
Signature-based Tree for Finding Frequent Itemsets

Mohamed El Hadi Benelhadj, Mohamed Mahmoud Deye, and Yahya Slimani

Abstract—The efficiency of a data mining process depends on

the data structure used to find frequent itemsets. Two approaches

are possible: use the original transaction dataset or transform it

into another more compact structure. Many algorithms use trees

as compact structure, like FP-Tree and the associated algorithm

FP-Growth. Although this structure reduces the number of scans

(only 2), its efficiency depends on two criteria: (i) the size of the

support (small or large); (ii) the type of transaction dataset

(sparse or dense). But these two criteria can generate very large

trees. In this paper, we propose a new tree-based structure that

emphasizes on transactions and not on itemsets. Hence, we avoid

the problem of support values that have a negative impact on the

generated tree.

Index terms—Data mining, Data compression, Data storage,

Tree structure, Signature.

I. INTRODUCTION

The efficient search of information in large datasets to extract

knowledge is vital for any expert. Several methods and

techniques are used in KDD (Knowledge Discovery in

Databases) process to extract knowledge from large datasets.

Mining association rules which trends to find interesting

association or correlation relationships among large amounts of

data is one of these techniques. Originally introduced by

Agrawal [1] in the context of transactional datasets, the

association rule mining approach is now used extensively to

find associations in biological datasets, web log data,

telecommunications data, census data, social data and other

types of datasets [21].

Though several algorithms have been developed for fast

mining of frequent itemsets over the years [20], [7], [27], [8].

Association rule mining algorithms can be classified into two

categories: the first one is based on the candidate generate and

test approach, such as Apriori [2], [6] while the second one is

based only on the pattern fragment growth like the FP-Growth

or frequent itemset-growth algorithm [20].

The "generate and test approach" is based on an anti-

monotone property [1]: if an itemset with k items is not

frequent, any of its super-itemset with (k+1) or more items can

never be frequent. So, this approach iteratively generates a set

of candidate itemsets of length (k + 1) from the set of frequent

itemsets of length k (k ≥ 1) and their corresponding occurrence

frequencies are checked in dataset.

Manuscript received July 27, 2022; revised December 12, 2022. Date of
publication March 14, 2023. Date of current version March 14, 2023. The

associate editor prof. Toni Mastelić has been coordinating the review of this

manuscript and approved it for publication.
M. El Hadi Benelhadj is with the Faculty of Science and Technologies,

Tamanrasset University, Algeria (Mohamed.benelhadj@univ-tam.dz).

M. M. Deye is with the Cheikh Anta Diop University of Dakar, Senegal

(mohamed.oulddeye@ucad.edu.sn).

Y. Slimani is with the Institute of Multimedia Art of Manouba (ISAMM),

University of Manouba, Tunisia (yahya.slimani.guest@isamm.uma.tn).
Digital Object Identifier (DOI): 10.24138/jcomss-2022-0065

Though this algorithm works relatively well with smaller

dataset. However, when we have a large number of frequent

patterns and/or long patterns, the "generate and test approach"

may still suffer from huge number of candidates and needs

many scans of large datasets for frequency checking.

The pattern-growth approach, such as FP-Growth (Frequent

Pattern-Growth) also uses the anti-monotone property. In this

approach, the dataset is recursively split into sub-datasets

according to the frequent itemsets found and search for local

frequent itemsets to assemble longer and larger ones.

FP-Growth avoids candidate generation by compressing the

transaction dataset into a structure called FP-Tree.

Nevertheless, this algorithm may still encounter difficulties for

large sparse datasets when the FP-Tree will be very large [20].

Finally, to improve the efficiency of the association rule

mining algorithm, the Apriori-like algorithms and FP-Tree-

based algorithms have been used on various types of datasets

with varying degrees of success. But, generally, the problem of

repeatedly scanning the datasets remains.

In this paper, we propose a new data structure, called FI-Tree

(Frequent Itemset Tree), to represent a transaction dataset and a

new mining algorithm, FI-Mine, to extract the frequent

itemsets. With FI-Mine algorithm, in the first time, we scan the

dataset only once to generate a binary signature for each

transaction, to construct the FI-Tree and to extract the frequent

1-itemsets. In second time, the step of extraction frequent

itemsets is done. It assigns a signature for each k-itemset

candidate (k ≥ 2), searches it in the FI-Tree, computes its

support and keeps only the frequent k-itemsets.

The reminder of this paper is organized as follows: in Section

II we present and discuss a state of the art about the concept of

signature and its different representations. Section III reviews

the main used of signature file for tree structure. In Section IV,

we present our proposed structure FI-Tree and we compare it

with FP-Tree. Section V compares and discusses our algorithm

FI-Mine with Apriori algorithm using the response time as a

comparative criterion. We also compare it with FP-Growth

using the memory space as a comparative criterion. Finally,

Section 6 concludes and skittles future research works.

II. RELATED WORKS

The role of indexing is evident for accelerating data recovery

from large datasets. Index techniques have been extensively

investigated in both the information retrieval and dataset

research areas, and many methods have been developed within

the past three decades. Being efficient in evaluating set-oriented

query and allowing the easy handling of updates and insert

operations makes the signature file techniques are the best

indexing approaches. Signature file representation has been

tackled using several techniques. We cite, for instance, Bit-

Slice Signature file [12], Sequential Signature File [12],

70 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

1845-6421/03/2022-0065 © 2023 CCIS

Original scientific article

mailto:Mohamed.benelhadj@univ-tam.dz
mailto:mohamed.oulddeye@ucad.edu.sn
mailto:yahya.slimani.guest@isamm.uma.tn

Multilevel Signature file [25], [12], Signature Graph [10], and

Compressed Bit Sliced Signature File [12].

We cite, for instance, Bit-Slice Signature file [12], Sequential

Signature File [12], Multilevel Signature file [25], [12],

Signature Graph [10], and Compressed Bit Sliced Signature

File [12].

A. Signature File

A signature is a string of bits constructed from a defined

value. It is better than other indexing approaches, since it allows

the efficient treatment of new insertions and queries on word

parts. It is also simple to implement. Besides, it works well on

large files. Comparatively, to other index structures, the

signature file is more efficient at processing new insertions and

queries on words. Other advantages include the simplicity of its

implementation and its ability to support large files. Though, it

suffers from the problem of information loss. The careful

selection of the signature extraction technique allows to

minimizing this loss. A signature is a binary vector of length m

obtained by applying one (or several) hash function(s) [12].

Several methods to extract signatures such as Superimposed

Coding (SC), Variable Bit-block Compression (VBC), Word

Signature (WS), Bit-block Compression (BC), Run Length

Encoding (RL) [15], [16] and Multilevel Superimposed Coding

(MSC) [24], [17] have been developed.

The text block signature is the result of combining all the

signatures of words composing it by the "OR" logical operation.

A signature file is formed by the set of all signatures. Table I

shows an example of signature extraction of a block ("frequent

itemset extraction").

TABLE I

SIGNATURE EXTRACTION EXAMPLE

Frequent

Itemset

Extraction

0000 0000 0000 0010 0000

0000 0001 0000 0000 0000

0000 1000 0000 0000 0000

Bloc Signature 0000 1001 0000 0010 0000

B. Signature Representation

Signature files methods are described in this sub-section.

B.1 Sequentiel Signature File (SSF)

SSF is the simplest organization which requires low

algorithm and low update cost. It is also easy to implement. The

signatures are stored sequentially in the signature file. When a

query is given, a full scan of the signature file is required [4].

Therefore, it is generally slow in retrieval.

B.2 Bit Sliced Signature File (BSSF)

A column-wise way is used here to store signatures. If the
length of the signatures is m, then all the signatures will be
stored in m files. So, for each bit position of all signatures, one

bit-slice file F is created. For extraction, only part of the m bit-

slice files should be scanned. Hence, the search cost is reduced

and is lower than that of SSF. However, update cost becomes

larger. For example, an insertion of a new signature requires
about m disk accesses, one for each bit-slice [12].

B.3 Compressed Bit Sliced Signature File (CBSSF)

The number of 1's is ensured by the adoption of a suitable

hash function for signature extraction. To limit the false drop,

the length of signature should be increased. By doing so, a

sparse matrix, which is easily compressible, is created [4]. This

matrix can be compressed by replacing each 1 with its

associated physical address. The hash table uses a set of pointers

to the head of the linked list. For instance, if the word "Text"

has "1" as the first bit, and it is positioned at the 50th byte of the

text file, then by looking at the 1st bucket, the position of the

word "Text" is found. Although this method saves space, the

number of false drops increases because the signature files are

sparse.

B.4 Multi-level Signature File

It is a structure similar to S-Tree, but different in that a

signature at a higher level is a superimposed code generated

directly from a group of text blocks, instead of superimposing

signatures at a lower level. However, this method needs more

subspace. An improved method for multi-level signature file is

discussed in [14].

B.5 Signature Graph

A tree like structure is used to organize the signature file.

Through, to match a given query, the path explored in the graph

is not a continuous chain of bits. It corresponds to a signature

identifier, which makes the difference between the signature

graph and the tree [10]. Unlike signatures, no compact

representation is used for the search path; the length is not the

same for all queries. This means that the graph is not balanced,

and in worst cases, it is reduced to a signature file.

III. BACKGROUND

We are mainly interested in representation of the signature file

in tree structure. In the following, we present the main used

representations.

A. Signature Representation as a Tree

A.1 S-Tree

An S-tree is a height balanced multi-way tree. Each internal

node corresponds to a page, which contains a set of signatures

and each leaf node contains a set of entries of the form, where

the object is accessed by an oid and s is its signature. Combining

lower-level nodes permits the construction of internal nodes.

The advantage is that it is not needed to search the whole

signature file; instead, a simple tree is searched. However, the

combination of nodes results in the situation in which the

internal node at higher level is likely to have more weight. This

is decreasing selectively. The authors in [14] enhanced the S-

Tree technique by proposing some new split methods, such as

Linear split, Quadratic split, Cubic split and hierarchical

clustering. By doing so, the query response time was improved.

A.2 Signature Tree

A tree of signatures Ts represents a set of signatures S =

{S1,...,Sn}, where Si ≠ Sj for all i ≠ j and│Sk│= m, for 1 ≤ k ≤ n.

Ts is a binary tree in which:

M. EL HADI BENELHADJ et al.: SIGNATURE-BASED TREE FOR FINDING FREQUENT ITEMSETS 71

• The left edge issued from it is tagged with a "0" while the

right one is tagged with "1".

• Ts has n leaves tagged L1,…, Lm. There are used as pointers

to m different signatures S1,...,Sm in S.

• A positive number, annotated Pos(v), is associated with every

node v. Its role is telling which bit to be checked.

The bit positions given by the nodes are used to identify

signatures. However, in the case of query signatures, the tree is

explored from top to bottom with respect to the bit positions

defined by the nodes, instead of the 1's given by the query

signature. Besides, for matching 1's, the right sub-tree is

explored, while both left and right sub-trees are searched to

match 0's [9],[10],[12].

A.3 Signature Declustering Tree (SD-Tree)

Three types of nodes are used in the SD-Tree: Internal nodes,

Leaf nodes and Signature nodes. The two first types are similar

to their counter parts in B+ trees. The internal nodes compose

the upper tree, while the leaf nodes are the components of the

pre-ultimate level. The signature nodes are situated at the

bottom level of the SD-Tree [25].

B.Representation of Transaction Dataset

To compute the supports of itemsets, we need to access the

transaction dataset. As transaction datasets are usually very

large, one solution, which avoids repetitive and costly accesses

of these datasets, may be to represent them by compact

structures in order to optimize memory usage. Many structures

have been proposed with the aim of optimizing memory use,

reducing I/O costs and making processing faster.

In this subsection, we will present and discuss the

characteristics of the main tree structures used for frequent

itemset generation.

B.1 FP-Tree Structure

The FP-Tree structure is an extension of the Trie data

structure [6] which belongs to the family of prefixed trees. The

FP-Tree combines vertical and horizontal data representation

schemes. The proposal of the FP-Tree has been a starting point

for the development of algorithms for the extraction of frequent

itemsets without candidate generation [3],[20].

The FP-Tree is a compact structure consisting of:

• A tree whose root has the value "null" and, where each

node, other than the root, contains three pieces of

information: the item representing the node, its

frequency and the next node in the tree.

• An index contains the list of frequent itemset. Each item

is associated with a pointer that indicates the first node of the

tree where this item appears. The construction of the FP-Tree

requires two accesses of the transaction dataset and is done

as follows: the first access is used to determine the number

of occurrences of each item, to eliminate the infrequent items

and to order the frequent items by decreasing order of

support. During the second access, the items of each

transaction are sorted according to the order obtained during

the first access (see Table II).

TABLE II

ORDERED TRANSACTIONS DATASET

Tid Transactions Ordered Transactions

T1

T2

T3

T4

T5

T6

T7

1, 2, 5

2, 4

2, 3

1, 2 ,4

1, 3

1, 2, 3, 5

1, 2, 3

2, 1, 5

2, 4

2, 3

2, 1, 4

1, 3

2, 1, 3, 5

2, 1, 3

The tree building process starts with the creation of a root

node. Then, a branch is added to the tree for a processed

transaction, exploiting the fact that transactions with the same

prefix will share the same start node of the tree branch (Figure

1).

Fig. 1. FP-Tree example

Next, the frequent pattern mining process is converted into

an FP-Tree mining process. For each frequent item,

construct its corresponding conditional pattern base and

FP-Tree. Repeat this process for each new constructed FP-

Tree, until it is empty or contains only one path. When the

constructed FP-Tree is empty, the prefix is the frequent

pattern. When it contains only one path, all frequent

patterns can be acquired by connecting their prefixes with

all possible combinations enumerated from the path (Table

III).

TABLE III

CONDITIONAL FP-TREE

Item Conditional Pattern Base Conditional FP-Tree

5

4

3

1

{{2, 1: 1}, {2, 1, 3: 1}}

{{2, 1: 1}, {2: 1}}

{{2, 1: 2}, {2: 2}, {1: 2}}

{{2: 4}}

{2: 2, 1: 2}

{2: 2}

{2: 4, 1: 2}, {1:2}

{2: 4}

B.2 H-struct Structure

The main disadvantage of the FP-Tree structure is the

explosion of the tree size for sparse transaction datasets, for

which the representation by an FP-Tree generates a tree of the

same size as the sizes of these datasets. To overcome this

drawback, a structure called H-struct has been proposed [22].

In this structure, transactions are ordered in an arbitrary way.

Only frequent items are projected into the H-structure. An H-

structure consists of projected transactions, and each node in

these transactions contains the label of the item and a hyperlink

to the next occurrence of this item. A header table is created for

each H-struct. This table contains the frequencies of all items

72 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

and a given hyperlink to the first transaction containing the

item.

B.3 CATS Tree

A CATS tree is an extension of the FP-Tree, and it is a pre-

expressed tree containing all elements of the FP-Tree including

the header table, pointers to item occurrences, etc. Each item in

the transaction dataset has a node in the header table, containing

the total frequency of that item in all transactions. In addition,

each node in the header table contains a pointer to the first node

within the tree, bearing the same label as the node in the header

table. Each node in the tree contains the label of the item, its

frequency, a pointer to its parent, pointers to its l's and a pointer

to the next occurrence of that item to form a doubly-linked list

connecting all nodes with the same label. The l's of a node, in a

CATS tree, are arranged in descending order of their frequency.

The paths from the root to the leaves represent all the

transactions in the dataset. In fact, a CATS tree is an FP-Tree

rearranged to improve compression. Unlike the FP-Tree

structure, where the l's of each node are ordered in descending

order of their global supports, the l's of each node in a CATS

tree are ordered relatively to their local supports [13].

B.4. Patricia Tree

A Patricia Tree is a compression of the FP-Tree [26]. In this

tree, each maximal chain of nodes v1→ v2→…→ vk, whose

nodes vi have the same support c except vk, is merged into a

single node of support c; this node has vk with its associated

support as l's. The size of a Patricia Tree, representing a base of

M transactions of average length N, is at most equal to

N+O(M). We can illustrate this compression gain by Figure 4,

which represents a FP-Tree and its version as a Patricia Tree.

From Figure 4, we notice that the Patricia Tree is more compact

in number of nodes. All adjacent nodes that share the same

support are merged into a single node.

Fig. 2. FP-Tree and its compression into Patricia-Tree

IV. OUR MAIN CONTRIBUTION

A. Our Proposed Structure: FI-Tree

Improving performance of discovering association rules

requires an optimization of the extraction phase of frequent

itemsets. To reach this objective, we propose to use the

Frequent-Itemset-Tree (FI-Tree) structure representing the set

of transaction signatures. Each transaction is represented by a

signature of size m. Signatures are abstractions of items, which

are coded. They are represented by a binary correspondence

with a specified number of 1's. The transaction signatures are

formed by combining the signatures of items. FI-Tree has the

advantage of being both a compact (binary representation) and

dynamic (care of updates) structure. A signature tree contains

two types of nodes: internal nodes and leaf nodes. For each

internal node, the left child corresponds to the value "0" and the

right one to the value "1". Each leaf node contains a signature

Si. The number of leaf nodes in a FI-Tree is equal to the number

of signature transactions. The construction of the FI-Tree

requires two phases:

1. The application of the hash function H(item) (for example,

we use modulo 5 function) to obtain the signature for each

item into a transaction. The superimposed coding of these

signatures will give the transaction signatures. An example

of signatures generation is given below (see Table IV).

2. Each transaction signature Si is inserted in the FI-Tree and a

leaf of this tree is a signature.

TABLE IV

TRANSACTIONS AND SIGNATURES

Tid Transactions Signatures

T1

T2

T3

T4

T5

T6

T7

1, 2, 5

2, 4

2, 3

1, 2 ,4

1, 3

2, 3

1, 2, 3, 5

S1:11100

S2:00101

S3:00110

S4:01101

S5:01010

S6:11110

S7:01110

A.1. A Simple Way for Constructing FI-Tree

At the beginning, the tree has an initial node containing the

first signature transaction. Then, we take a new signature

transaction, a composition of signatures items, and we insert it

into the FI-Tree. Let S be the signature we wish to enter. We

cross the tree from the root. Let v be the node encountered and

assume that v is an internal node with position (v) = k. Then,

S[k] will be checked. If S[k] = 0, we go left, otherwise, we go

right. Let v be a leaf node and S' its corresponding signature;

we compare S with S'. We assume that the first k bits of s agree

with S'; but S differs from S' in the (k+1)th position. We

construct a new node u with position (u) = k+1, replace v with

u and v becomes one of u’s children. If position (u) = 1, we

make v be the left and s be the right child of u, respectively. If

position(u) = 0, we make v the right child of u and s the left

child of u. In the following, we describe formally the FI-Tree

construction process.

• Steps to generate FI-Tree

Steps (a) build a root node r such that r is a leaf node that

contains the signature S1.

(a) Insert (S1 = 11100)

Fig. 3 (a)

(b) Insert (S2 = 00101): the 1st different bit between S1 and S2

is the 1st bit such that S1[1] = 1 S2[1] = 0; hence, we create

internal node v with pos(v) = 1, right leaf node S1 and left leaf

node S2.

S1:11100

M. EL HADI BENELHADJ et al.: SIGNATURE-BASED TREE FOR FINDING FREQUENT ITEMSETS 73

Fig. 3 (b)

(c) Insert (S3 = 00110): S3[1] = 0, we go to the left and we

compare S3 with S2. The 1st different bit between S3 and S2 is

the 4th bit, S2[4] = 0 ≠ S3[4] = 1; hence, we create internal node

v with pos(v) = 4, left leaf node S2 and right leaf node S3.

Fig. 3 (c)

The insertion of the signature S7 = 01110 completes the

process of building the FI-Tree (Figure 3(d)).

Fig. 3 (d). Final FI-Tree

The formal description of the algorithm FI-Tree-

Construction is given in Table V.

TABLE V

FI-TREE-CONSTRUCTION ALGORITHM

Algorithm FI-Tree-Construction

Input: Set of transactions

Output: FI-Tree

Begin

Generate all signatures (S1, ..., Sn)
Insert signatures in FI-Tree

End

The formal description of the algorithm Insert (Si) is given in

Table VI.

TABLE VI

INSERT ALGORITHM

Algorithm Insert
Input: The signature Si, FI-Tree

Output: FI-Tree

Begin

Traverse the tree from the root

While Stack not empty Do
v Pop (Stack)

If v is an internal node Then

Check Si (p)
If Si[j] = 1 Then

Push (Stack, right_child)

Else
Push (Stack, left_child)

Endif

Else

Generate a new internal node u

Generate a new leaf node vi = {Si}

Endif
Enddo

End

A.2. Searching in FI-Tree

Now, we discuss how to search a signature SI of an itemset I

in the FI-Tree structure:

1. Let v be the node encountered and position (v) be the position

to be checked.

2. If position (v) = 1, we move to the right child of v.

3. If position (v) = 0, both the right and left child of v will be

explored.

In fact, this process corresponds to the signature matching

criterion. For a bit position p in SI, if it is to "1", the

corresponding bit position in S (S is a signature transaction)

must be set to "1"; if it is set to "0", the corresponding bit

position in S can be equal to "1" or "0". The following example

helps for illustrating the main idea of the algorithm.

Example 1. Consider an itemset I{2,3,5} and its signature SI =

10110. Then, only part of the FI-Tree will be searched (thick

edges in Figure 4). On reaching a leaf node v, the signature S

will be checked against SI. In our example, we visit 2 signatures

S1 and S6, but we select only S6 because S1 doesn’t contain SI

(Figure 4).

S2:00101

1

S1:11100

S3:00110

1

S1:11100
4

S2:00101

S1:11100

1

S6:11110

4

S2:00101

4

2

S3:00110

2

3

S5:01010 S7:01110 S4:01101

74 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

Fig. 4. Signature Search Process

In Table VII, we present the formal description of the search

algorithm.

TABLE VII

FI-TREE SEARCH ALGORITHM

Algorithm FI-Tree-Search

Input: An itemset I

Output: Support(I)

Begin

SI = Gen_Signature (I)

Calcul Support (SI)
End

B. Discovering Frequent Itemsets

The generation of frequent itemsets computes, for each

candidate itemset I, its support, denoted Support(I), and

compares it to a minimum support denoted Minsup, a threshold

fixed by the user. An itemset I is said to be frequent if Support(I)

≥ Minsup.

A signature of candidate itemset SI is created using the same

method as a transaction signature. To find the signature SI in the

FI-Tree, we select all transaction signatures ST, such that (ST ˄

SI) = SI, SI is called a drop and ˄ is the superimposed operator.

Many unqualified transaction signatures are immediately

rejected. This method guarantees that all the qualifying

transaction signatures will be selected. All signatures are used

to compute the itemset supports. This support is used in the

extraction process of frequent itemsets. If the associated value

of an itemset is less than a specified user threshold, this itemset

is said to be not frequent.

B.1. Algorithms

Tables VIII and IX illustrate the formal description of the

extraction algorithm of frequent itemsets and the FI-Mine

algorithm.

TABLE VIII

EXTRACTION-FI

Algorithm Extraction-FI

Input: Frequent 1-Itemsets, FI-Tree
Output: The set of frequent k-itemsets

Begin
/* Initially, FI = {Frequent 1-itemsets} */

k ← 2

1. Generate a candidate k-itemset I
Call FI-Tree-search (I, Support(I))

If Support(I) ≥ Minsup Then

FI ← FI  {I}

Endif

2. k ← k+1

3. Repeat steps 1 and 2 until no candidate k-itemset

4. Return (FI)

End

Example 2. Consider the itemset I = {2,3,5} and his signature

SI = 10110 of example 1 and Minsup = 2. The selected signature

is S6; then Support (I) = 1 < Minsup. We conclude that the

itemset I is not frequent.

TABLE IX

FI-MINE ALGORITHM

Algorithm FI-Mine

Input: {Transactions}

Output: {Frequent Itemsets}

Begin

FI-Tree-Construction

Extraction-FI

End

B.2. Complexity Study

The algorithm FI-Tree-construction has a complexity of

O(n*m), where n is the number of transaction signatures and m

the size of a signature.

For against, the algorithm Insert(Si) requires one tree parsing

for the first signature, 2 for the second, and so on. The number

of path traversed is:

1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
+ (𝑛2 + 𝑛) (1)

Hence, the associated complexity is about O(n2).

The complexity of the search procedure is of order (n/2k),

where n is the number of transaction signatures and k the

number of bits set to "1" in the signature. In the worst case, this

complexity is about:

𝑂(𝑛/2m) ≈ 𝑂(𝑛) (2)

The Extraction_FI algorithm contains a loop that is run p

times (p being the number of candidate itemsets). Complexity

to handle the candidate itemsets is equal to p times the search

procedure, so it is in the order of:

𝑂(𝑝(𝑛/2k)) ≈ 𝑂(𝑝𝑛) (3)

Finally, the complexity of FI-Mine is polynomial and equal

to

𝑂(𝑛𝑚) + 𝑂(𝑛2) + 𝑂(𝑝𝑛) (4)

S1:11100

1

S6:11110

4

S2:00101

4

2

S3:00110

2

3

S5:01010 S7:01110 S4:01101

SI [4] = 1  Traverse

the right and left child

M. EL HADI BENELHADJ et al.: SIGNATURE-BASED TREE FOR FINDING FREQUENT ITEMSETS 75

C. FI-Tree vs FP-Tree

In this sub-section, we compare our proposed tree structure

(FI-Tree) with the will know FP-Tree. This comparison is made

on criteria contained in Table X.

TABLE X

COMPARISON BETWEEN FP-TREE AND FI-TREE

Criteria FP-Tree FI-Tree

#Scans 2 1

#Trees 1+k 1

Nodes Items Decimal values

Leaves Items Binary signatures

Tree structure Support-dependent Support-independent

Additional data structures
Tables and Conditional

FP-Trees
No

Dataset type
Type-dependent

 (sparse or dense)
Independent

Redundancy Yes (nodes) No

Updating dataset Rebuild or not rebuild tree Not rebuild tree

C.1. Number of scans

To build FP-Tree structure, two scans of the dataset are

needed: the first one allows to calculate the occurrence

frequency of 1-itemsets and to build the head table containing

only the frequent 1-itemsets. Then, another scan is required to

build the FP-Tree and to complete the associated head table

with additional information’s. In our proposal, only one scan is

required to build the FI-Tree and extract the frequent 1-itemsets.

This is the first fundamental difference between our proposal

and the FP-Tree approach in terms of scans. This difference is

not negligible, especially for large transaction datasets.

C.2. Trees

In terms of number of generated trees, we remark a

significant difference between our approach and that of FP-

Tree. For FP-Tree, (1+k) trees are generated. The first tree (the

main tree) contains only the frequent 1-itemsets. For others

frequent k-itemsets (k varies between 2 and the maximal

frequent itemset, namely k), k FP-Trees, called the conditional

FP-Trees, are generated from the main one. In addition to these

k FP-Trees, k conditional tables are also generated. In our

proposal, only one tree is generated. This difference can be

explained by the fact that FP-Tree depends on the support value,

while our proposal is independent of any support value.

If we analyze the type of tree used, we remark that FP-Tree

and FI-Tree use two types of trees that have different properties.

For FP-Tree, the tree structure is free in the sense where a node

can have one or several children. In addition, there is no

semantic difference between a node and a leaf. Both correspond

to items.

In our proposal tree, we use an interesting kind of trees,

namely binary tree. These last have interesting properties [25]:

• FI-Tree is a full binary tree.

• Searching in binary tree become faster.

• Make insertion and deletion operations faster than linked lists

and arrays.

• A flexible way of holding and moving data.

• Binary trees are used to store as many nodes as possible.

C.3. Nodes

The main concept in a FP-Tree is an item. For this purpose,

all nodes of a FP-Tree are associated to the items of the

transaction dataset. In contrast, in our proposal the main

concept is a transaction. All the transactions are represented in

the leaves of our tree. Because FP-Tree is item-based, the nodes

of a FP-Tree are linked with paths. These paths connect items

that belong to the same transaction. Since the intersection of

transactions is not empty, one or more items are shared between

different paths, which creates redundancy

C.4. Leaves

In a FP-Tree, there are no difference between nodes and

leaves. Both represent an item of the transaction dataset. In our

proposal, nodes are not related to items while leaves represent

signature transactions of the dataset. The nodes have no

semantic relation with the items or the transactions of a dataset.

They only represent path links to access to the leaves containing

signatures of transactions.

C.5. Tree structure

For FP-Tree, the worst case occurs when every transaction has

a unique itemset and so the space needed to store the tree is

greater than the space used to store the original dataset. This

case is justified by the fact that FP-Tree requires additional

space to store pointers between nodes and the counters for each

item.

In our proposal, the FI-Tree is totally independent of itemsets

in the dataset. With this important property, our proposal does

not require additional data structures or space to represent a

dataset.

C.6. Additional data structures

In addition to the main FP-Tree, different data structures are

required to find k-frequent itemsets (k>1). Firstly, we must

construct a main table corresponding to the main FP-Tree. This

table contains frequent 1-itemsets with their associated supports

and must be sorted on decreasing support values. Then, the FP-

Growth algorithm generates a huge number of conditional FP-

Trees. Hence, FP-Tree is expensive to build. In our proposal, no

additional data structure is required. Only the signature tree is

needed.

C.7. Dataset type

Generally, there are two types of datasets: sparse and dense.

In the FP-Tree structure, this type has a negative impact on the

generated FP-Tree. For sparse datasets, this structure generates

a tree with a size equal to that of the dataset. In our proposal,

the dataset type has any incidence on the generated FI-Tree.

This main difference between these two approaches can be

explained by the fact that our proposal is support independent.

76 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

C.8. Redundancy

The FP-Tree depends on the itemsets contained in a dataset.

Hence, one frequent itemset is represented by a node in the FP-

Tree structure. The nodes of the FP-Tree are connected between

them by paths, and each path corresponds to a transaction in the

dataset. Because the transactions contain redundant items, the

same items can be founded in different transactions. Hence, a

same item will be represented by the same node in different

paths of the FP-Tree, thus generating redundancy. The

immediate consequence of this redundancy is that the size of

the FP-Tree grows. On the other hand, our tree structure does

not contain redundancy, because it emphasis on transactions

and not on items.

C.9. Updating dataset

One important problem in a data mining process concerns the

content of a dataset (static or dynamic content). In a static

scenario, the tree representing a dataset is also static. But

transaction datasets are updated regularly in real world

(updating items and/or transactions). Here, the question is: Does

this change require rebuilding the tree or not? In most cases,

FP-Growth algorithm must rescan the updated dataset and

rebuild FP-Tree, due to the change in the support count of

frequent 1-itemsets. This process generated a lot of overhead

that is not negligible. To avoid this important overhead, some

research works have proposed to modify the generating process

of the FP-Tree [23] [13] [3]. In our proposal, the FI-Tree is not

rebuilding.

C.10. Practical example

To highlight the criteria discussed above between FP-Tree

and FI-Tree, we illustrate the main differences between these

two trees taking as an example the transaction dataset of Table

II and its FP-Tree representation (see Figure 1), conditional FP-

Tree (see Table III) and FI-Tree (see Figure 3).

TABLE XI

QUANTITATIVE COMPARISON BETWEEN FP-TREE AND FI-TREE

Criteria FP-Tree FI-Tree

#Scans 02 1

#Trees 05 1

#Nodes 18 6

#Leaves ? 7

The obtained results (see Table XI) show clearly that FI-Tree

has many advantages relatively to FP-Tree.

V. EXPERIMENTAL RESULTS

In this section, we study the practicability of our proposal for

finding frequent itemsets. We performed different experiments

to find frequent itemsets using our proposed approach (with

signatures), comparatively to Apriori algorithm that uses

candidate itemsets.

All experiments are conducted on an Intel(R) Core(TM) i5-

3470T CPU @ 2.90GHz x 4 with 8 GB of RAM under the JDK8

on a Fedora 27 system.

A. Datasets

For the experiments, we used real and synthetic datasets. The

datasets were produced by the library “arules” [18] of R-cran

Software. The used datasets have different characteristics (see

Table XII).

TABLE XII

DATASET CHARACTERISTICS

Dataset name Type #Transactions #Items
Average

transaction

size

Database
size

(MB)

Mushroom Dense 8124 119 23 0,565

Retail Sparse 88162 16469 11 4,156

Accidents Sparse 340184 468 34 33,900

T10I4D100K Sparse 100000 870 10 3,930

T40I10D100K Sparse 200000 942 40 14,800

T30D50K1K Sparse 50000 1000 14 2,730

T30D100K1K Sparse 100000 1000 14 5,460

T30D150K1K Sparse 150000 1000 14 8,180

B. Dataset Results and Discussions

B.1. FI-Mine vs Apriori

The different results (execution time) obtained with our

proposed algorithm (FI-Mine) are compared to those of Apriori.

These results are synthesized in Figures 5 to 10.

Fig. 5. Results for Mushroom Dataset

Fig. 6. Results for Retail Dataset

M. EL HADI BENELHADJ et al.: SIGNATURE-BASED TREE FOR FINDING FREQUENT ITEMSETS 77

Fig. 7. Results for 50K Transactions Dataset

Fig. 8. Results for 100K Transactions Dataset

Fig. 9. Results for 150K Transactions Dataset

Fig. 10. Results for 150K Transactions Dataset

From the above figures, we remark that results of our

proposed algorithm (FI-Mine) outperform those of Apriori one.

For example, for the case of 50K transactions dataset and

Minsup equals to 0.0003, we have a gain of 2380.57 sec.

comparatively to Apriori algorithm (2812.01 sec. for Apriori

algorithm and 431.44 sec. for FI-Mine). The same remark is

valid for the other figures.

B.2. FI-Mine vs FP-Growth

In this section, we use the algorithms FI-Mine, based on FI-

Tree, and FP-Growth, based on FP-Tree, to generate frequent

itemsets. We consider several transaction datasets.

The parameter which is considered in the analysis is the space

complexity. We compare the results of FI-Tree with those of

FP-tree. Our observed results are listed below.

TABLE XIII

FI-TREE RESULTS

Datasets #Nodes Space memory for FI-Tree (MB)

Chess 6391 0.08

Mushroom 16247 0.19

Accidents 164771 1.98

T40I10D100K 178269 2.14

Retail 199861 2.40

We note that the memory required by our structure FI-Tree is

independent of any parameter, specially support threshold.

Each dataset needs a fixed size memory.

The size of the FP-Tree depends on the minimum support

specified by the user. The size of the FP-Tree is inversely

proportional to the support value.

Fig. 11. FI-Mine vs FP-Growth for Chess Dataset

Fig. 12. FI-Mine vs FP-Growth for Mushroom Dataset

B.3. Discussion

Figures 11 to 16 highlight the space memory required by each

one of the two trees (FI-Tree and FP-Tree). To analyze more

precisely the difference in space memory between these

structures, we calculated a gain factor. This gain is the

78 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

Fig. 13. FI-Mine vs FP-Growth for Accident Dataset

Fig. 14. FI-Mine vs FP-Growth for T10I4D100K Dataset

Fig. 15. FI-Mine vs FP-Growth for T40I10D100K Dataset

Fig. 16. FI-Mine vs FP-Growth for Retail Dataset

difference between the space memory required for FP-Growth

and that required for FI-Mine. We distinguish several cases

depending on the used dataset:

• Chess dataset (Figure 11): FI-Mine outperforms the FP-

rowth for all minsup values (50 to 80%). We remark also that

whatever the values of the minsup, the space memory for FI-

Tree remains constant (minsup independent), while for FP-

Tree the more the value of the minsup decreases, the more

the memory space increases. For example, between 60 and

50% (minus 10%), the used space memory for FP-Growth

increases five times.

• Mushroom dataset (Figure 12): For high minsup (30 to 80%),

the difference between the two trees is not significant, but for

the minsup 20%, the space memory required by FP-Growth

is almost 3 times than that of FI-Mine. We notice also that

this dataset is dense.

• Accidents dataset (Figure 13): For this dataset that is sparse,

we note that the more the value of the support decreases, the

more the memory space increases until reaching a

multiplying factor of 2 between 40 and 30%. If we analyze

the memory space needed for FI-Mine and FP-Growth, we

notice that FP-Growth requires a larger memory space than

that of FI-Mine up to a factor of 13.

• T10I4D100K (Figure 14): For this sparse synthetic dataset,

we use small values for the minsup (from 5 to 1%). First, we

notice that the size of the FP-Tree gradually increases until it

exceeds that of FI-Tree (minsup = 1). Despite this, FP-

Growth remains better than FI-Mine in terms of memory

space.

• T40I10D100K dataset (Figure 15): This dataset is also

synthetic and sparse, for which FP-Tree greatly exceeds FI-

Tree. Each time the minsup decreases (from 10 to 4), the

space memory required by FP-Growth is very much greater

than that of FI-Mine (ranging from a factor of 7 for a support

value equal to 10 up to a factor of 25 for a support value equal

to 4).

• Retail dataset (Fig. 16): In this dataset, we use small values

for the minsup (from 5 to 0.25%). We note that the used space

memory for FP-Growth increases each time the minsup

values decrease with different factors. However, the used

space memory of FI-Mine remains constant.

As important remark, we notice that the used space memory

for FI-Tree always remains constant and does not depend on the

variation of the minsup values (small or high values). Like the

performance of FP-Growth depends on many factors: dataset

type, dataset size, minsup values, etc.

V. CONCLUSION AND FUTURE WORKS

In this paper, we reviewed the various data structures,

specifically trees, using in data mining algorithms. We

summarize the main features of some relevant tree structures,

their tree representation scheme, and the way they build the tree.

Based on this review, we proposed a new tree structure to

represent a transaction dataset. Our proposal structure is

compared to the well-known FP-Tree. This comparison is made

between the space memory used by FP-Tree and FI-Tree.

Finally, we have compared experimentally our proposal

algorithm with Apriori one, and we have showed that our

signature-based structure can enhance the time for finding

frequent itemsets. As a future work, we plan to experiment our

proposal on different datasets with different parameters (dense

and sparse datasets, low and high supports, static and dynamic

datasets). Future work also includes a parallel implementation

M. EL HADI BENELHADJ et al.: SIGNATURE-BASED TREE FOR FINDING FREQUENT ITEMSETS 79

of our approach to test its performance and scalability with large

datasets.

REFERENCES

[1] R. Agrawal, T. Imieliński, A. Swami.: "Mining association rules between

sets of items in large databases", Proceedings of the ACM SIGMOD.

International Conference on Management of Data, New York, NY, USA,
1993, pp. 207-216. https://dl.acm.org/doi/10.1145/170036.170072

[2] R. Agrawal, R. Srikant: "Fast Algorithm for Mining Association Rules",

Proceeding of the 20th VLDB Conference, Santiago. September 12-15.
Chile, 1994, pp. 487-499. https://doi.org/10.1007/BF02948845

[3] S. Ahmed, B. Nath: "Modified FP-Growth: An Efficient Frequent Pattern

Mining Approach from FP-Tree", In Proceeding of International
Conference on Pattern Recognition and Machine Intelligence, December

17-20,Tezpur, India, 2019, pp 47-55.

https://doi.org/10.1007/978-3-030-34869-4_6

[4] T. Bao, T. Tuan: "Query Optimization in Object Oriented Databases Based

on Signature File Hierarchy and SD-Tree", EAI Endorsed Transactions on
Context-aware Systems and Applications, Vol. 3, Issue 8, 2016, pp 1-7.

http://dx.doi.org/10.4108/eai.9-3-2016.151114

[5] M.E.H. Benelhadj, K. Arour, M. Boufaïda, Y. Slimani: "Mining Frequent
Itemsets with Tree Signatures", In Proceeding of European Conference on

Data Mining, Freiburg Germany. July 28-30, 2010, pp 163-166.

http://www.iadisportal.org/digital-library/mining-frequent-itemsets-with-
tree-signatures

[6] F. Bodon: "A Trie-based APRIORI Implementation for Mining Frequent

Item sequences", Proceeding of the 1st International Workshop on Open
Source Data mining. August 21, Chicago, Illinois, USA, 2005, pp. 56-65.

https://doi.org/10.1145/1133905.1133913

[7] F. Bodon, L. Rónyai: "Trie: An Alternative Data Structure Data Mining
Algorithms", Mathematical and Computer Modelling, Vol. 8, Issues 7–9,

2003, pp 739-751. https://doi.org/10.1016/0895-7177(03)90058-6

[8] C.H. Chee, J. Jaafar, I. Abdul Aziz, M.H. Hasan, W. Yeoh: "Algorithms for

frequent itemset mining: a literature review", Artificial Intelligence

Review, An International Science and Engineering Journal, Vol. 52, Issue

4, 2019, pp 2603–262. http://doi.org/10.1007/s10462-018-9629-z
[9] Y. Chen: "Signature Files and Signature Trees", Information Processing

Letters 82, Elsevier, Vol. 82, Issue 4, 2002, pp 213-221.

https://doi.org/10.1016/S0020-0190(01)00266-6
[10] Yangjun Chen, Yibin Chen: "Signature File Hierarchies and Signature

Graphs: a New Index Method for Object-Oriented Databases", Proceeding

Of ACM Symposium on Applied Computing, March 14-17, Nicosia,
Cyprus, 2004, pp 724-728. https://doi.org/10.1145/967900.968050

[11] Y. Chen: "On the Signature Trees and Balanced Signature Trees", In

proceeding of the 21st International Conference on Data Engineering
(ICDE'05), April 5-8. Tokyo, Japan, 2005, pp. 742-753.

https://doi.org/10.1109/ICDE.2005.99

[12] Yangjun Chen, Yibin Chen: "On the Signature Tree Construction and
Analysis", IEEE Transactions on Knowledge and Data Engineering, Vol.

18, Issue 9, 2006, pp. 1207-1224.

https://doi.org/10.1109/TKDE.2006.146

[13] W. Cheung: "Incremental mining of frequent patterns without candidate

generation or support constraint", Seventh International Database

Engineering and Applications Symposium, 2003. Proceedings, Jul 18-18,
Hong Kong, China, 2003, pp. 111-116.

https://doi.org/10.1109/IDEAS.2003.1214917

[14] D. Comer: "The Ubiquitos B-Tree", Computing Surveys, Vol. 11, Issue 2,
1979, pp 121-137. https://doi.org/10.1145/356770.356776

[15] C. Faloutsos: "Access methods for text", ACM Computer Survey, Vol. 17,

Issue 1, 1985, pp. 49-74. https://doi.org/10.1145/4078.4080
[16] C. Faloutsos: "Signature Files: Design and Performance Comparaison of

Some Signature Extraction Methods", ACM Sigmod Record, Vol. 14, Issue

4, 1985, pp. 63-82.
https://dl.acm.org/doi/10.1145/971699.318903

[17] C. Faloutsos, R. Chan: "Fast Text Access Methods for Optical and Large
Magnetic Disks: Designs and Performance Comparison", Proceeding of

VLDB, 1988, pp 280-293. https://doi.org/10.1184/R1/6605615.v1

[18] http://fimi.uantwerpen.be/data/. Repository is the result of the workshops

on Frequent Itemset Mining Implementations. Last access July 2021.

[19] M. Hahsler, B. Grun, K. Hornik, C. Buchta: "Introduction to arules: A

computational environment for mining association rules and frequent

itemsets", Journal of Statistical Software, Vol. 14, Issue 15, 2016, pp 1-25.
https://doi.org/10.18637/jss.v014.i15

[20] J. Han, J. Pei, Y. Yin: "Mining frequent patterns without candidate
generation", ACM SIGMOD Record, Vol. 29, Issue 2, 2000, pp. 1-12.

https://doi.org/10.1145/335191.335372

[21] M. Ikhlef: "A Quantum Swarm Evolutionary Algorithm for Mining
Association Rules in Large Databases", Journal of King Saud University -

Computer and Information Sciences Vol. 23, Issue 1, 2011, pp 1-6.

https://doi.org/10.1016/j.jksuci.2010.03.001
[22] D.L. Lee, Y.M. Kim, G. Patel: "Efficient Signature File Methods for Text

Retrieval", IEEE Transactions on Knowledge and Data Engineering, Vol.

7, Issue 3, 1995, pp 423-435. https://doi.org/10.1109/69.390248
[23] B. Rácz: Nonordfp: "An FP-Growth Variation without Rebuilding the FP-

Tree", Proceedings of the {IEEE} {ICDM} Workshop on Frequent Itemset

Mining Implementations, Brighton, UK, November 1, 2004.
https://dblp.org/rec/conf/fimi/Racz04.html

[24] C.S. Roberts: "Partial-Match Retrieval via the Method of Superimposed

Codes", Proceeding of the IEEE, Vol. 67, Issue 12, 1979, pp 1624-1642.

https://doi.org/10.1109/PROC.1979.11543

[25] E. Shanthi, R. Nadarajan: "Applying SD-Tree for Object-Oriented Query

Processing", Journal of Informatica, Vol. 33, Issue 2, 2009, pp 177-187.
https://www.informatica.si/index.php/informatica/article/view/235/232

[26] W. Wang, L. Tang, J. Han, J. Liu: "Top down fp-growth for association

rule mining", 6th Pacific-Asia Conference Proceeding, Taipei, Taiwan,
May 6–8, 2002, pp 334-340.

https://link.springer.com/chapter/10.1007/3-540-47887-6_34

[27] M. Yarlagadda K. Gangadhara Rao, A. Srikrishna: "Frequent itemset-
based feature selection and Rider Moth Search Algorithm for document

clustering", Journal of King Saud University – Computer and Information

Sciences, Vol. 34, Issue 4, 2022, pp 1098-1109.
https://doi.org/10.1016/j.jksuci.2019.09.002

Mohamed El Hadi Benelhadj got his Engineering

and Magister degree in Computer Science from
Mentouri University, Constantine, Algeria. He

obtained his PhD in computer science from the same

University. Currently, he is an Assistant Professor at
the Tamanrasset University Algeria. He is a Research

Associate in the Research group "Information Systems

and Knowledge Bases", Mentouri University and in
the Joint group for Artificial Reasoning and

Information Retrieval (https://jarir.tn/), University of
Manouba Tunis Tunisia. His research interests include

Datamining, KDD and Parallel Computing.

Mohamed Mahmoud Ould Deye is an Assistant

Professor at Cheikh Anta Diop University of Dakar,

Senegal. He is also a member of the Joint group for
Artificial Reasoning and Information Retrieval

(https://jarir.tn/), University of Manouba Tunis

Tunisia. His areas of interest are Cloud Computing,
Web Services and performance evaluation of

distributed systems.

Yahya Slimani is a Emerite Professor at the Higher

Institute of Multimedia Art of Manouba (ISAMM),
University of Manouba, Tunisia (https://www.yahya-

slimani.net/). He is a member of the LISI research

Laboratory, Carthage University, Tunisia. He
obtained his Doctor-Engineer in computer science

from the University of Lille, France, in 1986. He

presented a PhD thesis entitled “A Relational Logic
for Parallel Programming” and obtained his doctoral

diploma in computer science from the University of

Es-Senia, Algeria, in 1994. His main research interests include Cloud
Computing, Load Balancing, Grid and Cloud Computing, Information

Retrieval, Parallel and Distributed Computing, High Performance Computing,
Data Science, Data Mining and Machine Learning. It is the head of the research

group JARIR (https://jarir.tn/).

80 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

https://dl.acm.org/doi/10.1145/170036.170072
https://doi.org/10.1007/BF02948845
https://doi.org/10.1007/978-3-030-34869-4_6
http://dx.doi.org/10.4108/eai.9-3-2016.151114
http://www.iadisportal.org/digital-library/mining-frequent-itemsets-with-tree-signatures
http://www.iadisportal.org/digital-library/mining-frequent-itemsets-with-tree-signatures
https://doi.org/10.1145/1133905.1133913
https://doi.org/10.1016/0895-7177(03)90058-6
http://doi.org/10.1007/s10462-018-9629-z
https://doi.org/10.1016/S0020-0190(01)00266-6
https://doi.org/10.1145/967900.968050
https://doi.org/10.1109/ICDE.2005.99
https://doi.org/10.1109/TKDE.2006.146
https://doi.org/10.1109/IDEAS.2003.1214917
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/4078.4080
https://dl.acm.org/doi/10.1145/971699.318903
https://doi.org/10.1184/R1/6605615.v1
http://fimi.uantwerpen.be/data/
https://doi.org/10.18637/jss.v014.i15
https://doi.org/10.1145/335191.335372
https://doi.org/10.1016/j.jksuci.2010.03.001
https://doi.org/10.1109/69.390248
https://dblp.org/rec/conf/fimi/Racz04.html
https://doi.org/10.1109/PROC.1979.11543
https://www.informatica.si/index.php/informatica/article/view/235/232
https://link.springer.com/chapter/10.1007/3-540-47887-6_34
https://doi.org/10.1016/j.jksuci.2019.09.002
https://jarir.tn/
https://jarir.tn/
https://jarir.tn/

