sequence length L .

normal condition fault condition normal condition

sample, sample, sample;. sample; sample; sample;,
§{ > ¢ ) ( - .o ( ) § o> >
classl classl class2 class2 classl classl

Fig. 1 Schematic diagram of memory characteristics of equipment running state

2.2 Confusion Matrix of Fault Classification

Table 1 shows the confusion matrix of binary classification problems, and Table 2
shows the confusion matrix of multi-classification problems.

Table 1 Confusion matrix of binary classification

Classification
Confusion matrix
positive negative
positive | true positive | false positive
Condition
negative | false negative | true negative
true positive + true negative
Accuracy = P g 2)

true positive + false positive+ttrue negative+ false negative
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For the convenience of the following description, Formula (2) is given on the basis of
Formula (1).

true positive false positive
R, = . . 12 = . .
true positive + false positive true positive + false positive
false negative true negative
b= b,= 3)

 true negative + false negative  true negative + false negative

For the multi-classification problem, the calculation formula of B, is given with
reference to Formula (3), as shown in Formula (4); F,(i=1, 2;j=1, 2) indicates the

proportion of the test samples, where i is the actual label and j is the predicted label. Table 3
shows the prediction accuracy of each class.

Num,
P=——"""(i=1,2, -, n) “4)

ij n ?
Z Num,,
k=1

Table 2 Confusion matrix of multi-classification

Predict label 1 | Predictlabel2 | ... ... Predict label n
Class 1 Numii Numi2 | ...l Numin
Class 2 Num2i Num» | ... Numazn
Class n Numn Numw2 | .. Numnn

Table 3 Prediction accuracy of each class

Predict label 1 Predictlabel2 | ... ... Predict label n
Class 1 P P L Pix
Class 2 P P L Py
Class n P P L Pun

2.3 Prediction Accuracy of the Sample Sequence with Memorability

For the multi-classification problems of fault diagnosis, the prediction label, and the
prediction accuracy of the sample sequence S, are defined as follows.

Definition 2 If the number of samples labelled as k is greater than the number of the samples
that have other labels in S (the Lth sample sequence), then S'*! is labelled as k.

Definition 2 represents the voting mechanism of the prediction label of the sample sequence.
B (k=1,2;i=1, 2 LeN") (5)

Assuming that the actual class label for all samples is i, Formula (5) indicates the probability
that the prediction label of the sample sequence is £.
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When computing Pl.,[f} , a definition is needed. Moreover, when computing the prediction label
of the sample sequence S, , it is possible that the number of samples of two or more prediction
labels is the maximum. Consequently, definition 2 needs to be advanced.

Definition 3 For binary classification problem, if the number of samples with prediction label
1 and label 2 in the sample sequence is equal, the probability of the sample sequences that are
predicted to be label 1 and label 2 is 1/2. For the multi classification problem, if the
frequencies of Q prediction labels are the largest, the probability of the sample sequence that
is predicted as any of these Q labels is 1/Q.

2.4  Theorem and Properties of the Sample Sequence with Memorability

For binary classification problems, the prediction accuracy E,[L] of sample sequences S, has
the following properties and theorems.

N 2m—1 _ - 2m (Im
Property 1 Let AP"1=) (2’%. : k(| p ik PR = Z [ ank (1-B)"™*,
1

it
k=m k=m+1

2m+1

~ly 2m+1
P[Zm 1] — Z( W;{ jEf(l_Pﬁ)zmHk , then

ii
m+1

i e R L Yl B B RO
m m

Proof: According to the Pascal triangle formula, we have

2m) 2m - 2m-1) , | 2m - 2m-1) , |
Piim+ Piim (I_Pii)_ Piim = F;im (I_R‘i)_ F;‘im (I_F;i)
2m 2m—1 2m—1 2m—1 2m—1

2m-1Y ,
= P (1-F)
2m—2

2m) 2m - 2m-1) , . (2m-1) ,
Piim+ Piim (1-F)- F;im - F;‘im (-F)
2m 2m—1 2m—1 2m—2

2m—1) ., 2m—-1) .,
= Piim (I_Ri)_ Bim (I_Pii)
2m—2 2m—2

2m—1
—[ " jlzf'"Z(l—ei)z

2m—2

- - 2m 2 2m—1 2 _1 2 _1
BB = [ '"szf (EVARREDY ( T pra-py = —( " ]Bﬁ(l—mm

k=m+1 k k=m l m
ﬁil[2m+l] _él[zm] _ 2mz+1(2m +1J PE(1— Py % (ZmJPHk (1— P+

m+1 k k=m+1 k

2m . 2m+1 " 2m il

= " pria-py pra-py = | Era- B
m+1 m+1 m
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Property 2 For the binary classification problems of fault diagnosis, the prediction accuracy
of the sample sequence with memorability satisfies

B}[{m] :RI[{Zm—ﬂ’ (i=1, 2, k=12, meN").

Proof: Without loss of generality, we show that when i=1, k=1, we have pﬁ I = pl[fm "

2m 2m—1 2m) 2m—1 p? 2m— -
= =1, .. P - " P’" 1-2)
2m 2m—1 2m 2m—1 2m

2m— 1)
Rid-HR)"

H2m 2m—
Known from property 1, E[l ] Pl[l = ( -

” . 1(2mY)_ (2m-1)_ " .
LR - R ”=5(ijllPlz—( . jﬁlﬁzzo,.-.ﬁ[ﬂ:éﬁ .

Some properties and theorems about binary classification and three classification problems
are given below.

Theorem 1 For the binary classification problems of fault diagnosis, if

1

P, > % (P, < %) , (=1, 2; j=1, 2), then sequence {R,Ezm_l]} 1s monotonically increasing

(decreasing).

Proof: Without loss of generality, we show when i=1, k=1, P > pl»l.

2m
Known from property 1, PP — > :( . jPl’l"“(l -P)",

[2m+l] [Zm] 2m +1 1 2m 1 2
By By =1, P pE | T g prpn = (R -0 T | RRY
m 2\ m 2\ m
.. 1 . [2m+1] [2m)]
‘Pll>5’ "Pll >El :
P1[12m] :[)1[127" 1. R[IZerl] > P[2m 1
Consequently, {Ef'”"} is monotonically increasing.
Corollary 1 For the binary classification problems of fault diagnosis, if P, ( )

(=1, 2; j=1, 2), then sequence {P,,[fm]} is monotonically increasing (decreasmg);

Corollary 2 For the binary classification problems of fault diagnosis, if P, >% (B, > %) , (=1,
2; j=1, 2), then P""1 > pl"l (Pl < plly
Property 3 P = Pl"

1 2 1(2 n
. Ll _ 2] 2 _ _p . pld_pl
Proof: - Pl _(JPU_PU,PU (2})” +5(1j1§jk§'1)jk—1§j =P, . P=P
#J
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Theorem 2 For the three classification models, if P, >P,, (k#i)
P s P (m>2).

, then

Proof: Without loss of generality, we show when i=1, k=1, P!> Pl = Firstly,
Pl[f] > E[ls] > Pl[f] > 3[13] > R[lz] is proved to be true. Known from definition 2,

PP]—(zJPul[zJP (P,+P.)
11— 2 11 2 1 11 12 13

303 - 2
:Z k 11(32"']313) +_ R\R,F;

P 1

4. (4 4 (4 1(2 2 1(2
P&”=Z(k (B + B @PﬁHz B§+(1]1’121’13+5(0)R§}
k=3

[

6] _~0) ox [0 5] 1
P11 :; k 11(32"'P13) + 3 P11 E

Known from property 2, ]31[13] _ ]31[2] [

VB B+ R =1

2 1(3)(2 1 2
MUY 3>+3 L BB S| | PB4 BB+ Pyt R)

= (Plz+ 3)"’ >y -2-— PIIEZI)IS__ PIIPIZ__ PnP13
1 2 1 301 201 201 201

1)1[13] > Pl[z]

1

- 3
Known from property 2, P — B = @R?(faﬁ&)z,

4 1(2 2 1(2 3
BB = @Pﬁ szf’é +[le1sz +5[O]B§)szﬁi<ﬁz +By)’
1(3\(2
_g 11 PuPuPis (Pt pntPis)

3\ 2 1(3)(2
1 1 PllPlzPla(P11_Plz)+§ 1 1 P11Plzpls(Pu_Pls)>0

P1[14] > ])1[3]

1

~ - 4
Known from property 2, F)— Bl = ( 2}1? (B, +Py),
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1(4\(2 5y 1(4)\(2 5
:5 2l 2 RIPIZ( 11_32)"'5 22 P11P13( 11_P13)>O

5) 3
3 PP+ P3) s

6 1(3 3 1(3
v R =Y :@Pﬁ [5(3)3%(2}3333{ quPé 2[0}3@)} [ j[ jPﬁPéPé
—[SJP%P +P )3—(5}0{ [ jPz {3 )}(P +P,+P,)
3 1712 13 2 11 12713 1 12 11 12 13
53(3 53(3
=1[J[jﬁﬂﬁex&—3»+1[j(jﬁﬂzac& B> 0
2(2){2 2(2)\1

- Pl s pbl

11 11

Known from property 2, Pl - PI*l = _(

SR> RS RS RS RY
Next, P1[16m+6] > B[léms} > R[lém+4] > P1[16m+3] > P1[16m+2} >R[16m+l] > P1[16m]a(m e N+) is proved to
be true. Known from definition 2,

[6m] % 6m—k 1 6m 2m ~2m p2m 2m % 6m Jj
A= z k 11(P +h;) +§ m R"CRy RS Z .t

k=3m+1 j=2m1\_ J

om—j\ . . o (em—j 6
AT pree 3 | Ryt 2] O Ry
2 J k=6m—2 j+1 k 2 6m—2j
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k=3m+2 Jj=2m+1 ]
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k=6m1+3-2 2\6m+2-2j

6’”*3 6m+3 6m+3 Adm+2 3mil (6m+3
E 6m+3] 1/; (Plz + Pl3 )6m+37k +l P]?erl R§n1+lp2m+l + Z ‘ .
k= 3m+2 3\ 2m+1 m J

_ om+3— . Vi om+3— , 6m+3—7j
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L md (6mtd e w2 (em+4)
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Theorem 2 is proved.
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2.5 Example

Based on the theorems given above, two numerical examples of binary classification
problems and multi-classification problems are given respectively.

Example 1 In the binary classification problem of mechanical fault diagnosis, the
relationship between the prediction accuracy of memory sequence and the memory length is
analysed in four cases: case 1 is P11=0.55, case 2 is P11=0.65, case 3 is P11=0.75, and case 4 is
P11=0.85.

Table 4 Prediction accuracy of each class

P11=0.55 | P1;=0.65 | P1;=0.75 | P11=0.85
L=10 0.621 0.828 0.951 0.994
L=20 0.671 0.913 0.991 1.000
L=30 0.707 0.952 0.998 1.000
L=40 0.736 0.973 1.000 1.000
L=50 0.760 0.985 1.000 1.000

1.2)

{5

pLLI

(P,,=0.55, P, ,=0.45] {P,,=0.85, P,,=0.35)
1 1
3 3
- W - W
L 4 b E
L ogs L ogs —a—Fl]
ED-_ ‘{% ED-_ 1 m - Pw
0 u]
5 10 15 20 5 10 15 20
L
(P,,=0.75, P ,=0.25) (P,,=0.85, P, ;=015

Fig. 2 Correct probability of the sequence with the sequence length

Table 5 Correct probability of the sequence with the sequence length
P11=0.40 | P12=0.35 | P13=0.25
L=10 0.843 0.151 0.006
L=20 0.927 0.072 0.001

L=30 0.962 0.038 0
L=40 0.980 0.020 0
L=50 0.989 0.019 0
L=60 0.994 0.006 0

In Fig. 2 and Table 4, the variations of the prediction accuracy of the sample sequence with
the memory length are given when P11 are 0.55, 0.65, 0.75, and 0.85, respectively. The
prediction accuracy of the sample sequence increases gradually with the increase in sequence
length. Taking case 1 as an example, since B, > P, satisfies the condition of Theorem 1, it
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can be seen from Figure 2 that P! increases with the increase in L and B}’ decreases with

the increase in L. The conclusion of the other three cases is the same as that of case 1.
Moreover, it can be seen that when the value of P11 is large, the growth rate of P! is faster.

Example 2 In the multi-classification problem of mechanical fault diagnosis, the
relationship between the prediction accuracy of memory sequence and the memory length is
analysed in four cases: case 1 is P11=0.40, P12=0.35, P13=0.25, case 2 is P11=0.50, P12=0.30,
P13=0.20, case 3 is P11=0.60, P12=0.30, P13=0.10, and case 4 is P11=0.70, P12=0.20, P13=0.10.

= g W
& Ky it

oyt

2= e
]

0 = £o8 s
M0 20 30 40 50 60 10 20 30 40 50 A

L L
(P,=0.4, P,,=0.35, P, =0.25) (P,,=05, P,,=03, P ,=0.2)

L L
(Py,=0.8, P,,=0.3, P,;=0.1) (P,,=0.7,P, =02, P, =0.1)

Fig. 3 Correct probability of the sequence with the sequence length

It can be seen from Fig. 3 and Table 5 that examples 2 and 1 have the same conclusion.
3. Minimum delay model under accuracy constraint

According to the theory in Section 2, on the one hand, the increase in diagnostic sample
sequence length can improve the prediction accuracy; on the other hand, the increase in
diagnostic sample sequence length increases the delay in diagnostic results. To solve this
problem, the design of a diagnosis delay minimization model, on the assumption that the
accuracy of fault diagnosis is ensured, is discussed below.

Step 1: select an appropriate classification algorithm to make the classification accuracy meet
the conditions of theorem 2, thatis P, > P,, (k #1i).

Step 2: according to the model (6), use the classification algorithm to obtain the prediction
accuracy of each fault type, as shown in Table 1, and calculate L,(i=1, 2, ---, n) according

to the prediction accuracy.
min L,

st. P >p

ii z

(6)

Step 3: For vector (i, L, ,i,), use i; that represents the sample prediction label at time s, and
use i, that represents the prediction label of the sample sequence with length L. If i, and i,
are consistent, the prediction label at time s is i .
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4. Experimental Results

Experiment Purpose

4.1

The first purpose is to evaluate whether the test set reconfiguration mechanism can

improve the prediction efficiency of fault diagnosis. The second one is to verify the

consistency between the experimental results and the theoretical results.

4.2 Experiment Configuration

A multi-level centrifugal blower is used as the fault diagnosis device, as shown in
Fig. 4. There are inner ring wear faults and outer ring wear faults on the rolling bearing shown

in Fig. 5.

Inverter motor

!

Multistage centrifugal fan

Fig. 4 Experimental platform of the multi-level centrifugal blower

ing wear Bearing inner ring wear

E=

(=

=

A bearing without one ball Bearing outer r

Gear tooth wear

Fig. 5 Gear and bearing faults detected in the gearbox

time (s)

(wur) spmyrdure

—0.6

Fig. 6 Vibration waveform
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Experimental platform-related parameters are as follows: the inverter motor rated
voltage, current, and power are 380 V, 24.8 A, and 11 kW, The multistage centrifugal fan
rated power is 11 kW, the maximum speed is 2970 r/min, and the blowing rate 8§ m?*/min.
Parameters related to the data collector are: acceleration 0.1~199.9 m/s?, acquisition
frequency 10 Hz~ 10 kHz, number of groups 1~100, and sampling points 512, 1024, 2048,
and so on.

First, we can use the data acquisition software to collect the vibration signal, shown in
Fig. 6. Then, the waveform index, impulsion index, tolerance index, peak index, and kurtosis
index of the vibration signal are calculated, as shown in Table 6. The support vector machine
(SVM) algorithm was used to train the predictive model.

Table 6 Definitions of five dimensionless parameters of the vibration signal

Dimensionless Theoretical calculation formula Actual calculation
parameters formula
Waveform index 172 N
s LLFTpxE]JeizD) 2
A § izt /7
Jldp@a]  EED TS
i=1
Impulse index | [ .[R|Z|l p(z)dz}w im E(|z|/) I - I}nax(x,.)
= lim — Iox
U |:Ji}JZ|p(Z)dZ:| E(|Z|) ;|xz |/N
max(x,)

Margin index U |z|[ p(Z)dZTH }im’ E(|Z|l) CL, = i

CL, =1 2= 2 ,
S lgg[jm|2|l/2p(2)d2} [E(\/M)} (;|x1| N)

1 /1
Peak index | UR|Z|I p(z)dz} fim 2D C, - HAI,aX(xi)
C/Z}gg 2 TP 2 ZX?/N
[ pa] B 2
Kurtosis ind N
ossindex | [ Apae (el S

F | =

4.3 Analysis of the Experiment

4.3.1 Analysis of the Matthew effect prediction results

Figure 7 shows the consistency of the experimental results with the theoretical results.

As can be seen form Table 7 and Fig. 7, the prediction accuracy sharply increases with
the increase in sample sequence length, which proves that the test set reconfiguration
mechanism can improve the prediction accuracy effectively.

From Table 7, we can also note that when P11=0.837 and the value corresponding to the
length 50 is smaller than that of 45, the difference is 0.003. When P2:=0.769, the value
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corresponding to the length 40 is smaller than that of 35, and the difference is 0.006. For the
sample sequence with memorability, the experimental prediction accuracy increases less
rapidly than that of the corresponding theoretical results. The cause of the difference in results
is explained below.

1
0.95
== 08 =+
0.85 the theoretical results 0.85 the experimental results
n.e 08
m 20 30 40 50 10 20 30 40 50
L (P,,=0.837) L (P,,=0.837)
1 1
0.9 0.9
=H =
o o
0.8 0.8
the theoretical results the experimental results
0.7 0.7

0 20 30 40
L (P,,=0.769)

50

10 20 30 40 &0
L (P,,=0.769)

Fig. 7 Comparison between the experimental and theoretical results

Table 7 Comparison between the experimental and theoretical results

P11=0.837 P»=0.769
Sequence
length Experimental Theoretical | Experimental Theoretical
results results results results

5 0.900 0.967 0.800 0.916
10 0.928 0.992 0.851 0.965
15 0.954 0.999 0.878 0.989
20 0.963 1.000 0.892 0.995
25 0.973 1.000 0.913 0.998
30 0.975 1.000 0.914 0.999
35 0.977 1.000 0.949 1.000
40 0.987 1.000 0.943 1.000
45 1.000 1.000 0.955 1.000
50 0.997 1.000 0.957 1.000

As can be seen in Fig. 8, the average prediction accuracy is 0.837. If the sample sequence
length is 100, the prediction accuracy decreases/increases with the variation in sample
numbers. Consequently, there is a difference between the experimental and theoretical results.
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4.3.2 Analysis of experimental results of delay minimization

Table 8 Experimental results 1

Fault tvoe Accuracy of Sequence Delay duration | The accuracy
yp SVM length (unit: second) of our method
Normal 0.83 3 6 0.91
Gear tooth wear 0.68 13 26 091
A bearing
without one ball 0.73 7 14 0.91
Bearing outer 0.76 5 10 0.91
ring wear
Bearing inner 0.65 17 34 0.90
ring wear
Table 9 Experimental results 2
Accuracy of Sequence Delay duration | The accuracy
Fault type SVM length (unit: second) of our method
Normal 0.83 5 10 0.95
Gear tooth wear 0.68 19 38 0.95
A bearing
without one ball 0.73 1 22 0.95
Bearing outer 0.76 9 8 0.96
ring wear
Bearing inner 0.65 29 58 0.95
ring wear

In this experiment, in addition to the normal state, four fault states, i.e. gear tooth wear,

lack of one ball in a bearing, bearing outer ring wear, and bearing inner ring wear were selected.
It can be seen from Table 8 and Table 9 that the accuracy of bearing inner ring wear fault
obtained by the support vector machine is only 0.65; on the other hand, the accuracy obtained
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by using the method presented in this paper can reach 90% for the sequence length L = 17, and
95% for the sequence length L =29, while the delay is 34 seconds and 58 seconds, respectively.

Table 10 Experimental results 3

Fault tvoe Accuracy of Sequence Delay duration | The accuracy
P KNN length (unit: second) | of our method
Normal 0.81 3 6 0.90
Gear tooth wear 0.60 14 28 0.91
A bearing
without one ball 0.69 8 16 0.90
Bearing outer 0.77 5 10 0.91
ring wear
Bearing inner 0.61 19 38 0.90
ring wear

AS can be seen from Table 8 and Table 10, the same effect can be achieved by replacing
the SVM algorithm with the k-nearest neighbours (KNN) algorithm.

5. Conclusion

This paper presents a test set reconfiguration mechanism for classification problems of fault
diagnosis. The classification mechanism of sample sequence to be classified with memory has
the Matthew effect. Using the Matthew effect of accumulated advantage can improve the
accuracy of fault classification. Using the delay minimization model, we can not only meet
the requirement for a short-time delay but also get a high prediction accuracy.
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