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Abstract: Nowadays, cyber attackers focus on Android, which is the most popular open-source operating system, as main target by applying some malicious software 
(malware) to access users' private information, control the device, or harm end-users. To detect Android malware, security experts have offered some learning-based models. 
In this study, we developed an Android malware detection system that uses different machine\deep learning models by performing both dynamic analyses, in which suspected 
malware is executed in a safe environment for observing its behaviours, and static analysis, which examines a malware file without any execution on the Android device. 
The benefits and weaknesses of these models and analyses are described in detail in this comparative study, and directions for future studies are drawn. Experimental 
results showed that the proposed models gave better results than those in the literature, with 0.988 accuracy for LSTM on static analysis and 0.953 accuracy for CNN-LSTM 
on dynamic analysis. 
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1 INTRODUCTION 
 

Technological developments have shifted from 
traditional computers to mobile devices, with a 10-times 
increase in the worldwide market share of mobile devices 
[1]. With these rapid developments in mobile 
communication technologies and devices, the Android 
operating system has become the most preferred operating 
system for mobile devices due to its open-source structure, 
accessibility, and scalability advantages [2].  

Accordingly, as the number of applications offered by 
Android systems increases, the number of malwares with 
more complex code structures also increases day by day, 
and it becomes difficult to detect. Because of this, these 
devices need to be checked for and analysed for malware 
with the help of some software. 

One of the main reasons for the increase in Android 
malware threats is that it is an operating system that can be 
integrated into all mobile devices, regardless of model. In 
addition, Android systems are popular because they are an 
open-source system supported by Google. As mentioned in 
the "Zimperium Global Mobile Threat Report 2022", the 
attackers target Android systems. The new Android 
malware threats increase graph for the 2021 year is shown 
in Fig. 1 [3]. 

The applications on Android devices are formed as 
Application Packages (APK), which contain multiple files 
and some metadata about the application, such as package 
name, permissions, static properties, etc. The permissions 
in this file are an important security mechanism for 
accessing sensitive resources owned by applications, and 
they play an active role in limiting these accesses. On the 
other hand, the application's network activity, file changes, 
and system calls are dynamic properties. These APKs are 
the weakest parts of the Android system; therefore, the 
security mechanism should focus on them. 

These APK files are used in third-party app stores that 
offer apps for Android-based devices as well as official app 
stores like Google Play. It uses app bundles to build and 
deliver APKs that are optimized for each device's 
configuration [6], so they can be easily accessible and 
downloaded to mobile devices. Additionally, these files 
can also be loaded into the system manually without third 
party systems. 

These files, which contain particularly malicious code, 
are stored in the normal application, taking control of a 
vulnerable system, causing it to perform poorly and 
intentionally alter its intended function, making malware 
detection more difficult [5]. Therefore, existing types of 
malwares, such as Adware, Scareware, Trojans, 
Ransomware, and Backdoors, easily evade traditional 
malware methods due to advanced hiding techniques. 
 

Figure 1 New Android malware threat growth over the 2021 
 

For this reason, Android malware detection studies 
have been carried out for learning and classification 
purposes to protect Android devices from malware variants 
[6-9]. Generally, a malware detection system consists of 
some detection steps by applying static, dynamic or hybrid 
analysis technique. The first of these is the signature-based 
static analysis [6-8, 10] in which the analysis is made 
before the application is executed in the device. On the 
other hand, the second one is the dynamic analysis 
technique [4, 6-9, 11] in which the behaviour is monitored 
in an isolated environment after the application is run, and 
the last one is the hybrid analysis technique [4, 7-9] which 
is using both these analysis techniques. Static analysis 
studies use permissions, intents, and API calls as attributes 
for malware detection, while dynamic analysis studies 
adopt various classification approaches using network flow 
properties and system calls. Among these techniques, the 
static analysis technique is preferred more in the literature, 
especially in terms of cost [8-10]. This is because 
collecting dynamic attribute data is costly and processing 
steps are long and difficult. Attackers avoid static, dynamic 
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and hybrid analysis detection methods by using methods 
such as encryption, code hiding, packaging [7]. This 
situation can be overcome by using artificial intelligence 
methods that provide flexibility and learning capabilities 
for the software. The rapid growth of Android malware 
apps and technologies to evade detection systems is 
rendering traditional defences ineffective. Deep learning 
takes place in almost every field with its strong feature 
abstraction ability and has become a prominent research 
area in recent years. The limited capabilities of machine 
learning are limiting emerging malware detection systems. 
First, the amount of data increasing day by day requires the 
most functional processing and use of system features. 
Because of this, it is important to show and explain how 
well static or dynamic analysis techniques work in the 
malware analysis phase. 

In this study, a comparative analysis of dynamic 
analysis techniques using deep learning in malware 
detection on Android systems is presented on CIC-
AndMal2017 [11] and the second part, static analysis 
techniques on CIC-InvesAndMal2019 [13] dataset. Thus, 
by presenting the advantages and disadvantages of both 
techniques, it is aimed at researchers and practitioners to 
see the big picture. In the article, the following 
contributions are suggested: 
- Performing static and dynamic analysis of Android 
- malware. 
- Presenting comparative table of related studies. 
- Presenting a comparative analysis of different learning 

algorithms. 
- Using deep learning approaches, present performance 

results by making a comparison classification of static 
and dynamic analysis. 
The rest of the paper is organized as follows. Section 

2 briefly covers a summary of the related works on Android 
malware detection and identification. Section 3 covers the 
background of analysis techniques and traditional machine 
learning and deep learning methods. Section 4 presents our 
proposed approach for the detection of Android malware 
and a description of the used data set. In Section 5, data set 
pre-processing studies and comparative experimental 
results are explained. Section 6 is concluded with 
directions for future work. 
 
2 RELATED WORKS 
 

Fast, effective, continuous, efficient, and reliable 
detection of malicious software in applications on Android 
devices is an important issue in both the academic, 
commercial, and industrial worlds. Android operating 
system is the most preferred operating system in the mobile 
device industry with a market share of 72% [2]. Therefore, 
especially malware attacks, are made on these devices to 
capture the highest number of victims. 

Lashkari et al. [11] instead of all the shortcomings and 
limitations of emulators, developed a new dataset called 
CICAndMal2017, which includes dynamic features using 
real smartphones. On the publicly available 
CICAndMal2017 dataset they created, it showed an 
average of 85% precision and 88% recall for three 
classifiers: Random Forest (RF), K-Nearest Neighbour 
(KNN), and Decision Tree (DT). 

The authors of study [12] employed the deep learning-
based LSTM algorithm to detect malware on Android. 
Eight distinct approaches to attribute selection were used 
to choose features (information gain attribute, gainratio 
attribute, cvattribute, symmetrical unset attribute, 
chisquare, onerattribute, relief attribute, and significance 
attribute). By comparing the outcomes of all feature 
filtering procedures, the 19 important features were chosen 
by a simple majority voting process. The CICAndMal2017 
data collection was used to detect ransomware in the study. 
The feature filtration experiment was carried out on 
WEKA on a total of 40000 samples, with 20000 benign 
samples and 20000 ransomware-signed samples. 
According to the findings, the study's accuracy rate was 
97%.  

In [13], the authors examined features using two-layer 
Android malware analysis applications on the 
CICInvesAndMal2019 dataset, which includes 
permissions and purposes as static features and API calls 
as dynamic features. The analysis results indicated that the 
first layer achieved 95% accuracy in static-based malware 
binary classification, and the second layer achieved 83.3% 
accuracy in dynamic-based malware category 
classification.  

In the study [14], the detection of the seedling software 
in the CICAndMal2017 dataset was examined as an 
experimental study. It has been reported that the random 
forest classification method achieves the highest success 
rate among other traditional machine learning algorithms, 
with an 82.80% success rate in ransomware detection. 

Hr et al. [15] presented a study in which they detected 
malware on Android systems using the static analysis 
technique. In the study, the dataset created from the 
applications obtained from the Google Play Store and 
Virus Share was used. It was stated that a 94.64% accuracy 
rate was achieved by using DBN as the learning model. 

DeepDroid [16] is a framework that consists of three 
parts. These stages are as follows: data gathering, feature 
selection, and machine learning. The study analysed 
120000 Android applications that make use of API calls 
and permissions. The study analysed 100000 APK files 
downloaded from the Google Play Store, as well as 20000 
corrupted APKs. According to the study, the accuracy rate 
was 94%. 

In the study [17], a CNN based model is proposed. 
Static analysis is performed by using API calls and Opcode 
sequences as features. In the study using the Drebin 
dataset, it was stated that the accuracy rate of the proposed 
fusion model was 97.5%. 

The authors of [18] demonstrated the DeepAMD 
approach by comparing the efficiency of classical machine 
learning classifiers and deep artificial neural networks with 
DeepAMD investigations. DeepAMD completed detection 
achieved the greatest accuracy of 93.4% for malware 
classification and 92.5% for malware category 
classification in the static layer. DeepAMD obtained an 
accuracy of 80.3% for malware classification in the 
dynamic layer. 

Haq et al. [19] presented an Android malware 
detection framework with permissions, a static analysis 
technique, and a hybrid DL to detect malware from 
Android applications. The study was carried out on the 
Androzoo and AMD datasets. In the proposed study, 
hybrid DL models and comparative DL-based algorithms 
were critically evaluated. 
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Table 1 Comparison of related works 
Related Works Year Analysis Method Learning Model Dataset Names Performance Results 

[11] 2018 Dynamic RF, KNN, DT CICAndMal2017 85% (Precision) 

[12] 2019 Dynamic LSTM CICAndMal2017 97% 

[13] 2019 Static & Dynamic RF 
CICAndMal2017 
InvesAndMal2019 

83.3% 

[14] 2019 Dynamic DT, RF, KNN, SVM, NB CICAndMal2017 82.80% 

[15] 2019 Static DBN Google Play and Virus Share 94.64% 

[16] 2019 Static DBN Google Play 94% 
[17] 2019 Static CNN Drebin 97.5% 

[18] 2020 Static & Dynamic ANN AMD 
93.4% on Static Layer, 

80.3% on Dynamic Layer 

[19] 2021 Static DL AndroZoo and AMD dataset 99.2% 
[20] 2021 Static MLP, SVM SEDMDroid 89.07% 

[21] 2021 Dynamic DCGAN_1D-CNN CICAndMal2017 96.55% (F1- Score) 

[22] 2021 Dynamic ANN CICAndMal2017 98.4% 

[23] 2022 Static Lightweight CNN 
Google Play,Virus Share, 

AMD 
91.27% 

[24] 2022 Dynamic 
LSTM, NB, RF, SVM, MLP, 

CNN, GRU, RNN 
DroidCollector 95% 

[25] 2022 Dynamic LSTM CICAndMal2017 99.96% 

[33] 2022 Static NB, SVM AMD 92.4% 

 
The study [20], introduced the SEDMDroid 

framework for detecting Android malware. Permission as 
a static feature in Android malware detection yields an 
accuracy of 89.07% when API calls and system events are 
monitored. Additionally, the presented framework extracts 
datastream information as attributes with a 94.92% 
accuracy. Based on the test results, the study concludes that 
the SEMDroid framework is a good way to find malware 
on Android. 

In the proposed study by Luo et al. [21] an encrypted 
malicious classification method based on the 1D-CNN and 
DCGAN_1D-CNN model is proposed using the 
CICAndMal2017 dataset. As a result of experimental 
studies, it has been reported that DCGAN_1D-CNN model 
reached 96.55% F1 - Score value in classification of 
encrypted malicious traffic. 

Authors in [22] performed an Android malware 
detection system based on neural networks with the 
CICMalDroid2017 data set, in which different IP encoding 
methods were used, and achieved an accuracy rate of 
98.4%. They presented the IP Address feature, which is one 
of the features found in the data set they used, in 
comparison with different IP encoding methods, such as 
dividing IP into four numbers, converting IP to an integer, 
and without IP Address 

Authors in [23] have proposed a malware detection 
method they call MAPAS, which can use system resources 
efficiently and effectively. It analyses the behaviour of 
malicious applications with API call graphs using CNN 
deep learning algorithm. CNN was used to explore the 
common features of the API call graphs of malware, and 
the lightweight classifier was used as the classification 
model. In the study, MAPAS and Android malware 
detection approach called MaMaDroid was compared in 
terms of memory usage, classification speed and accuracy 
of classification of unknown malware. The MAPAS 
method classified applications with 145.8% faster 
classification, approximately ten times lower memory 
usage, and 91.27% accuracy. Authors in [24] proposed a 
paper as compared to the LSTM deep learning model based 
on the network traffic analysis method of mobile 

applications with NB, RF, SVM, MLP, CNN, RNN and 
GRU algorithms. The developed LSTM-based deep 
learning model has been more successful than the other 
proposed methods with a 95% accuracy rate. In the study, 
10 features of 7845 applications obtained from pcap files 
of 4704 benign and 3141 malicious applications obtained 
from the DroidCollector project were used. In addition, the 
classification models were seen by calculating the feature 
importance levels of the features used. 

Fallah and Bidgoly [25] proposed a method based on 
the LSTM algorithm for malware detection classification 
and new and invisible malware families. In the proposed 
study, the analysis of network traffic data containing 
dynamic features was carried out on the CICAndMal2017 
dataset. In the study, it was detected with an accuracy rate 
of 99.96% immediately after capturing 50 network traffic 
flows, and an accuracy rate of 80% was obtained in the 
detection of new malware. 

Yilmaz et al. [33] proposed a study that used machine 
learning method to classify a data set containing 2854 
malicious and 2870 harmless software. It was trained with 
116 permission feature (SVM) and Naive Bayes (NB) 
models of the applications. According to the classification 
performance results, 90.9% success was obtained from the 
SVM model and 92.4% from the NB model. In addition, 
the prediction and learning levels of the models proposed 
in the study were supported by the ROC curve and AUC 
values. 

A detailed comparison of the studies mentioned in the 
related works section of the article and the accuracy rates 
of these studies are presented in Tab. 1. This study is one 
of the few studies in which static and dynamic analysis 
techniques are presented together comparatively.  

In the study, which is carried out with static and 
dynamic analysis techniques, different combinations of 
deep learning methods are presented. The performance 
rates of the analysis of the three-layer LSTM and the 
current hybrid method 1D-CNN-LSTM in different 
detection systems were compared at different solver 
parameter values of the ANN algorithm and different 
neuron numbers of the three-layer MLP algorithm. When 



Esra Calik BAYAZIT et al.: Deep Learning based Malware Detection for Android Systems: A Comparative Analysis 

790                         Technical Gazette 30, 3(2023), 787-796 

the experimental results are compared with the 
performance ratios presented in Tab. 1, the performance 
ratio of the experimental studies [13] with the RF algorithm 
is more promising than the study and the performance 
results of the ANN and MLP algorithms with different 
parameter values are higher than the studies [18, 20].  

In this study the performance value of the LSTM 
method is promising in the static analysis technique, and 
the 1D -CNN-LSTM method in the dynamic analysis 
technique. According to studies that are open to everyone 
and use the same data sets, the biggest factor in the success 
of the experimental study results in this study is 
undoubtedly the data pre-processing phase. In the 
experimental results section of the study, the operations 
performed in the data pre-processing, which we think will 
provide a perspective to the practitioners, are clearly stated.  

When Tab. 1 is examined, the variety of current data 
sets in which the dynamic analysis technique is applied in 
the literature is quite low. In this study, it is aimed to 
contribute to the literature with the high success rates 
provided by experimental studies using static and dynamic 
analysis techniques of the same applications. 
 
3 BACKGROUND 
 

To make a malware detection system, some features 
need to be extracted from Android applications in static 
and dynamic analysis. Intrusion detection comes 
automatically after training the system with static and 
dynamic analysis using learning algorithms. Thus, it 
provides convenience, efficiency, and speed in the 
detection of attacks. Therefore, understanding this analysis 
is important for implementing a robust and efficient 
detection system. 
 
3.1 Static Analysis 
 

Static analysis is an analysis technique that detects 
malware without running an application. In the static 
analysis, the AndroidManifest.xml file is very important. 
Applications can access some system resources within 
certain limits. For this purpose, the desired permissions are 
defined in the AndroidManifest.xml file. In this file, the 
name of the program, the components of the program, and 
the necessary permissions for the resources are found [26].  
Android application always need the user's explicit 
permission to store large amounts of data of interest in 
public memory or to gain access to an unsafe function. It is 
also extremely important to define these permissions 
correctly. There are various access permissions that can be 
given to applications in the application permissions list. 
For example, there are permissions to access personal data 
stored on the device (contacts in the phone book, call log, 
SMS, photos) or internal devices (camera, microphone, 
phone, GPS receiver) from which personal data can be 
retrieved. Some applications may want to access other 
applications' resources or some system resources. Android 
has developed a permission system for this purpose. An 
application must declare the permissions it will use by 
adding <uses- permission <tags to the application manifest. 
For example, if an application needs to send SMS 
messages, it should include the line: <uses-permission 
android: name=" Android. Permission. SEND_SMS"> An 

application that is granted SMS access can access all SMS 
messages. These correspondences also include internet 
banking messages that transmit a one-time code and 
confirmation transactions [30]. 
 
3.2 Dynamic Analysis 
 

Dynamic analysis is also known as behavioural-based 
analysis. In this technique, a detection is performed that 
includes information collected during the runtime of the 
operating system, i.e., during the execution of the program, 
such as network access and system calls. The capture of 
network traffic is one of the most important factors for 
malware analysis [8]. Even if the application does not have 
internet permission or if the application itself does not 
generate network traffic, it may miss data or communicate 
through other applications such as a browser [28, 31]. 

When the static and dynamic analysis mechanisms are 
compared, the dynamic analysis mechanism performs 
better than the static analysis mechanism in detecting 
attacks using the code hiding technique since the 
application is analysed at runtime [7, 8, 26, 27]. 

The static analysis mechanism, on the other hand, is 
more efficient for detecting previously known attacks. 
Since static analysis is a passive approach, it is less costly 
than dynamic analysis, which is an active approach in 
terms of resources and time since the application is not 
carried out [27]. The comparison of using both analysis 
techniques is shown in Fig. 2. 
 

Figure 2 Comparison of dynamic and static analysis techniques 
 
3.3 Machine Learning Models 
 

Machine learning is an algorithm system that allows 
software programs to make more accurate predictions from 
data by optimizing algorithms without explicit 
programming. The mainstay of these algorithms is to 
generate new output data by making predictions from the 
input data, instead of following static processing steps, and 
to work by creating a model by updating these outputs [9]. 

Random Forest (RF) algorithms are algorithms that 
are used in classification and regression problems with a 
high prediction rate and generate ensembles with a 
randomly selected set of sub-trees by creating many 
prediction models. RF learning model is a method used on 
categorical and continuous data in all data sets without any 
size problem [30, 34]. 

Decision Tree (DT) is an algorithm that creates a tree 
structure model consisting of decision nodes and leaf nodes 
according to the feature and target that can be used in 
classification and regression problems. It is based on the 
rule of recursively dividing the input data into groups with 
the help of a clustering algorithm. The clustering process 
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continues in depth until all elements of the group have the 
same class label. It is possible to see the decisions that 
affect the result in this algorithm. For this reason, it is a 
popular solution used in threat detection studies [29, 35]. 

Multilayer Perceptron (MLP) has a structure in 
which many neurons with non-linear activation functions 
in architectural terms are hierarchically connected to each 
other. It uses a learning system called back-propagation 
[10].  

Artificial Neural Network (ANN) is a learning event 
that is usually organized in layers and occurs when neurons 
in each layer connect with neurons in the previous and next 
layer. They are the systems where learning takes place at 
the end of the training process by processing the 
information received from the neurons in the intermediate 
layers from the input layer to the output layer [18, 36]. 

MLP and ANN algorithms are like each other, but 
MLP is a type of the ANN algorithm. MLP is a structure 
consisting of at least three layers, one of which is the 
hidden layer and in that there can be one or more non-linear 
layers. The ANN model can be one neuron and adding 
more neurons until the network performance in estimating 
the output is satisfactory to create the best ANN modelled 
with the least number of neurons. 

Long short-term memory (LSTM) algorithm is a 
variant of the Recursive Neural Network (RNN), which 
does not provide effective results in training problems due 
to its short-term memory and occurs by eliminating these 
problems. LSTM is widely used in sequential or time-
series problems because it can learn long-term 
dependencies with its memory-transitive mechanism. The 
basic LSTM architecture consists of input, output, forget 
gates and memory neurons [12]. 

Convolutional Neural Network (CNN) has many 
applications such as image classification, detection, object 
analysis. CNN can obtain local features from the layer 
inputs and add them to the lower layers. CNN consists of 
convolution, pooling and fully layers. In this study, we 
combined one- dimensional CNN (1D-CNN) with LSTM 
network to detect malware by reducing the feature size of 
feature detecting 1D-CNN [21]. 
 
3.4 Datasets 
 

CICInvesAndMal2019 [13] is the follow-up data set to 
CICAndMal2017 [11] in which benign and malware 
Android applications are evaluated on smart devices. On 
smart devices, benign and malware Android applications 
have been evaluated and produced. The CICAndMal2017 
data set, which contains 426 malware and 5065 benign 
samples developed by merging innocuous samples from 
Google Play with malware samples from a variety of 
sources, was published in 2018. Continuous features in the 
CICAndMal2017 data set include logs, network traffic, and 
API requests, while discrete characteristics include battery 
use, permissions, network traffic, and memory dumps. 
CICInvesAndMal2019 covers static features such as 
permissions and intents, as well as dynamic elements such 
as API calls and all generated log files (80 network- flows). 
The InvesAndMal2019 data set contains 426 malware and 
5065 benign labeled samples grouped into four categories. 
These data sets contain four distinct types of malware: 
adware, ransomware, scareware, and SMS malware. 

Information about the data set used in the study is shown 
in Tab. 2. 
 

Table 2 Details of dataset 
 Dataset and features 

 Features 
CIC-And 
Mal2017 

CIC-Inves AndMal 
2019 

 Year 2018 2019 

 #Benign 5065 
 #Malware 426 

 #Feature 84 8115 

Captured static 
features 

Permission ✕ ✓ 

Intent ✕ ✓ 

State ✕ ✓ 

Cert. ✕ ✕ 

Source Code ✕ ✕ 

Captured 
dynamic 
features 

API Call ✓ ✓ 

Newt. ✓ ✓ 

Sys. Call × ✓ 

Log × ✓ 

 
4 PROPOSED METHOD 
 

In this study, it is aimed to present deep learning-based 
malware binary classification comparatively by using 
static and dynamic analysis techniques. In this study, 
traditional machine learning algorithms are also shown, 
along with how well they work in different analysis 
techniques. 

First, in static analysis binary classification, samples 
are classified as malware or benign in the data set 
containing permissions and intents with test and training 
samples. Then, malware in four different categories in 
malware dynamic analysis classification was combined to 
create an up-to-date data set for binary classification. By 
preprocessing these up-to-date datasets, a comparative 
analysis with traditional machine learning algorithms DT, 
RF and LSTM, CNN-LSTM, ANN and MLP deep learning 
algorithms is presented.  
 

Figure 3 Android malware detection system 
 

The process and design of the proposed Android 
malware detection approach are shown in Fig. 3. Some 
factors were effective in the selection of the methods used. 
The factor in the selection of the RF classifier is that it 
gives effective results, especially in data sets with uneven 
distribution. The fact that the data set using static analysis 
features is unbalanced in terms of the number of benign 
and malware features has been effective in the use of this 
method. DT classifiers are fast to train and test. It has a 
structure that uses data sets with large sample numbers by 
dividing them into small sample groups. 
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The data sets used in this study differed in terms of the 
number of samples, which was effective in choosing this 
method. Many activation functions can be used in the ANN 
architecture. It has a structure suitable for development, 
with different network structures. For example, the 
sigmoid function is frequently used for classification. An 
ANN can solve a problem using a single neuron. The 
parameter values used in different methods of the ANN 
algorithm in static and dynamic analysis techniques are 
shown in Tab. 3. Classification ability is possible by 
increasing the number of layers. In this study, a three-layer 
MLP structure using different activation functions was 
used. 
 

Table 3 ANN classifier parameters 
ANN Parameters ANN-1 ANN-2 ANN-3 

Solver adam sgd lbfgs 

Num. of neurons 64 
Max. iter 150 

Activ. function relu 

Learning rate in it 0.2 - 
Alpha 1e‒5 

 
The LSTM has three gates that control and update 

neurons: the forget gate, the input gate, and the output gate.  
The forget gate controls what information in neurons 

will be forgotten based on the input data. LSTM has been 
a preferred architecture in terms of keeping the inputs in 
long-term memory and being a solution to the vanishing 
gradient problem. By their nature, gates use hyperbolic 
tangent and sigmoid activation functions. The parameter 
values used in the LSTM model, which was created using 
a three-layer structure in the static and dynamic analysis 
technique, are shown in Tab. 4. 
 

Table 4 LSTM classifier parameters 
Parameter values Layers 

lstm_1 
unit = 128 

activation = relu 
return_sequences = true 

dropout_1 0.2 

lstm_2 
unit = 64 

activation = relu 
return_sequences = true 

dropout_2 0.3 

lstm_3 
unit = 16 

activation = relu 
return_sequences = false 

dropout_3 0.3 

dense 
unit = 1 

activation = sigmoid 

 
1D-CNNs are very suitable for use in mobile devices, 

especially with low energy and processing power, due to 
their low computational cost and no special hardware 
requirements [21, 23]. In the 1D-CNN-LSTM algorithm, 
first a deep model was created as the input layer, 
convolution layer, and pool layer, and the reconstructed 
features that reduced the feature size are input into the 
LSTM algorithm, and a detection model was created in the 
malware classification. The architecture of the proposed 
hybrid 1D-CNN -LSTM classification model is presented 
in Fig. 4. 

The ability of LSTM to store in memory during time 
steps and to cascade sequentially connected sequences is 

combined with the 1D-CNN algorithm to determine the 
CNN-LSTM model with static and dynamic analysis 
techniques. The parameter values used in the 1D-CNN-
LSTM classification model are shown in Tab. 5. 
 

Figure 4 Architecture of the hybrid 1D-CNN -LSTM 
 

Table 5 1D-CNN-LSTM classifier parameters 
Parameter values Layer values 

conv1d_1 
unit = 128 

kernel_size = 3 
activation = relu 

max_pooling1d_1_ pool_size = 2 

conv1d_2 
unit = 64 

kernel_size = 3 
activation = relu 

max_pooling1d_2 pool_size = 2 

lstm unit = 8 
dropuout_1 0.4 

dense_1 
unit = 1 

activation = sigmoid 

 
The confusion matrix was run for the accuracy of 

classifiers, and F1 - Score were evaluated. Precision or 
Recall were used to measure Accuracy and F1 - Score was 
used for the imbalanced data. The formulas of the 
performance evaluation metrics used are given below [32]. 
TP: Predicted Positive, Actual Positive; TN: Predicted 
Negative, Actual Negative; FP: Predicted Positive, Actual 
Negative; FN: Predicted Negative, Actual Positive.  
 

TP TN
Accuracy

TP TN FP FN




  
                                   (1) 

 
TP

Precision
TP FP




                                                     (2) 

 
TP

Recall
TP FN




                                                         (3) 

 
 *

1-  2*
 

Precision Recall
F Score

Precision Recall



                                 (4)

   
Table 6 System properties 

Property Value 
Processor i7-8th Gen(8700K) 

Number of Core 6 
Number of Threads 12 

Turbo Boost 4.70 GHz 
Cache L1/L2/L3 64K/256K/12MB 
Memory Type DDR4- 2666 
Memory Size 16 GB 

Operating System Windows-10, 64-bit 
Graphics Card Nvidia G-Sync 
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Python 3.8.3 was used to obtain the experimental 
performance results, in which classification was made 
according to the analysis methods, and the features of the 
computing platform are depicted in Tab. 6. 
 
5 EXPERIMENTAL RESULTS 
 

In this section, comparative performance results are 
presented using static and dynamic features using machine 
learning algorithms. 
 
5.1 Malware Binary Detection on Static Analysis 
 

The system consists of two main elements: pre-
processing and classification. In the data set containing 
static features, two separate files used for testing and 
training are kept in CSV format. To obtain the best 
performance in machine learning algorithms in the pre-
processing of the data set, which includes the permissions 
and intentions of the applications, NaN (Not-a-Number) 
and duplication removal processes are applied first using 
the NumPy library. In this study, the family and category 
columns in the data set containing static properties were 
removed, since binary classification was performed. A 
MinMax scaling process was applied for feature 
normalization in the selected data set. Normalization refers 
to the re-scaling of real-valued numeric attributes to a fixed 
range (e.g., 0 and 1). There are 8115 features in the data 
set, which has 60% training data samples and 40% test data 
samples. Static analysis binary classification performance 
results using learning methods are presented in Tab. 7.  

Considering the results of traditional machine learning 
algorithms according to the performance results, it is seen 
that the RF classifier provides 95.27% accuracy. 

  
Table 7 Static analysis binary malware classification performance 

 Accuracy / % 
F1 - Score / 

% 
Recall / % Precision / % 

RF 95.27 97.28 98.34 96.25 

DT 91.64 94.57 92.67 96.56 

ANN-1 92.26 95.19 92.36 98.23 
ANN-2 94.16 96.18 96.19 97.23 

ANN-3 93.33 95.89 95.42 96.38 

MLP-1 98.41 98.11 98.65 97.59 
MLP-2 94.50 96.16 95.24 97.13 

MLP-3 95.26 94.86 95.26 94.31 

LSTM 98.75 97.35 97.03 97.69 
CNN-
LSTM 

98.02 98.87 98.31 99.44 

 
The RF algorithm randomly selects different subsets 

from both the data set and the feature set, trains them, and 
classifies them according to the most votes among the 
predictions of the decision trees it creates. 

When the ANN results are examined, it is shown that 
the classifier whose parameter values are specified in              
Tab. 3, whose highest accuracy rate is 94.16%, is called 
ANN-2. One of the solver parameters, which is one of the 
parameter values used as the weight optimization value, 
"adam" works better than the "lbfgs" parameter value in 
large data sets. When the result of the experimental study 
is examined, it is seen that the model called ANN-3 gives 
better results than the ANN-1 model. In addition, the initial 
learning rate value is used only when the solver parameter 

value is only "sgd" or "adam", so it is not used in the "lbfgs" 
parameter.  

When the MLP results are examined, it is shown that 
the classifier with the highest accuracy rate is 98.12%, that 
model is called MLP-1 and has the parameter values 
specified in Tab. 8. 

 
Table 8 Static analysis of MLP classifier parameters 
 MLP-1 MLP-2 MLP-3 

Input Layer 8111 8111 8111 
1st Layer 256 256 256 

2nd Layer 128 64 64 
3rd Layer 64 256 256 

Output Layer 1 1 1 

Activation Func. 
of Layer 

Relu Relu Logistic 

Output Activation 
Function 

Sigmoid 

Classifier Opt. Adam 
Epoch 150 

Dropout 0.5 

Loss Func. Binary Cross Entropy 
Batch Size 32 

 
In both studies using static and dynamic analysis 

techniques of LSTM and 1D -CNN-LSTM methods, the 
loss function "binary_cross entropy" was used, and the 
optimization method "adam" hyper parameters since they 
belong to one of the candidate solutions in binary 
classification. When the performance results are examined, 
it is seen that the LSTM algorithm has reached the highest 
accuracy value with 98.75% performance in the static 
analysis classification against all learning algorithms. 
 
5.2 Malware Binary Detection on Dynamic Analysis 

 
In the pre-processing stage of data collection with 

dynamic features, the Nan and duplicative removal 
processes were used first, followed by the rest of the 
processing. In the data set used for attack detection and 
identification over network traffic, there are four malware 
categories and the families that correspond to each 
category are included in the data set. Because of this, all 
malware instances are labelled as 1 and all benign 
examples as 0, and the Label Map function is used to 
classify all categories of malware, including Ransomware, 
Adware, SMS Malware, Scareware, and SMS Trojans as a 
single binary classification. Regarding the number of 
malwares, the data set used is benign and unstable in terms 
of the number of malwares. 

As a result, a merging process was carried out in such 
a way that the data set used could be balanced. By 
randomly picking samples from benign software, we built 
an up-to-date data set of 559150 rows containing 281076 
malware and 278074 benign samples. There are two types 
of IP addresses in the generated data set: source IP 
addresses and destination IP addresses. IP address 
information is a consideration in network attacks that 
compromise system performance [22]. IP addresses are 
used after being converted to integer format using 
theipaddress" function. The timestamp is another 
characteristic that must be translated to a format suitable 
for machine learning classification on the data set. It has 
been transformed to the "str" data type in this feature based 
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on its frequency of occurrence within the date range. 
Following all pre-processing steps, the classification 
procedure utilized 71 characteristics, including dynamic 
features. Dynamic binary classification performance 
results using machine learning methods are presented in 
Tab. 9. According to the performance results, the highest 
accuracy rate of 95.26% was calculated with the 1D-CNN-
LSTM classifier. 
 

Table 9 Dynamic analysis binary malware classification performance 

 Accuracy / % 
F1 - Score / 

% 
Recall / 

% 
Precision / % 

RF 92.73 92.66 92.63 93.56 

DT 90.09 89.99 86.23 94.12 
ANN-1 86.05 86.10 85.13 87.06 

ANN-2 85.35 86.37 85.23 87.56 

ANN-3 86.07 86.68 86.27 87.13 
MLP-1 94.64 95.42 99.57 91.63 

MLP-2 93.78 94.55 98.69 90.75 

MLP-3 94.25 94.66 98.33 91.28 
LSTM 94.52 95.18 98.11 92.43 

CNN-
LSTM 

95.26 95.57 99.26 92.15 

 
According to the classification results using the 

parameter values of the ANN classifier, it has been 
observed that the high number of static analysis features is 
among the reasons that increase the performance rate. 
According to the ANN performance results, ANN-1 and 
ANN-3 have the same accuracy rate, and the highest 
accuracy rate was 86.07%. 

When the MLP results are examined, it is shown that 
the classifiers with the highest accuracy rate 94.64%, called 
MLP-1 which have the parameter values specified in Tab. 
10. 

 
Table 10 Dynamic analysis MLP classifier parameters 
 MLP-1 MLP-2 MLP-3 

Input Layer 71 71 71 

1st Layer 32 64 64 

2nd Layer 64 32 32 
3rd Layer 32 64 16 

Output Layer 1 1 1 

Activation Func. 
of Layer 

Relu 

Output Activation 
Function 

Sigmoid 

Classifier Opt. Adam 
Epoch 150 

Dropout 0.5 

Loss Function Binary Cross Entropy 
Batch Size 32 

 
According to the dynamic analysis classification 

results obtained, it is clearly seen that the 1D-CNN-LSTM 
classifier has achieved high performance in these 
techniques. In this study, we performed ten experiments 
with two different analysis methods. We examined the 
effectiveness of machine learning algorithms in detecting 
mobile Android malware with static and dynamic features 
on the CIC-AndMal2017 and the second part, CIC-
InvesAndMal2019 data sets. According to the results, the 
accuracy value deep learning classification algorithm 
showed high performance in all scenarios among the 

proposed methods in both analysis methods. We observed 
that static analysis experimental studies had a higher 
performance rate on average than dynamic analysis. Our 
findings show that the values in the data set containing 
dynamic features do not show normal distribution, 
especially due to the network traffic data, have fewer 
features, and thus the performance ratios in classification 
are lower. The proposed algorithms are adequate for 
detecting a significant amount of malware. 

 
6 CONCLUSION 

 
With the continued growth of mobile devices and 

applications in recent years, cyber security has gained 
increased attention. Android, as the most common 
operating system for mobile devices, has been the primary 
target of attackers looking to harm or exploit these devices 
to obtain end users' financial or personal information. To 
access these devices, intruders aim to upload some 
malware to the target machines. As a result, security 
researchers concentrated on detecting these malwares 
before it activated or caused harm to mobile devices. Deep 
learning is a useful method for self-learning from previous 
experiences and then applying that learning without 
requiring human intervention. In this paper, we proposed a 
deep learning-based malware detection system by using 
different approaches and depicting the results in a 
comparative way. The static and dynamic analysis of this 
suspicious software is detailed by giving their experimental 
results, which show the effectiveness of the proposed 
approach. When the results of comparative experimental 
studies are examined, it has been revealed that LSTM with 
an accuracy rate of 98.75% in static analysis classification 
and CNN-LSTM deep learning algorithms with an 
accuracy rate of 95.26% in dynamic analysis classification 
has the highest performance in studies where static analysis 
and dynamic analysis features are evaluated. Analysis 
features, such as the number of layers and neurons, and the 
effect of parameter values on the success rate are briefly 
shown. As a future work, it is aimed to analyse the time 
sequence effects of the observed behaviours in a dynamic 
analysis concept with the use of some deep learning 
approaches.  
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