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Abstract—The efficiency of a data mining process depends on 

the data structure used to find frequent itemsets. Two approaches 

are possible: use the original transaction dataset or transform it 

into another more compact structure. Many algorithms use trees 

as compact structure, like FP-Tree and the associated algorithm 

FP-Growth. Although this structure reduces the number of scans 

(only 2), its efficiency depends on two criteria: (i) the size of the 

support (small or large); (ii) the type of transaction dataset 

(sparse or dense). But these two criteria can generate very large 

trees. In this paper, we propose a new tree-based structure that 

emphasizes on transactions and not on itemsets. Hence, we avoid 

the problem of support values that have a negative impact on the 

generated tree. 

Index terms—Data mining, Data compression, Data storage, 

Tree structure, Signature. 

I. INTRODUCTION

The efficient search of information in large datasets to extract 

knowledge is vital for any expert. Several methods and 

techniques are used in KDD (Knowledge Discovery in 

Databases) process to extract knowledge from large datasets. 

Mining association rules which trends to find interesting 

association or correlation relationships among large amounts of 

data is one of these techniques. Originally introduced by 

Agrawal [1] in the context of transactional datasets, the 

association rule mining approach is now used extensively to 

find associations in biological datasets, web log data, 

telecommunications data, census data, social data and other 

types of datasets [21].  

Though several algorithms have been developed for fast 

mining of frequent itemsets over the years [20], [7], [27], [8]. 

Association rule mining algorithms can be classified into two 

categories: the first one is based on the candidate generate and 

test approach, such as Apriori [2], [6] while the second one is 

based only on the pattern fragment growth like the FP-Growth 

or frequent itemset-growth algorithm [20]. 

The "generate and test approach" is based on an anti-

monotone property [1]: if an itemset with k items is not 

frequent, any of its super-itemset with (k+1) or more items can 

never be frequent. So, this approach iteratively generates a set 

of candidate itemsets of length (k + 1) from the set of frequent 

itemsets of length k (k ≥ 1) and their corresponding occurrence 

frequencies are checked in dataset.  
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Though this algorithm works relatively well with smaller 

dataset. However, when we have a large number of frequent 

patterns and/or long patterns, the "generate and test approach" 

may still suffer from huge number of candidates and needs 

many scans of large datasets for frequency checking. 

The pattern-growth approach, such as FP-Growth (Frequent 

Pattern-Growth) also uses the anti-monotone property. In this 

approach, the dataset is recursively split into sub-datasets 

according to the frequent itemsets found and search for local 

frequent itemsets to assemble longer and larger ones. 

FP-Growth avoids candidate generation by compressing the 

transaction dataset into a structure called FP-Tree. 

Nevertheless, this algorithm may still encounter difficulties for 

large sparse datasets when the FP-Tree will be very large [20]. 

Finally, to improve the efficiency of the association rule 

mining algorithm, the Apriori-like algorithms and FP-Tree-

based algorithms have been used on various types of datasets 

with varying degrees of success. But, generally, the problem of 

repeatedly scanning the datasets remains. 

In this paper, we propose a new data structure, called FI-Tree 

(Frequent Itemset Tree), to represent a transaction dataset and a 

new mining algorithm, FI-Mine, to extract the frequent 

itemsets. With FI-Mine algorithm, in the first time, we scan the 

dataset only once to generate a binary signature for each 

transaction, to construct the FI-Tree and to extract the frequent 

1-itemsets. In second time, the step of extraction frequent

itemsets is done. It assigns a signature for each k-itemset

candidate (k ≥ 2), searches it in the FI-Tree, computes its

support and keeps only the frequent k-itemsets.

The reminder of this paper is organized as follows: in Section 

II we present and discuss a state of the art about the concept of 

signature and its different representations. Section III reviews 

the main used of signature file for tree structure. In Section IV, 

we present our proposed structure FI-Tree and we compare it 

with FP-Tree. Section V compares and discusses our algorithm 

FI-Mine with Apriori algorithm using the response time as a 

comparative criterion. We also compare it with FP-Growth 

using the memory space as a comparative criterion. Finally, 

Section 6 concludes and skittles future research works. 

II. RELATED WORKS

The role of indexing is evident for accelerating data recovery 

from large datasets. Index techniques have been extensively 

investigated in both the information retrieval and dataset 

research areas, and many methods have been developed within 

the past three decades. Being efficient in evaluating set-oriented 

query and allowing the easy handling of updates and insert 

operations makes the signature file techniques are the best 

indexing approaches. Signature file representation has been 

tackled using several techniques. We cite, for instance, Bit-

Slice Signature file [12], Sequential Signature File [12], 
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Multilevel Signature file [25], [12], Signature Graph [10], and 

Compressed Bit Sliced Signature File [12]. 

We cite, for instance, Bit-Slice Signature file [12], Sequential 

Signature File [12], Multilevel Signature file [25], [12], 

Signature Graph [10], and Compressed Bit Sliced Signature 

File [12]. 

A. Signature File 

A signature is a string of bits constructed from a defined 

value. It is better than other indexing approaches, since it allows 

the efficient treatment of new insertions and queries on word 

parts. It is also simple to implement. Besides, it works well on 

large files. Comparatively, to other index structures, the 

signature file is more efficient at processing new insertions and 

queries on words. Other advantages include the simplicity of its 

implementation and its ability to support large files. Though, it 

suffers from the problem of information loss. The careful 

selection of the signature extraction technique allows to 

minimizing this loss. A signature is a binary vector of length m 

obtained by applying one (or several) hash function(s) [12]. 

Several methods to extract signatures such as Superimposed 

Coding (SC), Variable Bit-block Compression (VBC), Word 

Signature (WS), Bit-block Compression (BC), Run Length 

Encoding (RL) [15], [16] and Multilevel Superimposed Coding 

(MSC) [24], [17] have been developed. 

The text block signature is the result of combining all the 

signatures of words composing it by the "OR" logical operation. 

A signature file is formed by the set of all signatures. Table I 

shows an example of signature extraction of a block ("frequent 

itemset extraction"). 

TABLE I 

SIGNATURE EXTRACTION EXAMPLE 

Frequent 

Itemset 

Extraction 

0000 0000 0000 0010 0000 

0000 0001 0000 0000 0000 

0000 1000 0000 0000 0000 

Bloc Signature 0000 1001 0000 0010 0000 

B. Signature Representation 

Signature files methods are described in this sub-section. 

B.1 Sequentiel Signature File (SSF) 

SSF is the simplest organization which requires low 

algorithm and low update cost. It is also easy to implement. The 

signatures are stored sequentially in the signature file. When a 

query is given, a full scan of the signature file is required [4]. 

Therefore, it is generally slow in retrieval. 

B.2 Bit Sliced Signature File (BSSF) 

A column-wise way is used here to store signatures. If the 
length of the signatures is m, then all the signatures will be 
stored in m files. So, for each bit position of all signatures, one 

bit-slice file F is created. For extraction, only part of the m bit-

slice files should be scanned. Hence, the search cost is reduced 

and is lower than that of SSF. However, update cost becomes 

larger. For example, an insertion of a new signature requires 
about m disk accesses, one for each bit-slice [12]. 

B.3 Compressed Bit Sliced Signature File (CBSSF) 

The number of 1's is ensured by the adoption of a suitable 

hash function for signature extraction. To limit the false drop, 

the length of signature should be increased. By doing so, a 

sparse matrix, which is easily compressible, is created [4]. This 

matrix can be compressed by replacing each 1 with its 

associated physical address. The hash table uses a set of pointers 

to the head of the linked list. For instance, if the word "Text" 

has "1" as the first bit, and it is positioned at the 50th byte of the 

text file, then by looking at the 1st bucket, the position of the 

word "Text" is found. Although this method saves space, the 

number of false drops increases because the signature files are 

sparse. 

B.4 Multi-level Signature File 

It is a structure similar to S-Tree, but different in that a 

signature at a higher level is a superimposed code generated 

directly from a group of text blocks, instead of superimposing 

signatures at a lower level. However, this method needs more 

subspace. An improved method for multi-level signature file is 

discussed in [14]. 

B.5 Signature Graph 

A tree like structure is used to organize the signature file. 

Through, to match a given query, the path explored in the graph 

is not a continuous chain of bits. It corresponds to a signature 

identifier, which makes the difference between the signature 

graph and the tree [10]. Unlike signatures, no compact 

representation is used for the search path; the length is not the 

same for all queries. This means that the graph is not balanced, 

and in worst cases, it is reduced to a signature file. 

III.  BACKGROUND 

We are mainly interested in representation of the signature file 

in tree structure. In the following, we present the main used 

representations. 

A. Signature Representation as a Tree 

A.1 S-Tree 

An S-tree is a height balanced multi-way tree. Each internal 

node corresponds to a page, which contains a set of signatures 

and each leaf node contains a set of entries of the form, where 

the object is accessed by an oid and s is its signature. Combining 

lower-level nodes permits the construction of internal nodes. 

The advantage is that it is not needed to search the whole 

signature file; instead, a simple tree is searched. However, the 

combination of nodes results in the situation in which the 

internal node at higher level is likely to have more weight. This 

is decreasing selectively. The authors in [14] enhanced the S-

Tree technique by proposing some new split methods, such as 

Linear split, Quadratic split, Cubic split and hierarchical 

clustering. By doing so, the query response time was improved. 

A.2 Signature Tree 

A tree of signatures Ts represents a set of signatures S = 

{S1,...,Sn}, where Si ≠ Sj for all i ≠ j and│Sk│= m, for 1 ≤ k ≤ n. 

Ts is a binary tree in which: 
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• The left edge issued from it is tagged with a "0" while the 

right one is tagged with "1". 

• Ts has n leaves tagged L1,…, Lm. There are used as pointers 

to m different signatures S1,...,Sm in S. 

• A positive number, annotated Pos(v), is associated with every 

node v. Its role is telling which bit to be checked. 

The bit positions given by the nodes are used to identify 

signatures. However, in the case of query signatures, the tree is 

explored from top to bottom with respect to the bit positions 

defined by the nodes, instead of the 1's given by the query 

signature. Besides, for matching 1's, the right sub-tree is 

explored, while both left and right sub-trees are searched to 

match 0's [9],[10],[12]. 

A.3 Signature Declustering Tree (SD-Tree) 

Three types of nodes are used in the SD-Tree: Internal nodes, 

Leaf nodes and Signature nodes. The two first types are similar 

to their counter parts in B+ trees. The internal nodes compose 

the upper tree, while the leaf nodes are the components of the 

pre-ultimate level. The signature nodes are situated at the 

bottom level of the SD-Tree [25]. 

B.Representation of Transaction Dataset 

To compute the supports of itemsets, we need to access the 

transaction dataset. As transaction datasets are usually very 

large, one solution, which avoids repetitive and costly accesses 

of these datasets, may be to represent them by compact 

structures in order to optimize memory usage. Many structures 

have been proposed with the aim of optimizing memory use, 

reducing I/O costs and making processing faster. 

In this subsection, we will present and discuss the 

characteristics of the main tree structures used for frequent 

itemset generation. 

B.1 FP-Tree Structure 

The FP-Tree structure is an extension of the Trie data 

structure [6] which belongs to the family of prefixed trees. The 

FP-Tree combines vertical and horizontal data representation 

schemes. The proposal of the FP-Tree has been a starting point 

for the development of algorithms for the extraction of frequent 

itemsets without candidate generation [3],[20]. 

The FP-Tree is a compact structure consisting of: 

• A tree whose root has the value "null" and, where each 

node, other than the root, contains three pieces of 

information: the item representing the node, its 

frequency and the next node in the tree. 

• An index contains the list of frequent itemset. Each item 

is associated with a pointer that indicates the first node of the 

tree where this item appears. The construction of the FP-Tree 

requires two accesses of the transaction dataset and is done 

as follows: the first access is used to determine the number 

of occurrences of each item, to eliminate the infrequent items 

and to order the frequent items by decreasing order of 

support. During the second access, the items of each 

transaction are sorted according to the order obtained during 

the first access (see Table II). 

TABLE II 

ORDERED TRANSACTIONS DATASET 

Tid Transactions Ordered Transactions 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

1, 2, 5 

2, 4 

2, 3 

1, 2 ,4 

1, 3 

1, 2, 3, 5 

1, 2, 3 

2, 1, 5 

2, 4 

2, 3 

2, 1, 4 

1, 3 

2, 1, 3, 5 

2, 1, 3 

 

The tree building process starts with the creation of a root 

node. Then, a branch is added to the tree for a processed 

transaction, exploiting the fact that transactions with the same 

prefix will share the same start node of the tree branch (Figure 

1). 

 
Fig. 1.  FP-Tree example 

Next, the frequent pattern mining process is converted into 

an FP-Tree mining process. For each frequent item, 

construct its corresponding conditional pattern base and 

FP-Tree. Repeat this process for each new constructed FP-

Tree, until it is empty or contains only one path. When the 

constructed FP-Tree is empty, the prefix is the frequent 

pattern. When it contains only one path, all frequent 

patterns can be acquired by connecting their prefixes with 

all possible combinations enumerated from the path (Table 

III). 

TABLE III 

CONDITIONAL FP-TREE 

Item Conditional Pattern Base Conditional FP-Tree 

5 

4 

3 

1 

{{2, 1: 1}, {2, 1, 3: 1}} 

{{2, 1: 1}, {2: 1}} 

{{2, 1: 2}, {2: 2}, {1: 2}} 

{{2: 4}} 

{2: 2, 1: 2} 

{2: 2} 

{2: 4, 1: 2}, {1:2} 

{2: 4} 

B.2 H-struct Structure 

The main disadvantage of the FP-Tree structure is the 

explosion of the tree size for sparse transaction datasets, for 

which the representation by an FP-Tree generates a tree of the 

same size as the sizes of these datasets. To overcome this 

drawback, a structure called H-struct has been proposed [22]. 

In this structure, transactions are ordered in an arbitrary way. 

Only frequent items are projected into the H-structure. An H-

structure consists of projected transactions, and each node in 

these transactions contains the label of the item and a hyperlink 

to the next occurrence of this item. A header table is created for 

each H-struct. This table contains the frequencies of all items 
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and a given hyperlink to the first transaction containing the 

item. 

B.3 CATS Tree 

A CATS tree is an extension of the FP-Tree, and it is a pre-

expressed tree containing all elements of the FP-Tree including 

the header table, pointers to item occurrences, etc. Each item in 

the transaction dataset has a node in the header table, containing 

the total frequency of that item in all transactions. In addition, 

each node in the header table contains a pointer to the first node 

within the tree, bearing the same label as the node in the header 

table. Each node in the tree contains the label of the item, its 

frequency, a pointer to its parent, pointers to its l's and a pointer 

to the next occurrence of that item to form a doubly-linked list 

connecting all nodes with the same label. The l's of a node, in a 

CATS tree, are arranged in descending order of their frequency. 

The paths from the root to the leaves represent all the 

transactions in the dataset. In fact, a CATS tree is an FP-Tree 

rearranged to improve compression. Unlike the FP-Tree 

structure, where the l's of each node are ordered in descending 

order of their global supports, the l's of each node in a CATS 

tree are ordered relatively to their local supports [13]. 

B.4. Patricia Tree 

A Patricia Tree is a compression of the FP-Tree [26]. In this 

tree, each maximal chain of nodes v1→ v2→…→ vk, whose 

nodes vi have the same support c except vk, is merged into a 

single node of support c; this node has vk with its associated 

support as l's. The size of a Patricia Tree, representing a base of 

M transactions of average length N, is at most equal to 

N+O(M). We can illustrate this compression gain by Figure 4, 

which represents a FP-Tree and its version as a Patricia Tree. 

From Figure 4, we notice that the Patricia Tree is more compact 

in number of nodes. All adjacent nodes that share the same 

support are merged into a single node. 

 

Fig. 2. FP-Tree and its compression into Patricia-Tree 

IV. OUR MAIN CONTRIBUTION 

A. Our Proposed Structure: FI-Tree 

Improving performance of discovering association rules 

requires an optimization of the extraction phase of frequent 

itemsets. To reach this objective, we propose to use the 

Frequent-Itemset-Tree (FI-Tree) structure representing the set 

of transaction signatures. Each transaction is represented by a 

signature of size m. Signatures are abstractions of items, which 

are coded. They are represented by a binary correspondence 

with a specified number of 1's. The transaction signatures are 

formed by combining the signatures of items. FI-Tree has the 

advantage of being both a compact (binary representation) and 

dynamic (care of updates) structure. A signature tree contains 

two types of nodes: internal nodes and leaf nodes. For each 

internal node, the left child corresponds to the value "0" and the 

right one to the value "1". Each leaf node contains a signature 

Si. The number of leaf nodes in a FI-Tree is equal to the number 

of signature transactions. The construction of the FI-Tree 

requires two phases: 

1. The application of the hash function H(item) (for example, 

we use modulo 5 function) to obtain the signature for each 

item into a transaction. The superimposed coding of these 

signatures will give the transaction signatures. An example 

of signatures generation is given below (see Table IV). 

2. Each transaction signature Si is inserted in the FI-Tree and a 

leaf of this tree is a signature. 
 

TABLE IV 

TRANSACTIONS AND SIGNATURES 

Tid Transactions Signatures 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

1, 2, 5 

2, 4 

2, 3 

1, 2 ,4 

1, 3 

2, 3 

1, 2, 3, 5 

S1:11100 

S2:00101 

S3:00110 

S4:01101 

S5:01010 

S6:11110 

S7:01110 

 

A.1. A Simple Way for Constructing FI-Tree 

At the beginning, the tree has an initial node containing the 

first signature transaction. Then, we take a new signature 

transaction, a composition of signatures items, and we insert it 

into the FI-Tree. Let S be the signature we wish to enter. We 

cross the tree from the root. Let v be the node encountered and 

assume that v is an internal node with position (v) = k. Then, 

S[k] will be checked. If S[k] = 0, we go left, otherwise, we go 

right. Let v be a leaf node and S' its corresponding signature; 

we compare S with S'. We assume that the first k bits of s agree 

with S'; but S differs from S' in the (k+1)th position. We 

construct a new node u with position (u) = k+1, replace v with 

u and v becomes one of u’s children. If position (u) = 1, we 

make v be the left and s be the right child of u, respectively. If 

position(u) = 0, we make v the right child of u and s the left 

child of u. In the following, we describe formally the FI-Tree 

construction process. 

• Steps to generate FI-Tree 

Steps (a) build a root node r such that r is a leaf node that 

contains the signature S1. 

(a) Insert (S1 = 11100)  

 

 
Fig. 3 (a) 

(b) Insert (S2 = 00101): the 1st different bit between S1 and S2 

is the 1st bit such that S1[1] = 1 S2[1] = 0; hence, we create       

internal node v with pos(v) = 1, right leaf node S1 and left leaf 

node S2. 

S1:11100 
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Fig. 3 (b) 

(c) Insert (S3 = 00110): S3[1] = 0, we go to the left and we 

compare S3 with S2. The 1st different bit between S3 and S2 is 

the 4th bit, S2[4] = 0 ≠ S3[4] = 1; hence, we create internal node 

v with pos(v) = 4, left leaf node S2 and right leaf node S3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (c) 

The insertion of the signature S7 = 01110 completes the 

process of building the FI-Tree (Figure 3(d)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (d). Final FI-Tree 

The formal description of the algorithm FI-Tree-

Construction  is given in Table V. 

TABLE V 

FI-TREE-CONSTRUCTION ALGORITHM 

Algorithm FI-Tree-Construction 

Input: Set of transactions 

Output: FI-Tree 

Begin 

Generate all signatures (S1, ..., Sn) 
Insert signatures in FI-Tree 

End 

 

The formal description of the algorithm Insert (Si) is given in 

Table VI. 
 

TABLE VI 

INSERT ALGORITHM 

Algorithm Insert 
Input: The signature Si, FI-Tree 

Output: FI-Tree 

 
Begin 

Traverse the tree from the root 

While Stack not empty Do 
v           Pop (Stack) 

If v is an internal node Then 

Check Si (p) 
If Si[j] = 1 Then 

Push (Stack, right_child) 

Else 
Push (Stack, left_child) 

Endif 

Else 

Generate a new internal node u 

Generate a new leaf node vi = {Si} 

Endif 
Enddo 

End 

 

A.2. Searching in FI-Tree 

Now, we discuss how to search a signature SI of an itemset I 

in the FI-Tree structure: 

1. Let v be the node encountered and position (v) be the position 

to be checked. 

2. If position (v) = 1, we move to the right child of v. 

3. If position (v) = 0, both the right and left child of v will be 

explored. 

In fact, this process corresponds to the signature matching 

criterion. For a bit position p in SI, if it is to "1", the 

corresponding bit position in S (S is a signature transaction) 

must be set to "1"; if it is set to "0", the corresponding bit 

position in S can be equal to "1" or "0". The following example 

helps for illustrating the main idea of the algorithm. 

Example 1. Consider an itemset I{2,3,5} and its signature SI = 

10110. Then, only part of the FI-Tree will be searched (thick 

edges in Figure 4). On reaching a leaf node v, the signature S 

will be checked against SI. In our example, we visit 2 signatures 

S1 and S6, but we select only S6 because S1 doesn’t contain SI  

(Figure 4). 

  

S2:00101 

1 

S1:11100 

S3:00110 

1 

S1:11100 
4 

S2:00101 

S1:11100 

1 

S6:11110 

4 

S2:00101 

4 

2 

S3:00110 

2 

3 

S5:01010 S7:01110 S4:01101 
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Fig. 4. Signature Search Process 

In Table VII, we present the formal description of the search 

algorithm. 

TABLE VII 

FI-TREE SEARCH ALGORITHM 

Algorithm FI-Tree-Search 

Input: An itemset I 

Output: Support(I) 

Begin 

SI = Gen_Signature (I) 

Calcul Support (SI) 
End 

B. Discovering Frequent Itemsets 

The generation of frequent itemsets computes, for each 

candidate itemset I, its support, denoted Support(I), and 

compares it to a minimum support denoted Minsup, a threshold 

fixed by the user. An itemset I is said to be frequent if Support(I) 

≥ Minsup. 

A signature of candidate itemset SI is created using the same 

method as a transaction signature. To find the signature SI in the 

FI-Tree, we select all transaction signatures ST, such that (ST ˄ 

SI) = SI, SI is called a drop and ˄ is the superimposed operator. 

Many unqualified transaction signatures are immediately 

rejected. This method guarantees that all the qualifying 

transaction signatures will be selected. All signatures are used 

to compute the itemset supports. This support is used in the 

extraction process of frequent itemsets. If the associated value 

of an itemset is less than a specified user threshold, this itemset 

is said to be not frequent. 

B.1. Algorithms 

Tables VIII and IX illustrate the formal description of the 

extraction algorithm of frequent itemsets and the FI-Mine 

algorithm. 

 

TABLE VIII 

EXTRACTION-FI 

Algorithm Extraction-FI 

Input: Frequent 1-Itemsets, FI-Tree 
Output: The set of frequent k-itemsets 

 

Begin 
/* Initially, FI = {Frequent 1-itemsets} */ 

k ← 2 

1. Generate a candidate k-itemset I 
Call FI-Tree-search (I, Support(I)) 

If Support(I) ≥ Minsup Then 

FI ← FI   {I} 

Endif 

2. k ← k+1 

3. Repeat steps 1 and 2 until no candidate k-itemset 

4. Return (FI) 

End 

Example 2. Consider the itemset I = {2,3,5} and his signature 

SI = 10110 of example 1 and Minsup = 2. The selected signature 

is S6; then Support (I) = 1 < Minsup. We conclude that the 

itemset I is not frequent. 

TABLE IX 

FI-MINE ALGORITHM 

Algorithm FI-Mine 

Input: {Transactions} 

Output: {Frequent Itemsets} 
 

Begin 

FI-Tree-Construction 

Extraction-FI 

End 

B.2. Complexity Study 

The algorithm FI-Tree-construction has a complexity of 

O(n*m), where n is the number of transaction signatures and m 

the size of a signature. 

For against, the algorithm Insert(Si) requires one tree parsing 

for the first signature, 2 for the second, and so on. The number 

of path traversed is: 

1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
+ (𝑛2 + 𝑛) (1) 

Hence, the associated complexity is about O(n2).  

The complexity of the search procedure is of order (n/2k), 

where n is the number of transaction signatures and k the 

number of bits set to "1" in the signature. In the worst case, this 

complexity is about: 

𝑂(𝑛/2m) ≈ 𝑂(𝑛)   (2) 

 

The Extraction_FI algorithm contains a loop that is run p 

times (p being the number of candidate itemsets). Complexity 

to handle the candidate itemsets is equal to p times the search 

procedure, so it is in the order of: 

 

𝑂(𝑝(𝑛/2k))  ≈ 𝑂(𝑝𝑛)  (3) 

 

Finally, the complexity of FI-Mine is polynomial and equal 

to 

𝑂(𝑛𝑚) + 𝑂(𝑛2) + 𝑂(𝑝𝑛)  (4) 
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C. FI-Tree vs FP-Tree 

In this sub-section, we compare our proposed tree structure 

(FI-Tree) with the will know FP-Tree. This comparison is made 

on criteria contained in Table X. 
 

TABLE X 

COMPARISON BETWEEN FP-TREE AND FI-TREE 

Criteria FP-Tree FI-Tree 

#Scans 2 1 

#Trees 1+k 1 

Nodes Items Decimal values 

Leaves Items Binary signatures 

Tree structure Support-dependent Support-independent 

Additional data structures 
Tables and Conditional 

FP-Trees 
No 

Dataset type 
Type-dependent 

 (sparse or  dense) 
Independent 

Redundancy Yes (nodes) No 

Updating dataset Rebuild or not rebuild tree Not rebuild tree 

 

C.1. Number of scans 

To build FP-Tree structure, two scans of the dataset are 

needed: the first one allows to calculate the occurrence 

frequency of 1-itemsets and to build the head table containing 

only the frequent 1-itemsets. Then, another scan is required to 

build the FP-Tree and to complete the associated head table 

with additional information’s. In our proposal, only one scan is 

required to build the FI-Tree and extract the frequent 1-itemsets. 

This is the first fundamental difference between our proposal 

and the FP-Tree approach in terms of scans. This difference is 

not negligible, especially for large transaction datasets. 

C.2. Trees 

In terms of number of generated trees, we remark a 

significant difference between our approach and that of FP-

Tree. For FP-Tree, (1+k) trees are generated. The first tree (the 

main tree) contains only the frequent 1-itemsets. For others 

frequent k-itemsets (k varies between 2 and the maximal 

frequent itemset, namely k), k FP-Trees, called the conditional 

FP-Trees, are generated from the main one. In addition to these 

k FP-Trees, k conditional tables are also generated. In our 

proposal, only one tree is generated. This difference can be 

explained by the fact that FP-Tree depends on the support value, 

while our proposal is independent of any support value. 

If we analyze the type of tree used, we remark that FP-Tree 

and FI-Tree use two types of trees that have different properties. 

For FP-Tree, the tree structure is free in the sense where a node 

can have one or several children. In addition, there is no 

semantic difference between a node and a leaf. Both correspond 

to items.  

In our proposal tree, we use an interesting kind of trees, 

namely binary tree. These last have interesting properties [25]: 

• FI-Tree is a full binary tree. 

• Searching in binary tree become faster. 

• Make insertion and deletion operations faster than linked lists 

and arrays. 

• A flexible way of holding and moving data. 

• Binary trees are used to store as many nodes as possible. 

C.3. Nodes 

The main concept in a FP-Tree is an item. For this purpose, 

all nodes of a FP-Tree are associated to the items of the 

transaction dataset. In contrast, in our proposal the main 

concept is a transaction. All the transactions are represented in 

the leaves of our tree. Because FP-Tree is item-based, the nodes 

of a FP-Tree are linked with paths. These paths connect items 

that belong to the same transaction. Since the intersection of 

transactions is not empty, one or more items are shared between 

different paths, which creates redundancy 

C.4. Leaves 

In a FP-Tree, there are no difference between nodes and 

leaves. Both represent an item of the transaction dataset. In our 

proposal, nodes are not related to items while leaves represent 

signature transactions of the dataset. The nodes have no 

semantic relation with the items or the transactions of a dataset. 

They only represent path links to access to the leaves containing 

signatures of transactions. 

C.5. Tree structure 

For FP-Tree, the worst case occurs when every transaction has 

a unique itemset and so the space needed to store the tree is 

greater than the space used to store the original dataset. This 

case is justified by the fact that FP-Tree requires additional 

space to store pointers between nodes and the counters for each 

item. 

In our proposal, the FI-Tree is totally independent of itemsets 

in the dataset. With this important property, our proposal does 

not require additional data structures or space to represent a 

dataset. 

C.6. Additional data structures 

In addition to the main FP-Tree, different data structures are 

required to find k-frequent itemsets (k>1). Firstly, we must 

construct a main table corresponding to the main FP-Tree. This 

table contains frequent 1-itemsets with their associated supports 

and must be sorted on decreasing support values. Then, the FP-

Growth algorithm generates a huge number of conditional FP-

Trees. Hence, FP-Tree is expensive to build. In our proposal, no 

additional data structure is required. Only the signature tree is 

needed. 

C.7. Dataset type 

Generally, there are two types of datasets: sparse and dense. 

In the FP-Tree structure, this type has a negative impact on the 

generated FP-Tree. For sparse datasets, this structure generates 

a tree with a size equal to that of the dataset. In our proposal, 

the dataset type has any incidence on the generated FI-Tree. 

This main difference between these two approaches can be 

explained by the fact that our proposal is support independent. 
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C.8. Redundancy 

The FP-Tree depends on the itemsets contained in a dataset. 

Hence, one frequent itemset is represented by a node in the FP-

Tree structure. The nodes of the FP-Tree are connected between 

them by paths, and each path corresponds to a transaction in the 

dataset. Because the transactions contain redundant items, the 

same items can be founded in different transactions. Hence, a 

same item will be represented by the same node in different 

paths of the FP-Tree, thus generating redundancy. The 

immediate consequence of this redundancy is that the size of 

the FP-Tree grows. On the other hand, our tree structure does 

not contain redundancy, because it emphasis on transactions 

and not on items. 

C.9. Updating dataset 

One important problem in a data mining process concerns the 

content of a dataset (static or dynamic content). In a static 

scenario, the tree representing a dataset is also static. But 

transaction datasets are updated regularly in real world 

(updating items and/or transactions). Here, the question is: Does 

this change require rebuilding the tree or not? In most cases, 

FP-Growth algorithm must rescan the updated dataset and 

rebuild FP-Tree, due to the change in the support count of 

frequent 1-itemsets. This process generated a lot of overhead 

that is not negligible. To avoid this important overhead, some 

research works have proposed to modify the generating process 

of the FP-Tree [23] [13] [3]. In our proposal, the FI-Tree is not 

rebuilding. 

C.10. Practical example 

To highlight the criteria discussed above between FP-Tree 

and FI-Tree, we illustrate the main differences between these 

two trees taking as an example the transaction dataset of Table 

II and its FP-Tree representation (see Figure 1), conditional FP-

Tree (see Table III) and FI-Tree (see Figure 3). 

TABLE XI 

QUANTITATIVE COMPARISON BETWEEN FP-TREE AND FI-TREE 

Criteria FP-Tree FI-Tree 

#Scans 02 1 

#Trees 05 1 

#Nodes 18 6 

#Leaves ? 7 

 

The obtained results (see Table XI) show clearly that FI-Tree 

has many advantages relatively to FP-Tree. 
 

V. EXPERIMENTAL RESULTS 

In this section, we study the practicability of our proposal for 

finding frequent itemsets. We performed different experiments 

to find frequent itemsets using our proposed approach (with 

signatures), comparatively to Apriori algorithm that uses 

candidate itemsets.  

 

All experiments are conducted on an Intel(R) Core(TM) i5-

3470T CPU @ 2.90GHz x 4 with 8 GB of RAM under the JDK8 

on a Fedora 27 system. 

A. Datasets 

For the experiments, we used real and synthetic datasets. The 

datasets were produced by the library “arules” [18] of R-cran 

Software. The used datasets have different characteristics (see 

Table XII). 

TABLE XII 

DATASET CHARACTERISTICS 

Dataset name Type #Transactions #Items 
Average 

transaction 

size 

Database 
size 

(MB) 

Mushroom Dense 8124 119 23 0,565 

Retail Sparse 88162 16469 11 4,156 

Accidents Sparse 340184 468 34 33,900 

T10I4D100K Sparse 100000 870 10 3,930 

T40I10D100K Sparse 200000 942 40 14,800 

T30D50K1K Sparse 50000 1000 14 2,730 

T30D100K1K Sparse 100000 1000 14 5,460 

T30D150K1K Sparse 150000 1000 14 8,180 

B. Dataset Results and Discussions 

B.1. FI-Mine vs Apriori 

The different results (execution time) obtained with our 

proposed algorithm (FI-Mine) are compared to those of Apriori. 

These results are synthesized in Figures 5 to 10. 
 

 

Fig. 5. Results for Mushroom Dataset 

 

Fig. 6. Results for Retail Dataset 
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Fig. 7. Results for 50K Transactions Dataset 

 

Fig. 8. Results for 100K Transactions Dataset 

 

Fig. 9. Results for 150K Transactions Dataset 

Fig. 10. Results for 150K Transactions Dataset 

From the above figures, we remark that results of our 

proposed algorithm (FI-Mine) outperform those of Apriori one. 

For example, for the case of 50K transactions dataset and 

Minsup equals to 0.0003, we have a gain of 2380.57 sec. 

comparatively to Apriori algorithm (2812.01 sec. for Apriori 

algorithm and 431.44 sec. for FI-Mine). The same remark is 

valid for the other figures. 

B.2. FI-Mine vs FP-Growth 

In this section, we use the algorithms FI-Mine, based on FI-

Tree, and FP-Growth, based on FP-Tree, to generate frequent 

itemsets. We consider several transaction datasets. 

The parameter which is considered in the analysis is the space 

complexity. We compare the results of FI-Tree with those of 

FP-tree. Our observed results are listed below. 

TABLE XIII 

FI-TREE RESULTS 

Datasets #Nodes Space  memory for FI-Tree (MB) 

Chess 6391 0.08 

Mushroom 16247 0.19 

Accidents 164771 1.98 

T40I10D100K 178269 2.14 

Retail 199861 2.40 

We note that the memory required by our structure FI-Tree is 

independent of any parameter, specially support threshold. 

Each dataset needs a fixed size memory. 

The size of the FP-Tree depends on the minimum support 

specified by the user. The size of the FP-Tree is inversely 

proportional to the support value. 

 

Fig. 11. FI-Mine vs FP-Growth for Chess Dataset 

 

Fig. 12. FI-Mine vs FP-Growth for Mushroom Dataset 

B.3. Discussion 

Figures 11 to 16 highlight the space memory required by each 

one of the two trees (FI-Tree and FP-Tree). To analyze more 

precisely the difference in space memory between these 

structures, we calculated a gain factor. This gain is the  
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Fig. 13. FI-Mine vs FP-Growth for Accident Dataset 

 

Fig. 14. FI-Mine vs FP-Growth for T10I4D100K Dataset 

 

Fig. 15. FI-Mine vs FP-Growth for T40I10D100K Dataset 

 

Fig. 16. FI-Mine vs FP-Growth for Retail Dataset 
 

difference between the space memory required for FP-Growth 

and that required for FI-Mine. We distinguish several cases 

depending on the used dataset: 

• Chess dataset (Figure 11): FI-Mine outperforms the FP-

rowth for all minsup values (50 to 80%). We remark also that 

whatever the values of the minsup, the space memory for FI-

Tree remains constant (minsup independent), while for FP-

Tree the more the value of the minsup decreases, the more 

the memory space increases. For example, between 60 and 

50% (minus 10%), the used space memory for FP-Growth 

increases five times. 

• Mushroom dataset (Figure 12): For high minsup (30 to 80%), 

the difference between the two trees is not significant, but for 

the minsup 20%, the space memory required by FP-Growth 

is almost 3 times than that of FI-Mine. We notice also that 

this dataset is dense. 

• Accidents dataset (Figure 13): For this dataset that is sparse, 

we note that the more the value of the support decreases, the 

more the memory space increases until reaching a 

multiplying factor of 2 between 40 and 30%. If we analyze 

the memory space needed for FI-Mine and FP-Growth, we 

notice that FP-Growth requires a larger memory space than 

that of FI-Mine up to a factor of 13. 

• T10I4D100K (Figure 14): For this sparse synthetic dataset, 

we use small values for the minsup (from 5 to 1%). First, we 

notice that the size of the FP-Tree gradually increases until it 

exceeds that of FI-Tree (minsup = 1). Despite this, FP-

Growth remains better than FI-Mine in terms of memory 

space.  

• T40I10D100K dataset (Figure 15): This dataset is also 

synthetic and sparse, for which FP-Tree greatly exceeds FI-

Tree. Each time the minsup decreases (from 10 to 4), the 

space memory required by FP-Growth is very much greater 

than that of FI-Mine (ranging from a factor of 7 for a support 

value equal to 10 up to a factor of 25 for a support value equal 

to 4).  

• Retail dataset (Fig. 16): In this dataset, we use small values 

for the minsup (from 5 to 0.25%). We note that the used space 

memory for FP-Growth increases each time the minsup 

values decrease with different factors. However, the used 

space memory of FI-Mine remains constant.  

As important remark, we notice that the used space memory 

for FI-Tree always remains constant and does not depend on the 

variation of the minsup values (small or high values). Like the 

performance of FP-Growth depends on many factors: dataset 

type, dataset size, minsup values, etc. 

V.  CONCLUSION AND FUTURE WORKS 

In this paper, we reviewed the various data structures, 

specifically trees, using in data mining algorithms. We 

summarize the main features of some relevant tree structures, 

their tree representation scheme, and the way they build the tree. 

Based on this review, we proposed a new tree structure to 

represent a transaction dataset. Our proposal structure is 

compared to the well-known FP-Tree. This comparison is made 

between the space memory used by FP-Tree and FI-Tree. 

Finally, we have compared experimentally our proposal 

algorithm with Apriori one, and we have showed that our 

signature-based structure can enhance the time for finding 

frequent itemsets. As a future work, we plan to experiment our 

proposal on different datasets with different parameters (dense 

and sparse datasets, low and high supports, static and dynamic 

datasets). Future work also includes a parallel implementation 
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of our approach to test its performance and scalability with large 

datasets. 
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