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Using a recently derived form of the Green function for a multilayer, a compact and
transparent framework for consideration of nonlinear processes in layered systems is
developed within the approximation of undepleted fundamental waves. The theory
is particularly suitable for the analysis of cavity (multiple–interference) effects on
nonlinear light generation in multilayers and planar cavities. This is illustrated by
considering harmonic generation from a nonlinear slab embedded in a multilayer
and briefly discussing cavity effects in such systems.

1. Introduction

The interference of multiply reflected light in a (nearly) transparent layer may
cause large variations of an optical–signal intensity with layer thickness, light fre-
quency and its propagation angle. This is well known in Raman spectroscopy of
reflecting substrates overlaid by dielectric layers [1]. Recently, the same effects have
also been observed in second-harmonic generation (SHG) from similar systems [2–6]
and, clearly, should be observable in other nonlinear processes. From a more fun-
damental point of view, these multiple–interference phenomena can be considered
as a manifestation of the weak ”quantization” of the electromagnetic field confined
in a low-finesse cavity formed by the substrate and the overlayer-air interface as
the second mirror. Thus, whenever a light wave involved in a process happens to
coincide with a resonant mode of such a cavity, an enhanced signal intensity (cross
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section) is obtained. This, quantum-optical point of view is very useful when dis-
cussing multiple-interference effects in more complex systems. In quantum optics,
the use of a resonant cavity for enhancing the nonlinearly generated signal is an
old idea. For example, in the search for efficient monolithic harmonic generators,
considerable attention has recently been paid to cavity-embedded semiconductor
multilayered systems [7–10].

To describe nonlinear light generation in a multilayer properly, one must account
for all reflections of all waves involved in the process. Within the approximation
that fundamental waves are essentially unaffected by the nonlinear interaction, this
is usually done by calculating the relevant fields using the transfer–matrix method
[11] or, mostly for lower layered systems, using the Green-function formalism [12].
Very recently a combination of these two approaches has been proposed in which the
Green-function technique is used to obtain generated field in a nonlinear layer from
given fundamental fields, whereas wave reflections are accounted for by means of
the transfer-matrix method [13]. In this work we reconsider the theory of nonlinear
processes in lagered systems and develop a compact and transparent formalism for
calculating generated fields. It is based fully on the Green-function method and
a recently derived compact form of the Green function for an arbitrary multilayer
[14]. Since the Maxwell boundary conditions are already built in the Green function,
the total field generated in a nonlinear process is obtained in this framework by an
(elementary) integration. In this way, one avoids a rather cumbersome matching of
the bound field and the free field necessary in the transfer–matrix method [11] or
matching of the self–field and the additional field necessary in the combined method
[13]. Furthermore, the Green function employed is expressed as a dyadic formed by
the electric-field functions of the waves incident on the system that already account
for multiple wave reflections by means of the generalized Fresnel coefficients. Since
these same field functions enter into the expression for nonlinear polarization, this
approach leads to a compact and transparent analytical result for the field generated
in anmth-order wave-mixing process in a multilayered system involving the relevant
Fresnel coefficients as input parameters. The problem of calculating the generated
field therefore reduces effectively to the problem of calculating the transmission and
reflection coefficients of the corresponding stacks of layers, that is, to a standard
problem in optics of multilayers. This makes the theory particularly convenient for
the analysis of cavity (multiple-interference) effects on nonlinear light generation in
multilayers and planar cavities. As an illustration, we consider harmonic generation
from a nonlinear slab embedded in a multilayer and briefly discuss cavity effects
in such a system. This system resembles the configurations of the novel solid-state
nonlinear cavities for harmonic generators [7–10] and is therefore of obvious interest
in spectroscopy of multilayers as well as in quantum optics.

2. Theory

2.1. Fundamental fields

Consider a multilayered system whose linear properties can be described by
the dielectric function ε(r, ω) defined in a stepwise fashion, as depicted in Fig.
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1. Denoting the (conserved) wave vector parallel to the system surfaces by k =
(kx, ky), the wave vector of an upward (downward) propagating wave in an lth
layer is written as K±

l = k± βlẑ, where

βl =
√

k2l − k2 = β′
l + iβ′′

l , β′
l ≥ 0, β′′

l ≥ 0,

kl(ω) ≡
√

εl(ω)k̃ = [ηl(ω) + iκl(ω)]k̃ = nl(ω)k̃, (1)

with ηl and κl being the refractive index and the extinction coefficient of the layer,
respectively, and k̃ = ω/c. For a transparent layer (kl is real), propagating waves
(k ≤ kl) may also be described by the corresponding propagation angles ϑl, so
that βl = kl cosϑl. With this notation, a q = p- or a q = s-polarized linearly
propagating plane wave incident upon the system from its upper (n) or lower (0)
side (assumed transparent) can be written in the form (the factor exp (−iωt) and
the added complex-conjugate field are understood)

Eν inc
kq (r, ω) = E

ν
q (k, ω; z)Eqe

ik·ρ, ν = n, 0, (2)

where ρ = (x, y) and Eq is related to the intensity of the beam. In a representation
in which 0 < z < dl in an l /=0, n layer, whereas −∞ < z < 0 in the bottom (0) and
0 < z < ∞ in the top (n) layer, the functions Eν

q are given [14]

E
n(0)
ql (k, ω; z) =

tqν/le
iβldl

Dql
E

<

>
ql(k, ω; z), Dql = 1− rql−r

q
l+e

2iβldl ,

E

<

>
ql(k, ω; z) = ê∓qle

−iβlz∓ + rql∓ê
±
qle

iβlz∓ , z− ≡ z, z+ ≡ dl − z,

ê±pl(k) =
1

kl
(∓βlk̂+ kẑ), ê±sl(k) = k̂× ẑ, (3)

for l = 0, . . . n. Here the upper (lower) sign corresponds to E
n
ql (E

0
ql), ê

±
ql are the

unit (complex) polarization vectors associated with the upward (downward) propa-
gating wave in the lth layer, whereas tqn(0)/l and rql± ≡ rql/n(0) are, respectively, the

transmission and reflection coefficients of the upper (lower) stack of layers bound-
ing the layer l. For the outmost layers, l = n (0), one must let tqn/n (tq0/0) = 1 and

dn (d0) = 0 in Eq. (3) since these quantities appear only formally. Also, obviously,
rqn+ = 0 and rq0− = 0. The remaining Fresnel coefficients satisfy

(4)

tqi/j/k =
1

Dqj
tqi/jt

q
j/ke

iβjdj =
βi

βk
tqk/j/i, (4a)

rqi/j/k =
1

Dqj

[

rqi/j + (tqi/jt
q
j/i − rqi/jr

q
j/i)r

q
j/ke

2iβjdj

]

, (4b)

FIZIKA A 5 (1996) 3, 141–151 143
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and, for a single i − j interface, reduce to tqij =
√

γq
ij(1 + rqij) and rqij = (βi −

γq
ijβj)/(βi + γq

ijβj), where γp
ij = εi/εj and γs

ij = 1, respectively. They can be
calculated by using the above recurrences or by using any other suitable algorithm,
e.g., the transfer matrix–method.

Fig. 1. System considered schematically. εl = n2
l are the (complex) dielectric func-

tions of the layers. Except the bottom or the top layer, all other layers may, in

principle, be nonlinear with the susceptibilities χ
(m)
l (z).

2.2. Nonlinear polarization

Assuming that fundamental waves propagate essentially linearly and using Eq.
(2), one can write the polarization leading to an mth–order nonlinear process as
[15]

PNL(r, ω) = P(m)(k, ω; z)eik·ρ, ω =

m
∑

i=1

(±ωi), k =

m
∑

i=1

(±ki),

P(m)(k, ω; z) = χ(m)(z) : [Eνi

qi (ki, ωi; z)Eqi ]
m, (5)
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where χ(m) is the corresponding susceptibility tensor. Here we have used the nota-
tion [Ei]

m ≡ E1(E
∗
1) . . .Em(E∗

m), where E
∗
i appears with the −ωi term. Similarly,

for scalar quantities we write [ai]
m ≡ a1(a

∗
1) . . . am(a∗m).

2.3. Generated field

Using Eq. (5), the generated field in the system is given by [12]

E(r, ω) = eik·ρ (
ω

c
)2

∫

dz′
↔
G(k, ω; z, z′) ·P(m)(k, ω; z′), (6)

with
↔
G(k, ω; z, z′) being the appropriate Fourier transform of the Green function

for the system.
↔
G(k, ω; z, z′) is represented by the elements

↔
G(k, ω; lz, l′z′) that

relate the field at a plane z in an lth layer with the polarization at a plane z′ in an
l′th layer. It can be expressed in terms of the functions Eν

q (k, ω; z) and E
ν
q (−k, ω; z′)

as [14]

↔
G(k, ω; lz, l′z′) = −

4π

k2l
ẑẑδ(z − z′)δll′ +

∑

q=p,s

G′
q

↔
(k, ω; lz, l′z′),

↔
G′

q (k, ω; lz, l′z′) =
2πi

βn

ξq
tq0/n

[

E
0
ql(k, ω; z)E

n
ql′(−k, ω; z′)θ(lz − l′z′)

+E
n
ql(k, ω; z)E

0
ql′(−k, ω; z′)θ(l′z′ − lz)

]

, (7)

where θ(lz − l′z′) = θ(z − z′) for l = l′ and θ(lz − l′z′) = θ(l − l′) for l /=l′, and
ξp = 1 whereas ξs = −1. Eqs. (5)-(7), therefore, give the generated field in a simple
form in the entire system. Considering the field Eν out in the external layers (ν = n
or ν = 0), one finds

Eν out(r, ω) = eiK
±
ν ·r (

ω

c
)2
2πi

βν

∑

q=p,s

ξqê
±
qν(k)

×
∑

l

∫

(l)

dz′Eν
ql(−k, ω; z′) · χ

(m)
l (z′) : [Eνi

qil
(ki, ωi; z

′)Eqi ]
m, (8)

where the upper (lower) sign corresponds to En out (E0 out). The intensity Iνq of
the q-polarized generated wave in the νth region is given by the corresponding
time-averaged Poynting vector. Assuming transparent external layers, this gives

Iνq (k, ω) = (
2π

c
)m+1 ω2

[ηνi
(ωi)]mην(ω) cos2 ϑν

|Jνν1...νm
qq1...qm |2 [Iνi

qi (ki, ωi)]
m,
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Jνν1...νm
qq1...qm =

∑

l

∫

(l)

dz′Eν
ql(−k, ω; z′) · χ

(m)
l (z′) : [Eνi

qil
(ki, ωi; z

′)]m, (9)

with Iνi
qi = (c/2π)ηνi

|Eqi |
2 being the intensity of the ith fundamental beam. In

the second factor here, we have used βν = kν cosϑν , where ϑn(0) ≤ π/2 is defined

relative to the positive (negative) z-axis (see Fig. 1) and, together with k̂ = cosϕx̂+

sinϕŷ, describes the direction of the radiation at ω. From k = kν(ω) sinϑν k̂,
the angle ϑν is related to the corresponding angles ϑνii of the fundamental waves

[ki = kνi
(ωi) sinϑνiik̂i] through the generalized Snell law

kν(ω) sinϑν k̂ =

m
∑

i=1

kνi
(ωi) sinϑνii(±k̂i). (10)

Together with Eqs. (3) and (6)-(9), this completes the description of a nonlinear
process in a multilayer for all combinations of fundamental- and generated-wave
propagation directions and polarizations.

2.4. Cavity effects

In addition to the polarization properties of the process, the effective suscep-
tibility J describes various effects coming from the structural and material prop-
erties of the system, e.g., excitation of local guided modes in the system, cavity
effects, etc. Focusing attention on cavity effects, we note that, according to Eq.
(3), the contribution of each layer to |J |2 includes the function |tqν/l/Dql|

2 for

each wave, that is, the response (Airy) function of a planar cavity [16]. Letting
rql± = ξq|r

q
l±| exp (2iφ

q
l±), this function is transformed into the familiar form gener-

alized, however, for absorption in the system:

Y ν
ql(k) ≡ |

tqν/l

Dql
|2 =

|tqν/l|
2

(1− |rql−r
q
l+|e

−αldl)2 + 4|rql−r
q
l+|e

−αldl sin2(β′
ldl + φq

l )
. (11)

Here αl(k) = 2β′′
l is the absorption coefficient of the cavity and φq

l (k) = φq
l+ + φq

l−

the total half phase-shift of the cavity mirrors for a wave. Y ν
ql exhibits a resonance

whenever the cavity-mode condition

Φql(k) ≡ β′
ldl + φq

l = Mqπ, Mq = 0, 1, . . . , (12)

is satisfied with the width of the resonance governed by the cavity finesse for the
mode [16] fql(k) = (π/2)

√

Fql, where Fql(k) = 4|rql−r
q
l+|e

−αldl/(1− |rql−r
q
l+|e

−αldl)2.
Thus, any nonlinear layer that supports propagating (β′

l >> β′′
l ) waves may act

as a Fabry-Pérot cavity. Furthermore, according to Eq. (4a), the factor |tqν/l|
2 may

also exhibit the resonant structure of the form of Eq. (11) with a (nearly) transpar-
ent intermediate layer for a wave, so that any layer in the system may, in principle,
act as a cavity.
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3. Application: Harmonic generation

We illustrate the usefulness of this framework by considering harmonic genera-
tion (HG) from a nonlinear slab (l) embedded in a multilayer, as depicted in Fig.
1. We assume a single q′-polarized fundamental wave of the wave vector k and the
frequency ω incident from the top (n) layer at an angle ϑn. Adapting the notation
appropriately, one can write Eq. (9) as

I(m)ν
q = (

2π

c
)m+1 m2ω2

[ηn]mη
(m)
ν cos2 ϑ

(m)
ν

|Jνn
qq′ |

2[Inq′ ]
m,

Jνn
qq′ =

dl
∫

0

dz′Eν
ql(−mk,mω; z′) · χ

(m)
l (z′) : [En

q′l(k, ω; z
′)]m, (13)

where the superscript (m) denotes quantities that describe the harmonic wave
(calculated at mk and/or mω). With ν = n, this equation describes HG in re-
flection, and, with ν = 0, HG in transmission. For nondispersive external lay-

ers, ϑ
(m)
n = ϑn and ϑ

(m)
0 = arcsin[(ηn/η

(m)
0 ) sinϑn], respectively. Specially, with

E
n
ql(k, ω; z) = tqn/lê

−
ql exp (−iβlz) for the bottom layer (l), for a semi-infinite slab

one obtains

Jnn
qq′ (∞) = t

(m)q
n/l [tq

′

n/l]
m

0
∫

−∞

dz′e−i(β
(m)

l
+mβl)z

′

ξqê
(m)+
ql · χ

(m)
l (z′) : [ê−q′l]

m. (14)

Of course, as can be easily checked through Eq. (3), this result also emerges directly
from Eq. (13) in the limit dl → ∞. Finally, with n → 0 in Eq. (13), this equation
gives HG intensity if the fundamental wave is incident from the bottom (0) layer.

The calculation of Jνn
qq′ demands knowledge of the function χ

(m)
l (z). In a phe-

nomenological model, χ
(m)
l (z) for a single-crystal slab is, in general, the sum of the

(constant) bulk susceptibility χ
(m)
lB and the susceptibilities χ

(m)
lS±

associated with

the slab surfaces. Assuming the surface polarization slightly inside the slab [4] and
using Eq. (3), one has

Jνn
qq′ =

t
(m)q
ν/l

D
(m)
ql





tq
′

n/l

Dq′l





m

J ν
qq′ , J ν

qq′ = J ν
S,qq′ + J ν

B,qq′ ,

J
n(0)
S,qq′ = eiβ

(m)

l
dlE

<

>
ql(−mk,mω; dl) · χ

(m)
lS+

: [eiβldlE
<
q′l(k, ω; dl)]

m

+eiβ
(m)

l
dlE

<

>
ql(−mk,mω; 0) · χ

(m)
lS−

: [eiβldlE
<
q′l(k, ω; 0)]

m,
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tomaš: nonlinear light generation . . .

J
n(0)
B,qq′ =

dl
∫

0

dz′eiβ
(m)

l
dlE

<

>
ql(−mk,mω; z′) · χ

(m)
lB : [eiβldlE

<
q′l(k, ω; z

′)]m. (15)

With E

<

>
ql(k, ω; z) from Eq. (3), explicit results for J ν

S,qq′ can be written down
immediately for arbitrary m. Performing elementary integrations, one explicitly
finds for J ν

B,qs, for example,

J
n(0)
B,ss = ei(β

(m)

l
+mβl)dl/2dl

{

m
∑

t=0

m!

t!(m− t)!

(

rsl−e
iβldl

)t

[

sin[β
(m)
l ± (m− 2t)βl]dl/2

[β
(m)
l ± (m− 2t)βl]dl/2

+r
(m)s
l∓ eiβ

(m)

l
dl
sin[β

(m)
l ∓ (m− 2t)βl]dl/2

[β
(m)
l ∓ (m− 2t)βl]dl/2

]}

(−k̂× ẑ) · χ
(m)
lB : [k̂× ẑ]m, (16a)

J
n(0)
B,ps = ei(β

(m)

l
+mβl)dl/2dl

[

±
β
(m)
l

k
(m)
l

{

r
(m)s
l∓ → −r

(m)p
l∓

}

(−k̂) · χ
(m)
lB : [k̂× ẑ]m

+
(mk)

k
(m)
l

{

r
(m)s
l∓ → r

(m)p
l∓

}

ẑ · χ
(m)
lB : [k̂× ẑ]m

]

, (16b)

where { } denotes the expression in the corresponding parenthesis in Eq. (16a).

Clearly, J
n(0)
B,qp consist of more similar terms with different components of χ

(m)
lB .

We stress the generality of the above result within the assumptions made. Equa-
tions (13)-(15) fully account for all possible reflections of the fundamental and the
harmonic wave in an absorbing multilayer. It is worth noticing the appearance of
the phase-matching term in Jnn

qq′ (reflection case) and the reinforcement of the cor-

responding term in J0n
qq′ (transmission case) as a consequence of wave reflections in

the slab [see Eq. (16)]. HG from a semi-infinite medium (the n − l system ) or a
three-layer (n − l − 0) system, frequently considered in the literature [2–6,11–13]
is described by these equations with the use of the corresponding single-interface
Fresnel coefficients and for appropriate m. Finally, when summing Jνn

qq′ for different

layers, Eq. (13) gives HG intensity from an arbitrary nonlinear multilayered system.

Application of the above result in spectroscopy of multilayers is obvious. Cav-

ity effects in the present case are described by the product Y
(m)ν
ql [Y n

q′l]
m of the

Airy functions and, as mentioned, by a similar form arising in the product

|t
(m)q
ν/l |2[|tq

′

n/l|
2]m for any intermediate layer. Thus, looking, for example, at the vari-

ation of HG intensity with increasing slab thickness, one obtains a rather simple
pattern with maxima appearing whenever dl matches the cavity-mode condition,
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Eq. (12), either for the fundamental or for the harmonic wave. In the first case, an
enhanced HG intensity is given by

|Jνn
qq′ |

2 =
G

(m)q
ν/l [Gq′

n/l]
m

1 + F
(m)
ql sin2 Φ

(m)
ql

|J ν
qq′ |

2, Gq
ν/l =

|tqν/l|
2

(1− |rql−r
q
l+|e

−αldl)2
, (17)

with βldl = Mq′π − φq′

l + i(αl/2)dl in J ν
qq′ . A similar result is obtained for the

harmonic wave coinciding with a cavity mode. In this case, however, HG intensity
should normally be smaller since Y (m) rather than Y m is at a peak value. Of course,
it may happen that either because of the weak reflection or, more likely, because
of the strong absorption of a wave, one of the Airy functions becomes ineffective.
In this case, one observes variations of HG intensity governed by the parameters of
one beam only. All these characteristic cavity effects have been clearly observed in
SHG from supported thin films [2–6].

In quantum optics, the system considered represents a nonlinear cavity formed
by the two multilayered mirrors. Solid-state planar cavities of this form have re-
cently been employed as parts of various surface-emitting devices, e.g., a nonlinear
planar cavity may be integrated with a semiconductor surface-emitting laser to
form a monolithic surface-emitting harmonic generator [8–10]. When specified to
the k = 0 case (rql± = ξqrl±), this theory provides the theoretical background for
such a device. Thus, with the condition ηldl = (M − φl/π)λ/2, Eqs. (13) and (17)
directly give the power conversion efficiency (∼ Iνq /[I

n
q′ ]

m) of a nonlinear cavity

designed to resonate with the fundamental wave. Using Eq. (4a), the enhancement
factors Gq

ν/l are rewritten in the terminology of quantum optics as

Gq
ν/l =

ηνηl
|nl|2

T±

(1−
√

R−R+e−αldl)2
, (18)

where R± = |rl±|
2 and T± = (ην/ηl)|tl/ν |

2 is the reflectivity and transmissivity
(from the cavity side), respectively, of the upper (lower) cavity mirror. According
to Eqs. (3) and (15), the overlap integrals J ν

qq′ become

J
n(0)
qq′ =

dl
∫

0

dz′χ(z′)f
(m)
∓ (z′∓)[f−(z

′)]m, f∓(z) = eikldl
[

e−iklz − rl∓e
iklz

]

, (19)

where χ = (−q̂) · χ
(m)
l : [q̂′]m, with q̂ describing the polarization of a wave that

propagates in the z direction. For highly-reflecting (R± ≃ 1) cavity mirrors, the
approximation f∓(z) ≃ −2i exp[i(kldl + φl∓)] sin(klz + φl∓) is appropriate. There-
fore, for a structured cavity described by an effective dielectric function εl, Eq. (19)
provides a simple recipe for quasi–phase–matching [17] in HG, which is the method
usually utilized for maximizing J ν

qq′ in semiconductor-based nonlinear cavities [7–

10]. The conversion efficiency of a cavity designed to resonate with the harmonic
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wave [η
(m)
l dl = (M (m) − φ

(m)
l /π)λ(m)/2], or with both the harmonic and the fun-

damental wave simultaneously, is given by Eqs. (13) and (17)-(19), with an obvious
modification of the denominator in Eq. (17).

4. Summary

In summary, we have developed a transparent general formalism for consid-
eration of nonlinear processes in layered systems. In this work we have specially
emphasized its usefulness in discussing cavity effects that may be observed or ex-
ploited in nonlinear spectroscopy of multilayers and quantum optics. Therefore,
attention has been paid to processes with unbound waves in a system. It should
be noted, however, that this theory also applies to nonlinear processes with guided
modes in a system mediated, e.g., by a prism coupler. To consider such a process,
one of the external layers in Fig. 1 should be regarded as the prism and its effect
can be easily analyzed using the properties of the generalized Fresnel coefficients.
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NELINEARNA GENERACIJA SVJETLA U VIŠESLOJNIM SISTEMIMA:
EFEKTI REZONATORA

Koristeći nedavno izvedeni izraz za Greenovu funkciju slojevitih sistema razvijen je
sažet i jasan postupak za proračun nelinearnih procesa u vǐseslojnim strukturama.
Teorija je posebno prikladna za analizu efekta rezonatora (interferencije vǐsestruko
reflektiranih valova) na nelinearnu generaciju svjetla u vǐseslojnim sistemima i pla-
narnim rezonatorima. To je ilustrirano razmatranjem procesa harmonijske gene-
racije svjetla u strukturama s jednim nelinearnim slojem te kratkom diskusijom
efekta rezonatora u takvim sistemima.
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