
Tehnički vjesnik 30, 3(2023), 787-796 787

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20220907113227
Original scientific paper

Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

Esra Calik BAYAZIT*, Ozgur Koray SAHINGOZ, Buket DOGAN

Abstract: Nowadays, cyber attackers focus on Android, which is the most popular open-source operating system, as main target by applying some malicious software
(malware) to access users' private information, control the device, or harm end-users. To detect Android malware, security experts have offered some learning-based models.
In this study, we developed an Android malware detection system that uses different machine\deep learning models by performing both dynamic analyses, in which suspected
malware is executed in a safe environment for observing its behaviours, and static analysis, which examines a malware file without any execution on the Android device.
The benefits and weaknesses of these models and analyses are described in detail in this comparative study, and directions for future studies are drawn. Experimental
results showed that the proposed models gave better results than those in the literature, with 0.988 accuracy for LSTM on static analysis and 0.953 accuracy for CNN-LSTM
on dynamic analysis.

Keywords: android; deep learning; malware detection systems; malware analysis

1 INTRODUCTION

Technological developments have shifted from
traditional computers to mobile devices, with a 10-times
increase in the worldwide market share of mobile devices
[1]. With these rapid developments in mobile
communication technologies and devices, the Android
operating system has become the most preferred operating
system for mobile devices due to its open-source structure,
accessibility, and scalability advantages [2].

Accordingly, as the number of applications offered by
Android systems increases, the number of malwares with
more complex code structures also increases day by day,
and it becomes difficult to detect. Because of this, these
devices need to be checked for and analysed for malware
with the help of some software.

One of the main reasons for the increase in Android
malware threats is that it is an operating system that can be
integrated into all mobile devices, regardless of model. In
addition, Android systems are popular because they are an
open-source system supported by Google. As mentioned in
the "Zimperium Global Mobile Threat Report 2022", the
attackers target Android systems. The new Android
malware threats increase graph for the 2021 year is shown
in Fig. 1 [3].

The applications on Android devices are formed as
Application Packages (APK), which contain multiple files
and some metadata about the application, such as package
name, permissions, static properties, etc. The permissions
in this file are an important security mechanism for
accessing sensitive resources owned by applications, and
they play an active role in limiting these accesses. On the
other hand, the application's network activity, file changes,
and system calls are dynamic properties. These APKs are
the weakest parts of the Android system; therefore, the
security mechanism should focus on them.

These APK files are used in third-party app stores that
offer apps for Android-based devices as well as official app
stores like Google Play. It uses app bundles to build and
deliver APKs that are optimized for each device's
configuration [6], so they can be easily accessible and
downloaded to mobile devices. Additionally, these files
can also be loaded into the system manually without third
party systems.

These files, which contain particularly malicious code,
are stored in the normal application, taking control of a
vulnerable system, causing it to perform poorly and
intentionally alter its intended function, making malware
detection more difficult [5]. Therefore, existing types of
malwares, such as Adware, Scareware, Trojans,
Ransomware, and Backdoors, easily evade traditional
malware methods due to advanced hiding techniques.

Figure 1 New Android malware threat growth over the 2021

For this reason, Android malware detection studies
have been carried out for learning and classification
purposes to protect Android devices from malware variants
[6-9]. Generally, a malware detection system consists of
some detection steps by applying static, dynamic or hybrid
analysis technique. The first of these is the signature-based
static analysis [6-8, 10] in which the analysis is made
before the application is executed in the device. On the
other hand, the second one is the dynamic analysis
technique [4, 6-9, 11] in which the behaviour is monitored
in an isolated environment after the application is run, and
the last one is the hybrid analysis technique [4, 7-9] which
is using both these analysis techniques. Static analysis
studies use permissions, intents, and API calls as attributes
for malware detection, while dynamic analysis studies
adopt various classification approaches using network flow
properties and system calls. Among these techniques, the
static analysis technique is preferred more in the literature,
especially in terms of cost [8-10]. This is because
collecting dynamic attribute data is costly and processing
steps are long and difficult. Attackers avoid static, dynamic

0

200

400

600

D
E

T
E

C
T

IO
N

*1

00
0

MONTH

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

788 Technical Gazette 30, 3(2023), 787-796

and hybrid analysis detection methods by using methods
such as encryption, code hiding, packaging [7]. This
situation can be overcome by using artificial intelligence
methods that provide flexibility and learning capabilities
for the software. The rapid growth of Android malware
apps and technologies to evade detection systems is
rendering traditional defences ineffective. Deep learning
takes place in almost every field with its strong feature
abstraction ability and has become a prominent research
area in recent years. The limited capabilities of machine
learning are limiting emerging malware detection systems.
First, the amount of data increasing day by day requires the
most functional processing and use of system features.
Because of this, it is important to show and explain how
well static or dynamic analysis techniques work in the
malware analysis phase.

In this study, a comparative analysis of dynamic
analysis techniques using deep learning in malware
detection on Android systems is presented on CIC-
AndMal2017 [11] and the second part, static analysis
techniques on CIC-InvesAndMal2019 [13] dataset. Thus,
by presenting the advantages and disadvantages of both
techniques, it is aimed at researchers and practitioners to
see the big picture. In the article, the following
contributions are suggested:
- Performing static and dynamic analysis of Android
- malware.
- Presenting comparative table of related studies.
- Presenting a comparative analysis of different learning

algorithms.
- Using deep learning approaches, present performance

results by making a comparison classification of static
and dynamic analysis.
The rest of the paper is organized as follows. Section

2 briefly covers a summary of the related works on Android
malware detection and identification. Section 3 covers the
background of analysis techniques and traditional machine
learning and deep learning methods. Section 4 presents our
proposed approach for the detection of Android malware
and a description of the used data set. In Section 5, data set
pre-processing studies and comparative experimental
results are explained. Section 6 is concluded with
directions for future work.

2 RELATED WORKS

Fast, effective, continuous, efficient, and reliable
detection of malicious software in applications on Android
devices is an important issue in both the academic,
commercial, and industrial worlds. Android operating
system is the most preferred operating system in the mobile
device industry with a market share of 72% [2]. Therefore,
especially malware attacks, are made on these devices to
capture the highest number of victims.

Lashkari et al. [11] instead of all the shortcomings and
limitations of emulators, developed a new dataset called
CICAndMal2017, which includes dynamic features using
real smartphones. On the publicly available
CICAndMal2017 dataset they created, it showed an
average of 85% precision and 88% recall for three
classifiers: Random Forest (RF), K-Nearest Neighbour
(KNN), and Decision Tree (DT).

The authors of study [12] employed the deep learning-
based LSTM algorithm to detect malware on Android.
Eight distinct approaches to attribute selection were used
to choose features (information gain attribute, gainratio
attribute, cvattribute, symmetrical unset attribute,
chisquare, onerattribute, relief attribute, and significance
attribute). By comparing the outcomes of all feature
filtering procedures, the 19 important features were chosen
by a simple majority voting process. The CICAndMal2017
data collection was used to detect ransomware in the study.
The feature filtration experiment was carried out on
WEKA on a total of 40000 samples, with 20000 benign
samples and 20000 ransomware-signed samples.
According to the findings, the study's accuracy rate was
97%.

In [13], the authors examined features using two-layer
Android malware analysis applications on the
CICInvesAndMal2019 dataset, which includes
permissions and purposes as static features and API calls
as dynamic features. The analysis results indicated that the
first layer achieved 95% accuracy in static-based malware
binary classification, and the second layer achieved 83.3%
accuracy in dynamic-based malware category
classification.

In the study [14], the detection of the seedling software
in the CICAndMal2017 dataset was examined as an
experimental study. It has been reported that the random
forest classification method achieves the highest success
rate among other traditional machine learning algorithms,
with an 82.80% success rate in ransomware detection.

Hr et al. [15] presented a study in which they detected
malware on Android systems using the static analysis
technique. In the study, the dataset created from the
applications obtained from the Google Play Store and
Virus Share was used. It was stated that a 94.64% accuracy
rate was achieved by using DBN as the learning model.

DeepDroid [16] is a framework that consists of three
parts. These stages are as follows: data gathering, feature
selection, and machine learning. The study analysed
120000 Android applications that make use of API calls
and permissions. The study analysed 100000 APK files
downloaded from the Google Play Store, as well as 20000
corrupted APKs. According to the study, the accuracy rate
was 94%.

In the study [17], a CNN based model is proposed.
Static analysis is performed by using API calls and Opcode
sequences as features. In the study using the Drebin
dataset, it was stated that the accuracy rate of the proposed
fusion model was 97.5%.

The authors of [18] demonstrated the DeepAMD
approach by comparing the efficiency of classical machine
learning classifiers and deep artificial neural networks with
DeepAMD investigations. DeepAMD completed detection
achieved the greatest accuracy of 93.4% for malware
classification and 92.5% for malware category
classification in the static layer. DeepAMD obtained an
accuracy of 80.3% for malware classification in the
dynamic layer.

Haq et al. [19] presented an Android malware
detection framework with permissions, a static analysis
technique, and a hybrid DL to detect malware from
Android applications. The study was carried out on the
Androzoo and AMD datasets. In the proposed study,
hybrid DL models and comparative DL-based algorithms
were critically evaluated.

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

Tehnički vjesnik 30, 3(2023), 787-796 789

Table 1 Comparison of related works
Related Works Year Analysis Method Learning Model Dataset Names Performance Results

[11] 2018 Dynamic RF, KNN, DT CICAndMal2017 85% (Precision)

[12] 2019 Dynamic LSTM CICAndMal2017 97%

[13] 2019 Static & Dynamic RF
CICAndMal2017
InvesAndMal2019

83.3%

[14] 2019 Dynamic DT, RF, KNN, SVM, NB CICAndMal2017 82.80%

[15] 2019 Static DBN Google Play and Virus Share 94.64%

[16] 2019 Static DBN Google Play 94%
[17] 2019 Static CNN Drebin 97.5%

[18] 2020 Static & Dynamic ANN AMD
93.4% on Static Layer,

80.3% on Dynamic Layer

[19] 2021 Static DL AndroZoo and AMD dataset 99.2%
[20] 2021 Static MLP, SVM SEDMDroid 89.07%

[21] 2021 Dynamic DCGAN_1D-CNN CICAndMal2017 96.55% (F1- Score)

[22] 2021 Dynamic ANN CICAndMal2017 98.4%

[23] 2022 Static Lightweight CNN
Google Play,Virus Share,

AMD
91.27%

[24] 2022 Dynamic
LSTM, NB, RF, SVM, MLP,

CNN, GRU, RNN
DroidCollector 95%

[25] 2022 Dynamic LSTM CICAndMal2017 99.96%

[33] 2022 Static NB, SVM AMD 92.4%

The study [20], introduced the SEDMDroid

framework for detecting Android malware. Permission as
a static feature in Android malware detection yields an
accuracy of 89.07% when API calls and system events are
monitored. Additionally, the presented framework extracts
datastream information as attributes with a 94.92%
accuracy. Based on the test results, the study concludes that
the SEMDroid framework is a good way to find malware
on Android.

In the proposed study by Luo et al. [21] an encrypted
malicious classification method based on the 1D-CNN and
DCGAN_1D-CNN model is proposed using the
CICAndMal2017 dataset. As a result of experimental
studies, it has been reported that DCGAN_1D-CNN model
reached 96.55% F1 - Score value in classification of
encrypted malicious traffic.

Authors in [22] performed an Android malware
detection system based on neural networks with the
CICMalDroid2017 data set, in which different IP encoding
methods were used, and achieved an accuracy rate of
98.4%. They presented the IP Address feature, which is one
of the features found in the data set they used, in
comparison with different IP encoding methods, such as
dividing IP into four numbers, converting IP to an integer,
and without IP Address

Authors in [23] have proposed a malware detection
method they call MAPAS, which can use system resources
efficiently and effectively. It analyses the behaviour of
malicious applications with API call graphs using CNN
deep learning algorithm. CNN was used to explore the
common features of the API call graphs of malware, and
the lightweight classifier was used as the classification
model. In the study, MAPAS and Android malware
detection approach called MaMaDroid was compared in
terms of memory usage, classification speed and accuracy
of classification of unknown malware. The MAPAS
method classified applications with 145.8% faster
classification, approximately ten times lower memory
usage, and 91.27% accuracy. Authors in [24] proposed a
paper as compared to the LSTM deep learning model based
on the network traffic analysis method of mobile

applications with NB, RF, SVM, MLP, CNN, RNN and
GRU algorithms. The developed LSTM-based deep
learning model has been more successful than the other
proposed methods with a 95% accuracy rate. In the study,
10 features of 7845 applications obtained from pcap files
of 4704 benign and 3141 malicious applications obtained
from the DroidCollector project were used. In addition, the
classification models were seen by calculating the feature
importance levels of the features used.

Fallah and Bidgoly [25] proposed a method based on
the LSTM algorithm for malware detection classification
and new and invisible malware families. In the proposed
study, the analysis of network traffic data containing
dynamic features was carried out on the CICAndMal2017
dataset. In the study, it was detected with an accuracy rate
of 99.96% immediately after capturing 50 network traffic
flows, and an accuracy rate of 80% was obtained in the
detection of new malware.

Yilmaz et al. [33] proposed a study that used machine
learning method to classify a data set containing 2854
malicious and 2870 harmless software. It was trained with
116 permission feature (SVM) and Naive Bayes (NB)
models of the applications. According to the classification
performance results, 90.9% success was obtained from the
SVM model and 92.4% from the NB model. In addition,
the prediction and learning levels of the models proposed
in the study were supported by the ROC curve and AUC
values.

A detailed comparison of the studies mentioned in the
related works section of the article and the accuracy rates
of these studies are presented in Tab. 1. This study is one
of the few studies in which static and dynamic analysis
techniques are presented together comparatively.

In the study, which is carried out with static and
dynamic analysis techniques, different combinations of
deep learning methods are presented. The performance
rates of the analysis of the three-layer LSTM and the
current hybrid method 1D-CNN-LSTM in different
detection systems were compared at different solver
parameter values of the ANN algorithm and different
neuron numbers of the three-layer MLP algorithm. When

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

790 Technical Gazette 30, 3(2023), 787-796

the experimental results are compared with the
performance ratios presented in Tab. 1, the performance
ratio of the experimental studies [13] with the RF algorithm
is more promising than the study and the performance
results of the ANN and MLP algorithms with different
parameter values are higher than the studies [18, 20].

In this study the performance value of the LSTM
method is promising in the static analysis technique, and
the 1D -CNN-LSTM method in the dynamic analysis
technique. According to studies that are open to everyone
and use the same data sets, the biggest factor in the success
of the experimental study results in this study is
undoubtedly the data pre-processing phase. In the
experimental results section of the study, the operations
performed in the data pre-processing, which we think will
provide a perspective to the practitioners, are clearly stated.

When Tab. 1 is examined, the variety of current data
sets in which the dynamic analysis technique is applied in
the literature is quite low. In this study, it is aimed to
contribute to the literature with the high success rates
provided by experimental studies using static and dynamic
analysis techniques of the same applications.

3 BACKGROUND

To make a malware detection system, some features
need to be extracted from Android applications in static
and dynamic analysis. Intrusion detection comes
automatically after training the system with static and
dynamic analysis using learning algorithms. Thus, it
provides convenience, efficiency, and speed in the
detection of attacks. Therefore, understanding this analysis
is important for implementing a robust and efficient
detection system.

3.1 Static Analysis

Static analysis is an analysis technique that detects
malware without running an application. In the static
analysis, the AndroidManifest.xml file is very important.
Applications can access some system resources within
certain limits. For this purpose, the desired permissions are
defined in the AndroidManifest.xml file. In this file, the
name of the program, the components of the program, and
the necessary permissions for the resources are found [26].
Android application always need the user's explicit
permission to store large amounts of data of interest in
public memory or to gain access to an unsafe function. It is
also extremely important to define these permissions
correctly. There are various access permissions that can be
given to applications in the application permissions list.
For example, there are permissions to access personal data
stored on the device (contacts in the phone book, call log,
SMS, photos) or internal devices (camera, microphone,
phone, GPS receiver) from which personal data can be
retrieved. Some applications may want to access other
applications' resources or some system resources. Android
has developed a permission system for this purpose. An
application must declare the permissions it will use by
adding <uses- permission <tags to the application manifest.
For example, if an application needs to send SMS
messages, it should include the line: <uses-permission
android: name=" Android. Permission. SEND_SMS"> An

application that is granted SMS access can access all SMS
messages. These correspondences also include internet
banking messages that transmit a one-time code and
confirmation transactions [30].

3.2 Dynamic Analysis

Dynamic analysis is also known as behavioural-based
analysis. In this technique, a detection is performed that
includes information collected during the runtime of the
operating system, i.e., during the execution of the program,
such as network access and system calls. The capture of
network traffic is one of the most important factors for
malware analysis [8]. Even if the application does not have
internet permission or if the application itself does not
generate network traffic, it may miss data or communicate
through other applications such as a browser [28, 31].

When the static and dynamic analysis mechanisms are
compared, the dynamic analysis mechanism performs
better than the static analysis mechanism in detecting
attacks using the code hiding technique since the
application is analysed at runtime [7, 8, 26, 27].

The static analysis mechanism, on the other hand, is
more efficient for detecting previously known attacks.
Since static analysis is a passive approach, it is less costly
than dynamic analysis, which is an active approach in
terms of resources and time since the application is not
carried out [27]. The comparison of using both analysis
techniques is shown in Fig. 2.

Figure 2 Comparison of dynamic and static analysis techniques

3.3 Machine Learning Models

Machine learning is an algorithm system that allows
software programs to make more accurate predictions from
data by optimizing algorithms without explicit
programming. The mainstay of these algorithms is to
generate new output data by making predictions from the
input data, instead of following static processing steps, and
to work by creating a model by updating these outputs [9].

Random Forest (RF) algorithms are algorithms that
are used in classification and regression problems with a
high prediction rate and generate ensembles with a
randomly selected set of sub-trees by creating many
prediction models. RF learning model is a method used on
categorical and continuous data in all data sets without any
size problem [30, 34].

Decision Tree (DT) is an algorithm that creates a tree
structure model consisting of decision nodes and leaf nodes
according to the feature and target that can be used in
classification and regression problems. It is based on the
rule of recursively dividing the input data into groups with
the help of a clustering algorithm. The clustering process

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

Tehnički vjesnik 30, 3(2023), 787-796 791

continues in depth until all elements of the group have the
same class label. It is possible to see the decisions that
affect the result in this algorithm. For this reason, it is a
popular solution used in threat detection studies [29, 35].

Multilayer Perceptron (MLP) has a structure in
which many neurons with non-linear activation functions
in architectural terms are hierarchically connected to each
other. It uses a learning system called back-propagation
[10].

Artificial Neural Network (ANN) is a learning event
that is usually organized in layers and occurs when neurons
in each layer connect with neurons in the previous and next
layer. They are the systems where learning takes place at
the end of the training process by processing the
information received from the neurons in the intermediate
layers from the input layer to the output layer [18, 36].

MLP and ANN algorithms are like each other, but
MLP is a type of the ANN algorithm. MLP is a structure
consisting of at least three layers, one of which is the
hidden layer and in that there can be one or more non-linear
layers. The ANN model can be one neuron and adding
more neurons until the network performance in estimating
the output is satisfactory to create the best ANN modelled
with the least number of neurons.

Long short-term memory (LSTM) algorithm is a
variant of the Recursive Neural Network (RNN), which
does not provide effective results in training problems due
to its short-term memory and occurs by eliminating these
problems. LSTM is widely used in sequential or time-
series problems because it can learn long-term
dependencies with its memory-transitive mechanism. The
basic LSTM architecture consists of input, output, forget
gates and memory neurons [12].

Convolutional Neural Network (CNN) has many
applications such as image classification, detection, object
analysis. CNN can obtain local features from the layer
inputs and add them to the lower layers. CNN consists of
convolution, pooling and fully layers. In this study, we
combined one- dimensional CNN (1D-CNN) with LSTM
network to detect malware by reducing the feature size of
feature detecting 1D-CNN [21].

3.4 Datasets

CICInvesAndMal2019 [13] is the follow-up data set to
CICAndMal2017 [11] in which benign and malware
Android applications are evaluated on smart devices. On
smart devices, benign and malware Android applications
have been evaluated and produced. The CICAndMal2017
data set, which contains 426 malware and 5065 benign
samples developed by merging innocuous samples from
Google Play with malware samples from a variety of
sources, was published in 2018. Continuous features in the
CICAndMal2017 data set include logs, network traffic, and
API requests, while discrete characteristics include battery
use, permissions, network traffic, and memory dumps.
CICInvesAndMal2019 covers static features such as
permissions and intents, as well as dynamic elements such
as API calls and all generated log files (80 network- flows).
The InvesAndMal2019 data set contains 426 malware and
5065 benign labeled samples grouped into four categories.
These data sets contain four distinct types of malware:
adware, ransomware, scareware, and SMS malware.

Information about the data set used in the study is shown
in Tab. 2.

Table 2 Details of dataset
 Dataset and features

 Features
CIC-And
Mal2017

CIC-Inves AndMal
2019

 Year 2018 2019

 #Benign 5065
 #Malware 426

 #Feature 84 8115

Captured static
features

Permission ✕ ✓

Intent ✕ ✓

State ✕ ✓

Cert. ✕ ✕

Source Code ✕ ✕

Captured
dynamic
features

API Call ✓ ✓

Newt. ✓ ✓

Sys. Call × ✓

Log × ✓

4 PROPOSED METHOD

In this study, it is aimed to present deep learning-based
malware binary classification comparatively by using
static and dynamic analysis techniques. In this study,
traditional machine learning algorithms are also shown,
along with how well they work in different analysis
techniques.

First, in static analysis binary classification, samples
are classified as malware or benign in the data set
containing permissions and intents with test and training
samples. Then, malware in four different categories in
malware dynamic analysis classification was combined to
create an up-to-date data set for binary classification. By
preprocessing these up-to-date datasets, a comparative
analysis with traditional machine learning algorithms DT,
RF and LSTM, CNN-LSTM, ANN and MLP deep learning
algorithms is presented.

Figure 3 Android malware detection system

The process and design of the proposed Android
malware detection approach are shown in Fig. 3. Some
factors were effective in the selection of the methods used.
The factor in the selection of the RF classifier is that it
gives effective results, especially in data sets with uneven
distribution. The fact that the data set using static analysis
features is unbalanced in terms of the number of benign
and malware features has been effective in the use of this
method. DT classifiers are fast to train and test. It has a
structure that uses data sets with large sample numbers by
dividing them into small sample groups.

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

792 Technical Gazette 30, 3(2023), 787-796

The data sets used in this study differed in terms of the
number of samples, which was effective in choosing this
method. Many activation functions can be used in the ANN
architecture. It has a structure suitable for development,
with different network structures. For example, the
sigmoid function is frequently used for classification. An
ANN can solve a problem using a single neuron. The
parameter values used in different methods of the ANN
algorithm in static and dynamic analysis techniques are
shown in Tab. 3. Classification ability is possible by
increasing the number of layers. In this study, a three-layer
MLP structure using different activation functions was
used.

Table 3 ANN classifier parameters
ANN Parameters ANN-1 ANN-2 ANN-3

Solver adam sgd lbfgs

Num. of neurons 64
Max. iter 150

Activ. function relu

Learning rate in it 0.2 -
Alpha 1e‒5

The LSTM has three gates that control and update

neurons: the forget gate, the input gate, and the output gate.
The forget gate controls what information in neurons

will be forgotten based on the input data. LSTM has been
a preferred architecture in terms of keeping the inputs in
long-term memory and being a solution to the vanishing
gradient problem. By their nature, gates use hyperbolic
tangent and sigmoid activation functions. The parameter
values used in the LSTM model, which was created using
a three-layer structure in the static and dynamic analysis
technique, are shown in Tab. 4.

Table 4 LSTM classifier parameters
Parameter values Layers

lstm_1
unit = 128

activation = relu
return_sequences = true

dropout_1 0.2

lstm_2
unit = 64

activation = relu
return_sequences = true

dropout_2 0.3

lstm_3
unit = 16

activation = relu
return_sequences = false

dropout_3 0.3

dense
unit = 1

activation = sigmoid

1D-CNNs are very suitable for use in mobile devices,

especially with low energy and processing power, due to
their low computational cost and no special hardware
requirements [21, 23]. In the 1D-CNN-LSTM algorithm,
first a deep model was created as the input layer,
convolution layer, and pool layer, and the reconstructed
features that reduced the feature size are input into the
LSTM algorithm, and a detection model was created in the
malware classification. The architecture of the proposed
hybrid 1D-CNN -LSTM classification model is presented
in Fig. 4.

The ability of LSTM to store in memory during time
steps and to cascade sequentially connected sequences is

combined with the 1D-CNN algorithm to determine the
CNN-LSTM model with static and dynamic analysis
techniques. The parameter values used in the 1D-CNN-
LSTM classification model are shown in Tab. 5.

Figure 4 Architecture of the hybrid 1D-CNN -LSTM

Table 5 1D-CNN-LSTM classifier parameters
Parameter values Layer values

conv1d_1
unit = 128

kernel_size = 3
activation = relu

max_pooling1d_1_ pool_size = 2

conv1d_2
unit = 64

kernel_size = 3
activation = relu

max_pooling1d_2 pool_size = 2

lstm unit = 8
dropuout_1 0.4

dense_1
unit = 1

activation = sigmoid

The confusion matrix was run for the accuracy of

classifiers, and F1 - Score were evaluated. Precision or
Recall were used to measure Accuracy and F1 - Score was
used for the imbalanced data. The formulas of the
performance evaluation metrics used are given below [32].
TP: Predicted Positive, Actual Positive; TN: Predicted
Negative, Actual Negative; FP: Predicted Positive, Actual
Negative; FN: Predicted Negative, Actual Positive.

TP TN
Accuracy

TP TN FP FN

 (1)

TP

Precision
TP FP

 (2)

TP

Recall
TP FN

 (3)

 *

1- 2*

Precision Recall
F Score

Precision Recall

 (4)

Table 6 System properties

Property Value
Processor i7-8th Gen(8700K)

Number of Core 6
Number of Threads 12

Turbo Boost 4.70 GHz
Cache L1/L2/L3 64K/256K/12MB
Memory Type DDR4- 2666
Memory Size 16 GB

Operating System Windows-10, 64-bit
Graphics Card Nvidia G-Sync

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

Tehnički vjesnik 30, 3(2023), 787-796 793

Python 3.8.3 was used to obtain the experimental
performance results, in which classification was made
according to the analysis methods, and the features of the
computing platform are depicted in Tab. 6.

5 EXPERIMENTAL RESULTS

In this section, comparative performance results are
presented using static and dynamic features using machine
learning algorithms.

5.1 Malware Binary Detection on Static Analysis

The system consists of two main elements: pre-
processing and classification. In the data set containing
static features, two separate files used for testing and
training are kept in CSV format. To obtain the best
performance in machine learning algorithms in the pre-
processing of the data set, which includes the permissions
and intentions of the applications, NaN (Not-a-Number)
and duplication removal processes are applied first using
the NumPy library. In this study, the family and category
columns in the data set containing static properties were
removed, since binary classification was performed. A
MinMax scaling process was applied for feature
normalization in the selected data set. Normalization refers
to the re-scaling of real-valued numeric attributes to a fixed
range (e.g., 0 and 1). There are 8115 features in the data
set, which has 60% training data samples and 40% test data
samples. Static analysis binary classification performance
results using learning methods are presented in Tab. 7.

Considering the results of traditional machine learning
algorithms according to the performance results, it is seen
that the RF classifier provides 95.27% accuracy.

Table 7 Static analysis binary malware classification performance

 Accuracy / %
F1 - Score /

%
Recall / % Precision / %

RF 95.27 97.28 98.34 96.25

DT 91.64 94.57 92.67 96.56

ANN-1 92.26 95.19 92.36 98.23
ANN-2 94.16 96.18 96.19 97.23

ANN-3 93.33 95.89 95.42 96.38

MLP-1 98.41 98.11 98.65 97.59
MLP-2 94.50 96.16 95.24 97.13

MLP-3 95.26 94.86 95.26 94.31

LSTM 98.75 97.35 97.03 97.69
CNN-
LSTM

98.02 98.87 98.31 99.44

The RF algorithm randomly selects different subsets

from both the data set and the feature set, trains them, and
classifies them according to the most votes among the
predictions of the decision trees it creates.

When the ANN results are examined, it is shown that
the classifier whose parameter values are specified in
Tab. 3, whose highest accuracy rate is 94.16%, is called
ANN-2. One of the solver parameters, which is one of the
parameter values used as the weight optimization value,
"adam" works better than the "lbfgs" parameter value in
large data sets. When the result of the experimental study
is examined, it is seen that the model called ANN-3 gives
better results than the ANN-1 model. In addition, the initial
learning rate value is used only when the solver parameter

value is only "sgd" or "adam", so it is not used in the "lbfgs"
parameter.

When the MLP results are examined, it is shown that
the classifier with the highest accuracy rate is 98.12%, that
model is called MLP-1 and has the parameter values
specified in Tab. 8.

Table 8 Static analysis of MLP classifier parameters
 MLP-1 MLP-2 MLP-3

Input Layer 8111 8111 8111
1st Layer 256 256 256

2nd Layer 128 64 64
3rd Layer 64 256 256

Output Layer 1 1 1

Activation Func.
of Layer

Relu Relu Logistic

Output Activation
Function

Sigmoid

Classifier Opt. Adam
Epoch 150

Dropout 0.5

Loss Func. Binary Cross Entropy
Batch Size 32

In both studies using static and dynamic analysis

techniques of LSTM and 1D -CNN-LSTM methods, the
loss function "binary_cross entropy" was used, and the
optimization method "adam" hyper parameters since they
belong to one of the candidate solutions in binary
classification. When the performance results are examined,
it is seen that the LSTM algorithm has reached the highest
accuracy value with 98.75% performance in the static
analysis classification against all learning algorithms.

5.2 Malware Binary Detection on Dynamic Analysis

In the pre-processing stage of data collection with

dynamic features, the Nan and duplicative removal
processes were used first, followed by the rest of the
processing. In the data set used for attack detection and
identification over network traffic, there are four malware
categories and the families that correspond to each
category are included in the data set. Because of this, all
malware instances are labelled as 1 and all benign
examples as 0, and the Label Map function is used to
classify all categories of malware, including Ransomware,
Adware, SMS Malware, Scareware, and SMS Trojans as a
single binary classification. Regarding the number of
malwares, the data set used is benign and unstable in terms
of the number of malwares.

As a result, a merging process was carried out in such
a way that the data set used could be balanced. By
randomly picking samples from benign software, we built
an up-to-date data set of 559150 rows containing 281076
malware and 278074 benign samples. There are two types
of IP addresses in the generated data set: source IP
addresses and destination IP addresses. IP address
information is a consideration in network attacks that
compromise system performance [22]. IP addresses are
used after being converted to integer format using
theipaddress" function. The timestamp is another
characteristic that must be translated to a format suitable
for machine learning classification on the data set. It has
been transformed to the "str" data type in this feature based

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

794 Technical Gazette 30, 3(2023), 787-796

on its frequency of occurrence within the date range.
Following all pre-processing steps, the classification
procedure utilized 71 characteristics, including dynamic
features. Dynamic binary classification performance
results using machine learning methods are presented in
Tab. 9. According to the performance results, the highest
accuracy rate of 95.26% was calculated with the 1D-CNN-
LSTM classifier.

Table 9 Dynamic analysis binary malware classification performance

 Accuracy / %
F1 - Score /

%
Recall /

%
Precision / %

RF 92.73 92.66 92.63 93.56

DT 90.09 89.99 86.23 94.12
ANN-1 86.05 86.10 85.13 87.06

ANN-2 85.35 86.37 85.23 87.56

ANN-3 86.07 86.68 86.27 87.13
MLP-1 94.64 95.42 99.57 91.63

MLP-2 93.78 94.55 98.69 90.75

MLP-3 94.25 94.66 98.33 91.28
LSTM 94.52 95.18 98.11 92.43

CNN-
LSTM

95.26 95.57 99.26 92.15

According to the classification results using the

parameter values of the ANN classifier, it has been
observed that the high number of static analysis features is
among the reasons that increase the performance rate.
According to the ANN performance results, ANN-1 and
ANN-3 have the same accuracy rate, and the highest
accuracy rate was 86.07%.

When the MLP results are examined, it is shown that
the classifiers with the highest accuracy rate 94.64%, called
MLP-1 which have the parameter values specified in Tab.
10.

Table 10 Dynamic analysis MLP classifier parameters
 MLP-1 MLP-2 MLP-3

Input Layer 71 71 71

1st Layer 32 64 64

2nd Layer 64 32 32
3rd Layer 32 64 16

Output Layer 1 1 1

Activation Func.
of Layer

Relu

Output Activation
Function

Sigmoid

Classifier Opt. Adam
Epoch 150

Dropout 0.5

Loss Function Binary Cross Entropy
Batch Size 32

According to the dynamic analysis classification

results obtained, it is clearly seen that the 1D-CNN-LSTM
classifier has achieved high performance in these
techniques. In this study, we performed ten experiments
with two different analysis methods. We examined the
effectiveness of machine learning algorithms in detecting
mobile Android malware with static and dynamic features
on the CIC-AndMal2017 and the second part, CIC-
InvesAndMal2019 data sets. According to the results, the
accuracy value deep learning classification algorithm
showed high performance in all scenarios among the

proposed methods in both analysis methods. We observed
that static analysis experimental studies had a higher
performance rate on average than dynamic analysis. Our
findings show that the values in the data set containing
dynamic features do not show normal distribution,
especially due to the network traffic data, have fewer
features, and thus the performance ratios in classification
are lower. The proposed algorithms are adequate for
detecting a significant amount of malware.

6 CONCLUSION

With the continued growth of mobile devices and

applications in recent years, cyber security has gained
increased attention. Android, as the most common
operating system for mobile devices, has been the primary
target of attackers looking to harm or exploit these devices
to obtain end users' financial or personal information. To
access these devices, intruders aim to upload some
malware to the target machines. As a result, security
researchers concentrated on detecting these malwares
before it activated or caused harm to mobile devices. Deep
learning is a useful method for self-learning from previous
experiences and then applying that learning without
requiring human intervention. In this paper, we proposed a
deep learning-based malware detection system by using
different approaches and depicting the results in a
comparative way. The static and dynamic analysis of this
suspicious software is detailed by giving their experimental
results, which show the effectiveness of the proposed
approach. When the results of comparative experimental
studies are examined, it has been revealed that LSTM with
an accuracy rate of 98.75% in static analysis classification
and CNN-LSTM deep learning algorithms with an
accuracy rate of 95.26% in dynamic analysis classification
has the highest performance in studies where static analysis
and dynamic analysis features are evaluated. Analysis
features, such as the number of layers and neurons, and the
effect of parameter values on the success rate are briefly
shown. As a future work, it is aimed to analyse the time
sequence effects of the observed behaviours in a dynamic
analysis concept with the use of some deep learning
approaches.

Acknowledgements

This work has been supported by Marmara University
Scientific Research Projects Coordination Unit under grant
number FDK-2020-10066.

7 REFERENCES

[1] Stat Counter Global Stats. (2022, June 26). Desktop vs

Mobile vs Tablet Market Share Worldwide 2009 to 2022.
Retrieved from https://gs.statcounter.com/platform-market-
share/desktop-mobile-tablet.

[2] Stat Counter Global Stats. (2022, Feb. 26). Mobile Operating
System Market Share Worldwide from January 2012 to
January 2022.
Retrieved from https://gs.statcounter.com/platform-market-
share/desktop-mobile-tablet

[3] Zimperium. (2022, April 21). 2022 Global Mobile Threat
Report. Zimperium.

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

Tehnički vjesnik 30, 3(2023), 787-796 795

Retrieved from https://www.zimperium.com/global-mobile-
threat-report/.

[4] Kim, J. & Lee, S. (2021). Malicious Behavior Detection
Method Using API Sequence in Binary Execution Path.
Tehnički Vjesnik - Technical Gazette, 28(3), 810-818.
https://doi.org/10.17559/TV-20210202132203

[5] McGraw, G. & Morrisett, G. (2000). Attacking malicious
code: A report to the infosec research council. IEEE
Software, 17(5), 33-41. https://doi.org/10.1109/52.877857

[6] Tahir, R. (2018). A study on malware and malware detection
techniques. International Journal of Education and
Management Engineering, 8(2), 20.
https://doi.org/10.5815/ijeme.2018.02.03.

[7] Yu, B., Fang, Y., Yang, Q., Tang, Y., & Liu, L. (2018). A
survey of malware behavior description and
analysis. Frontiers of Information Technology & Electronic
Engineering, 19(5), 583-603.
https://doi.org/10.1631/FITEE.1601745

[8] Sihwail, R., Omar, K., & Ariffin, K. Z. (2018). A survey on
malware analysis techniques: Static, dynamic, hybrid and
memory analysis. International Journal on Advanced
Science, Engineering and Information Technology, 8(4-2),
1662-1671. https://doi.org/10.18517/ijaseit.8.4-2.6827

[9] Bayazit, E. C., Sahingoz, O. K., & Dogan, B. (2020, June).
Malware detection in Android systems with traditional
machine learning models: a survey. International Congress
on Human-Computer Interaction, Optimization, and Robotic
Applications, (HORA2020), 1-8.
https://doi.org/10.1109/HORA49412.2020.9152840

[10] Bayazit, E. C., Sahingoz, O. K., & Dogan, B. (2022, June).
A Deep Learning Based Android Malware Detection System
with Static Analysis. International Congress on Human-
Computer Interaction, Optimization, And Robotic
Applications (HORA2022), 1-6.
https://doi.org/10.1109/HORA55278.2022.9800057

[11] Lashkari, A. H., Kadir, A. F. A., Taheri, L., & Ghorbani, A.
A. (2018, October). Toward developing a systematic
approach to generate benchmark Android malware datasets
and classification. International Carnahan Conference on
Security Technology (ICCST), 1-7.
https://doi.org/10.1109/CCST.2018.8585560

[12] Bibi, I., Akhunzada, A., Malik, J., Ahmed, G., & Raza, M.
(2019, August). An effective Android ransomware detection
through multi-factor feature filtration and recurrent neural
network.UK/China emerging technologies (UCET), 1-4.
https://doi.org/10.1109/UCET.2019.8881884

[13] Taheri, L., Kadir, A. F. A., & Lashkari, A. H. (2019,
October). Extensible android malware detection and family
classification using network-flows and API-calls.
International Carnahan Conference on Security Technology
(ICCST),1-8. https://doi.org/10.1109/CCST.2019.8888430

[14] Noorbehbahani, F., Rasouli, F., & Saberi, M. (2019,
August). Analysis of machine learning techniques for
ransomware detection. 16th International ISC (Iranian
Society of Cryptology) Conference on Information Security
and Cryptology (ISCISC), 128-133.
https://doi.org/10.1109/ISCISC48546.2019.8985139

[15] Sandeep, H. R. (2019, May). Static analysis of Android
malware detection using deep learning. International
Conference on Intelligent Computing and Control Systems
(ICCS), 841-845.
https://doi.org/10.1109/ICCS45141.2019.9065765

[16] Mahindru, A. & Sangal, A. L. (2019, October). Deepdroid:
feature selection approach to detect android malware using
deep learning.10th International Conference on Software
Engineering and Service Science (ICSESS), 16-19.
https://doi.org/10.1109/ICSESS47205.2019.9040821

[17] Ding, Y., Hu, J., Xu, W., & Zhang, X. (2019, July). A deep
feature fusion method for Android malware detection.

In 2019 International Conference on Machine Learning and
Cybernetics (ICMLC), 1-6.
https://doi.org/10.1109/ICMLC48188.2019.8949298

[18] Imtiaz, S. I., ur Rehman, S., Javed, A. R., Jalil, Z., Liu, X.,
& Alnumay, W. S. (2021). DeepAMD: Detection and
identification of Android malware using high-efficient Deep
Artificial Neural Network. Future Generation Computer
Systems, 115, 844-856.
https://doi.org/10.1016/j.future.2020.10.008

[19] Haq, I. U., Khan, T. A., & Akhunzada, A. (2021). A dynamic
robust DL-based model for android malware detection. IEEE
Access, 9, 74510-74521.
https://doi.org/10.1109/ACCESS.2021.3079370

[20] Zhu, H., Li, Y., Li, R., Li, J., You, Z., & Song, H. (2020).
SEDMDroid: An enhanced stacking ensemble framework
for Android malware detection. IEEE Transactions on
Network Science and Engineering, 8(2), 984-994.
https://doi.org/10.1109/TNSE.2020.2996379

[21] Luo, W., Liu, Z., Zhao, R., Chen, J., & Deng, X. (2021,
December). Malicious HTTPS Traffic Classification
Algorithm Based on DCGAN_1D-CNN. IEEE Conference
on Telecommunications, Optics and Computer Science
(TOCS),20-25.
https://doi.org/10.1109/TOCS53301.2021.9688753

[22] Bayazit, E. C., Sahingoz, O. K., & Dogan, B. (2021, June).
Neural networkbased Android malware detection with
different IP coding methods. International Congress on
Human-Computer Interaction, Optimization and Robotic
Applications (HORA 2021), 1-6.
https://doi.org/10.1109/HORA52670.2021.9461302

[23] Kim, J., Ban, Y., Ko, E., Cho, H., & Yi, J. H. (2022).
MAPAS: a practical deep learning-based android malware
detection system. International Journal of Information
Security, 1-14. https://doi.org/10.1007/s10207-022-00579-6

[24] Anıl, U. T. K. U. (2022). Ağ trafiği analizi ile derin öğrenme
tabanlı Android kötücül yazılım tespiti. Gazi Üniversitesi
Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 1823-1838.
https://doi.org/10.17341/gazimmfd.937374

[25] Fallah, S. & Bidgoly, A. J. (2022). Android malware
detection using network traffic based on sequential deep
learning models. Software: Practice and Experience, 52(9),
1987-2004. https://doi.org/10.1002/spe.3112

[26] Wu, Q., Zhu, X., & Liu, B. (2021). A survey of Android
malware static detection technology based on machine
learning. Mobile Information Systems, 2021, 1-18.
https://doi.org/10.1155/2021/8896013

[27] Lee, S., Jeon, H., & Park, G. (2021). Design of Automation
Environment for Analyzing Various IoT Malware. Tehnički
Vjesnik - Technical Gazette, 28(3), 827-835.
https://doi.org/10.17559/TV-20210202131602

[28] Premkumar, M., Sundararajan, T. V. P., & Mohanbabu, G.
(2022). Dynamic Defense Mechanism for DoS Attacks in
Wireless Environments Using Hybrid Intrusion Detection
System and Statistical Approaches. Tehnički Vjesnik -
Technical Gazette, 29(3), 965-970.
https://doi.org/10.17559/TV-20210604113859

[29] Quinlan, J. R. (1986). Induction of decision trees. Mach
Learn, 1, 81-106. https://doi.org/10.1007/BF00116251

[30] Kim, H., Cho, T., Ahn, G. J., & Hyun Yi, J. (2018). Risk
assessment of mobile applications based on machine learned
malware dataset. Multimedia Tools and Applications, 77(4),
5027-5042. https://doi.org/10.1007/s11042-017-4756-0

[31] Cafuta, D., Sruk, V., & Dodig, I. (2018). Fast-flux botnet
detection based on traffic response and search engines credit
worthiness. Tehnički Vjesnik - Technical Gazette, 25(2),
390-400. https://doi.org/10.17559/TV-20161012115204

[32] Kohavi, R. & John, G. H. (1997). Wrappers for feature subset
selection. Artificial intelligence, 97(1-2), 273-324.
https://doi.org/10.1016/S0004-3702(97)00043-X

Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

796 Technical Gazette 30, 3(2023), 787-796

[33] Yılmaz, A. B., Taspınar, Y. S., & Koklu, M. (2022).
Classification of Malicious Android Applications Using
Naive Bayes and Support Vector Machine Algorithms.
International Journal of Intelligent Systems and Applications
in Engineering, 10(2), 269-274.

[34] Al-doorı, S. K. S., Taspınar, Y. S. & Koklu, M. (2021).
Distracted Driving Detection with Machine Learning
Methods by CNN Based Feature Extraction. International
Journal of Applied Mathematics Electronics and Computers,
9(4), 116-121. https://doi.org/10.18100/ijamec.1035749

[35] Kishore, B., Yasar, A., Taspinar, Y. S., Kursun, R., Cinar, I.,
Shankar, V. G., Ofori, I. et al. (2022). Computer-Aided
Multiclass Classification of Corn from Corn Images
Integrating Deep Feature Extraction. Computational
Intelligence and Neuroscience, 2022.
https://doi.org/10.1155/2022/2062944

[36] Taspinar, Y. S., Cinar, I., & Koklu, M. (2022). Classification
by a stacking model using CNN features for COVID-19
infection diagnosis. Journal of X-ray science and
technology, 1-16. https://doi.org/10.3233/XST-211031

Contact information:

Esra Calik BAYAZIT
(Corresponding author)
1) Computer Engineering Department,
Fatih Sultan Mehmet Vakif University, Beyoglu, Istanbul, 34445, Turkey
2) Marmara University Institute of Science
E-mail: ecalik@fsm.edu.tr

Ozgur Koray SAHINGOZ
Computer Engineering Department,
Biruni University, Topkapi, Istanbul, 34093, Turkey
E-mail: osahingoz@biruni.edu.tr

Buket DOGAN
Department of Computer Engineering, Faculty of Technology,
Marmara University, Basibuyuk, Istanbul, 34854, Turkey
E-mail: buketb@marmara.edu.tr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

