
Građevinar 3/2023

239

Primljen / Received:

Ispravljen / Corrected:

Prihvaćen / Accepted:

Dostupno online / Available online:

GRAĐEVINAR 75 (2023) 3, 239-256

Authors:

Assist.Prof. Halil İbrahim Fedakar, PhD. CE
Abdullah Gul University, Kayseri, Turkey
Faculty of Civil Engineering
Department of Geotechnics
halilibrahim.fedakar@agu.edu.tr

Assoc.Prof. A. Ersin Dinçer, PhD. CE
Abdullah Gul University, Kayseri, Turkey
Faculty of Civil Engineering
Department of Hydrotechnics
ersin.dincer@agu.edu.tr
Corresponding author

Prof. Zafer Bozkuş, PhD. CE
Middle East Technical University, Ankara,Turkey
Faculty of Civil Engineering
Department of Hydrotechnics
bozkus@metu.edu.tr

Developing empirical formulae for scour 
depth in front of Inclined bridge piers

Research Paper

Halil İbrahim Fedakar, A. Ersin Dinçer, Zafer Bozkuş

Developing empirical formulae for scour depth in front of Inclined bridge piers

Because of the complex flow mechanism around inclined bridge piers, previous studies have 
proposed different empirical correlations to predict the scouring depth in front of piers, which 
include regression analysis developed from laboratory measurements. However, because 
these correlations were developed for particular datasets, a general equation is still required 
to accurately predict the scour depth in front of inclined bridge piers. The aim of this study is to 
develop a general equation to predict the local scour depth in front of inclined bridge pier systems 
using multilayer perceptron (MLP) and radial-basis neural-network (RBNN) techniques. The 
experimental datasets used in this study were obtained from previous research. The equation 
for the scour depth of the front pier was developed using five variables. The results of the 
artificial neural-network (ANN) analyses revealed that the RBNN and MLP models provided 
more accurate predictions than the previous empirical correlations for the output variables. 
Accordingly, analytical equations derived from the RBNN and MLP models were proposed 
to accurately predict the scouring depth in front of inclined bridge piers. Moreover, from the 
sensitivity analyses results, we determined that the scour depths in front of the front and back 
piers were primarily influenced by the inclination angle and flow intensity, respectively.
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Prethodno priopćenje

Halil İbrahim Fedakar, A. Ersin Dinçer, Zafer Bozkuş

Razvijanje empirijske jednadžbe za dubinu podlokavanja ispred nagnutih 
stupova mosta

Neka istraživanja predlažu različite empirijske korelacije kako bi se predvidjela dubina 
podlokavanja ispred nagnutih stupova mosta kroz regresijsku analizu dobivenu 
laboratorijskim mjerenjima zbog složenih mehanizama toka oko nagnutih stupova mosta. 
Međutim, kako su se te korelacije razvile za određeni skup podataka, opća je jednadžba 
i dalje potrebna da bi se točno predvidjela dubina podlokavanja ispred nagnutih stupova 
mosta. Glavni je cilj istraživanja razviti opću jednadžbu kako bi se predvidjela dubina 
podlokavanja ispred nagnutih stupova mosta kroz višeslojni perceptron (MLP) i tehnike 
neuronske mreže s radijalnim baznim funkcijama (RBNN). Eksperimentalni skupovi 
podataka koji se primjenjuju u ovom istraživanju skupljeni su se iz prijašnjih istraživanja. 
Jednadžba za dubinu podlokavanja prednjeg stupa koristi se primjenom pet varijabl. 
Rezultati analiza umjetne neuronske mreže (ANN) otkrivaju da su modeli RBNN i MLP 
omogućili preciznija predviđanja nego prethodne empirijske korelacije kad su u pitanju 
izlazne varijable. Prema tome, predlažu se analitičke jednadžbe dobivene RBNN i MLP 
modelima za točno predviđanje dubine podlokavanja ispred nagnutih stupova mosta. 
Štoviše, na temelju rezultata analize osjetljivosti utvrđuje se da je na dubinu podlokavanja 
ispred prednjih i stražnjih stupova najviše utjecao kut nagiba, odnosno intenzitet toka.
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1. Introduction

Bridge piers located across rivers reduce the cross-sectional 
water flow, causing streamlines to divert toward the riverbed 
floor and leading to local pier scouring. Because the mechanism 
of the interaction between the flow around bridge piers and 
the erodible riverbed floor is complex, limited success has 
been achieved in the computational modelling of this local 
scour mechanism [1]. To better understand this phenomenon, 
many researchers have applied experimental and/or theoretical 
investigations on vertical bridge piers [2-11]. A general equation 
or design criteria cannot be derived for all conditions, owing to 
the complex nature of local scouring. Although there are many 
studies on local scouring around vertical bridge piers, few have 
investigated scouring around inclined piers. 
The first study to estimate the local scouring around inclined 
bridge piers was conducted by one of the authors [12]. In this 
study, single circular piers inclined toward the downstream 
direction are used. According to the results, the local scour 
depth decreased as the pier inclination increased. The effects 
of inclination of dual-bridge piers and pier groups have been 
investigated in follow-up studies [13, 14]. A similar experimental 
study was performed to investigate the effect of inclined piers, 
and it was reported that the dimensions of the scour hole area 
and depth decreased with increasing pier angle [15]. A scour 
pattern around an inclined cylindrical pier in a sharp 180-degree 
bend was studied in [16]. Additionally, scour formations 
around laterally inclined circular piers were studied, and it 
was determined that the maximum scour depth in a laterally 
inclined pier was approximately equal to that in a vertical 
pier [17]. Similarly, the impact of the lateral slopes of semi-
conical piers on scouring was investigated, and it was reported 
that sloped piers decreased the scour depth [18]. Moreover, 
various empirical correlations have been proposed to predict 
the scour depth accurately in the aforementioned studies. The 
drawback of these correlations is that they were proposed for 
a specific number of inclined bridge piers and their prediction 
performance was not verified for different numbers of bridge 
piers. In this study, the previously used equations provided 
poor predictions for the scouring depths for different numbers 
of piers. Consequently, universal equations are required for 
different numbers of piers. Owing to the complex mechanism of 
local scouring around bridge piers, an artificial neural network 
(ANN) approach can be used to obtain universal equations.
Artificial neural networks function as universal approximators 
and are well suited to emulating problems in which the 
relationship between the input and output variables is not 
well understood. Additionally, ANNs can be considered as 
powerful tools for overcoming the estimation of complex 
engineering problems, such as the accurate prediction of 
hydrological parameters and local scouring around bridge 
piers. The hydrological parameters, maximum annual flood 
discharge, monthly average flow, and short-term water 
flows were studied using an ANN [19-21]. In addition to 

hydrological parameters, ANNs have been successfully used 
to predict scouring depths around bridge piers. Among earlier 
studies, the application of two ANN types and neuro-fuzzy 
approaches to scouring was studied, and it was concluded 
that the proposed methods predicted the scour depth more 
accurately than traditional analytical methods [22]. In [23], a 
back-propagation–neural-network (BPN) model was used to 
predict scour depths using data from observations in thirteen 
states in the USA. By considering the flow depth, mean 
velocity, grain diameter, geometric standard deviation of the 
grain size distribution, and critical velocity as parameters in the 
BPN model, the scour depth was predicted. In another study, 
an ANN model was developed to predict local scour around 
bridge piers [24]. According to the sensitivity analysis of the 
ANN model, four parameters, namely, the pier shape, skew, 
flow depth, and velocity, were sufficient to properly estimate 
the pier scour depth. Different hybrid models have also been 
proposed to estimate the scour depth [24-27]. Evolutionary 
radial-basis function neural-network (ERBFNN) models 
were developed to predict scour depths around bridge piers 
[28]. The results indicate that the ERBFNN models produced 
more accurate predictions than different mathematical 
formulae, including HEC-18, Mississippi, Laursen and Toch, 
and Froehlich. The scour mechanism around pile groups has 
been studied using a bagged neural network [29]. In previous 
studies, neural networks were used to investigate scouring 
around vertical bridge piers. However, no empirical formulae 
have been derived from neural-network models. Therefore, 
design engineers still require reliable empirical formulae to 
accurately predict scouring formation around inclined bridge 
piers.
The main objective of this study is to propose reliable equations 
for an accurate estimation of the scouring depth in front of 
bridge piers. For this purpose, scouring depths in front of 
inclined bridge piers were predicted using multilayer perceptron 
(MLP), radial-basis neural-network (RBNN), and new empirical 
formulation techniques. To the best of our knowledge, this is 
the first study in which an ANN was used to estimate the scour 
depth in front of inclined bridge piers. In addition, a series of 
sensitivity analyses were performed to determine the most 
influential parameters on the local scouring formation. 

2. Data collection

Experimental data were obtained from previous studies 
[12-14, 30]. The experiments in [12] were performed at the 
Hydraulics Laboratory of the State Hydraulic Works of Turkey 
(DSI), whereas the other experiments were conducted at the 
Hydraulics Laboratory of Middle East Technical University, 
Ankara, Turkey. The channel shown in Figure 1 was used in [13, 
14]. An illustration of the scour measurements for different 
numbers of piers is shown in Figure 2. In the figure, the scouring 
depths in front of the front and back piers are denoted by ds1 and 
ds2, respectively.
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The investigation of the effect of the inclination of a single pier is 
a theoretical study, because the construction of a single massive 
pier is not feasible. However, it is included in ANN analyses to 
increase the amount of data such that more reliable equations 
can be proposed. Instead of one massive pier, group piers are 
preferable for structural reasons; however, the flow around the 
piers is disturbed, resulting in reverse flow conditions in the 
pier groups. A group effect is created by a group of piers aligned 
with and/or perpendicular to the flow direction. The group effect 
depends mainly on the distance between the piers and the 
direction and position of the piers. According to [30], if the flow 
approaches perpendicular to the pier group axis and the distance 
between the piers is very small, a single scour hole is formed, and 
an increase in the maximum scour depth is observed. However, if 
the piers are carefully positioned in a group of piers rather than in a 
single massive pier, the scour depth is reduced. The group effects 
of piers were studied in [13, 14, 30]. Because of the transportation 
of bed material from the scour hole of the upstream pier to that 
at the downstream pier, smaller scour depths were observed at 
the downstream piers. The distance between the piers, direction, 
and position of the piers were considered the main parameters of 
the group effect [14].

Steady clear-water conditions were used in all experiments, 
and the sediment distribution was uniform. The pier 
diameters used in the experiments were 50, 70, and 100 
mm. Additionally, various inclination angles (0°, 2°, 5°, 
10°, and 15°) were used to clearly observe their effects. 
The other parameters were the discharge and sediment 
size. The pier spacing, flume dimensions, and sediment 
characteristics were maintained constant throughout the 
experiments, and the equilibrium scour-depth condition was 
assumed to be reached. The speed of the scour formation 
decreased with time. In other words, in the first few minutes 
of the experiments, large deposits formed, and sediment 
particles were transported downstream. To consider the 
effect of this transportation, the scour depth at the upstream 
piers was considered in the derivation of the equation 
for the scour depth at downstream piers. The number of 
piers, inclination angle, pier diameter, flow intensity (V/
Vc), and mean sediment size (d50) are presented in Table 1. 
Instead of presenting discharges, V/Vc was preferred to 
illustrate that the experiments were performed under near-
threshold conditions, indicating clear water throughout the 
experiments  [2].

Figure 1. Plan view of the test facility: a) illustration; b) photograph

Figure 2. Illustration of scour measurements around: a) single pier; b) two piers; c) three piers; d) four piers
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3. Methodology

3.1. Artificial Neural Network

The ANN approach is a computational methodology that applies 
the information learned from experience to new scenarios. 
During this process, analogous to the architecture of the human 
brain, many simple computational elements, namely artificial 
neurones that are interconnected by weights, are employed 
[31]. Owing to their high learning abilities, ANNs have been 
successfully applied to many complex engineering problems. 
In this study, MLP and RBNN techniques were used to develop 
empirical formulations for scour depth around inclined bridge 
piers. An MLP structure consists of an input layer, at least 
one hidden layer, and an output layer as shown in Figure 3. 
In the figure, m represents the number of input neurones, wih 
is the weight that connects the input neurones to the hidden 
neurones, Bh is the bias term of the hidden layer, fh is the hidden 
layer transfer function (which is the weight that connects the 
hidden neurones to the output neurones), Bo is the bias term 
of the output layer, and fo is the output layer transfer function. 
Each neurone in the input and output layers represents an input 
and output variable, respectively. The neurones in the hidden 
layer usefully intervene between input and output variables 
[31]. An MLP model with more than one hidden layer can 
provide higher-order statistics. However, one hidden layer is 
sufficient to approximate any complex problem [32, 33]. Thus, all 
MLP models developed in this study use one hidden layer. The 
procedure used for training MLP models is briefly summarised 
as follows:

1. all input (independent) and output (dependent) variables are 
first normalised to a comparable range

2. each normalised input neurone is multiplied by the weight 
parameter that connects it to a hidden neurone

3. the results are summed by the bias term of the hidden layer
4. a transfer function is implemented for each hidden neurone
5. each hidden neurone is multiplied by the weight parameter 

that connects it to an output neurone
6. the results are summed by the bias term of the output layer
7. a transfer function is implemented for each output neurone
8. a back-propagation algorithm is used to adjust the weight 

and bias parameters of the model, thereby minimising the 
error

9. steps 2 to 7 are repeated by using the updated values of 
weight and bias parameters; and 10) after an MLP model is 
developed, the denormalisation procedure is applied to the 
output neurone. 

The computation steps (2–7) are mathematically expressed in 
Equation (1) for the MLP model, which has an output variable 
and a hidden layer with a single neurone.

 (1)

where (xi)n is the normalised ith input variable and yn is the 
normalised output variable. More theoretical knowledge of 
MLP can be found in [34]. However, an RBNN model employs 
a clustering process on the input data before presentation 
to the network and different non-linear activation functions, 

Table 1. Main characteristics of experimental data

Reference No. of piers Inclination angle  [°] Pier diameter, D [mm] Number of measurements V/Vc d50  [mm]

[12] 1

2

5

10

15

50
100
50

100
50

100
50

100

4
7
4
7
4
7
4
7

1.211-1.861 0.5

[13] 2

0

5

10

15

50
70
50
70
50
70
50
70

6
3
6
0
6
3
6
3

0.295-0.437 1.44

[14, 30] 3 and 4

0

10

15

50
70
50
70
50
70

6
6
6
6
6
6

0.589-0.936 0.88
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which are locally tuned to cover a region of the input space. 
In an RBNN structure, the hidden layer includes the same 
number of nodes as the cluster centres [35]. In addition, as 
with MLP models, all RBNN models used in this study utilised 
one hidden layer. The basic functions in the hidden layer yield a 
significant non-zero response to the input stimulus only when 
the input is within a small, localised region of the input space. 
Therefore, this paradigm is known as a localised receptive field 
network [36]. The transformation of inputs is essential for 
fighting the "curse of dimensionality" in empirical modelling. 
The input transformation of the RBNN is a local non-linear 
projection using a radial fixed-shape basis function. After 
nonlinearly squashing the multi-dimensional inputs without 
considering the output space, the radial-basis functions 
operate as regressors. Because the output layer applies a linear 
regressor, the only adjustable parameters are the regressor 
weights. These parameters were determined using the linear 
least-squares method, which provides a significant advantage 
for convergence [31, 37]. The RBNN has the advantage of a 
quick converging time without local minima because its error 
function is always convex [38]. A detailed understanding of 
RBNN can be found in [39].

Figure 3. Typical architecture of ANN model with one hidden layer

3.2. Previous empirical correlations

The regression equations in Table 2 were proposed for a 
specific number of piers. These equations were used to 
predict the scouring depths in front of the front pier (ds1) 
and back pier (ds2), where ds is the local scour depth, d0 is the 
approach flow depth, D is the pier diameter, V is the mean 
approach velocity, Vc is the critical mean approach velocity, 
and α is the 90-β (inclination angle) in radians. The number 
of experiments conducted to develop the equations and the 
coefficient of determination (R2) are shown in Table 2. The R2 
values proposed for ds1 are close to 1, indicating a good fit to 
the experimental data. In the equations proposed for ds2, the 
R2 values were not very close to 1. 

3.3. Weights method

The weight method [40] divides the connection weights 
of an ANN model to determine the relative importance 
(RI) of each input variable on the output variable [41]. To 
achieve this, the input and output connection weights of all 
hidden neurones were partitioned into components for each 
input neurone. Accordingly, the following equations were 
proposed [41]:

 (2)

RI [%]i x 100 (3)

Where ni is the number of input neurones, nh is the number of 
hidden neurones, Wih is the multiplication of input by output 
weight, and RIi is the RI of the ith input variable.

Table 2. Previous empirical correlations for scouring depth of the inclined piers

Previous 
studies Model Output 

variable
No. of 
piers Dataset size Equations R2

[12] DS1A ds1 1 44 0.98

[13] DS1B ds1 2 33 0.95

[14] DS1C ds1 3 i 4 72 0.95

[30] DS2A ds2 3 36 0.79

[30] DS2B ds2 4 36 0.81
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4.  Model development and performance 
assessment

One of the most common issues in determining the 
relationship between input and output variables using ANNs 
is overfitting. Overfitting occurs when an ANN model produces 
a high error for unseen data while giving a very small error 
for the trained data. Thus, overfitting must be avoided when 
developing reliable ANN models with better generalisation 
capabilities. To avoid overfitting, the dataset was divided into 
two subsets: training and testing [42]. The training dataset 
was used to train the ANN models, and the testing dataset 
was used to test their prediction performance on unseen data. 
Consequently, the ANN model that yields the best predictions 
for the output variable was determined by comparing the 
prediction performance of all the developed ANN models in the 
testing stage. It has been reported that 15–30 % of the dataset 
should be used as the testing dataset [43]. In this study, 30 % 
of the datasets (ds1 and ds2) were employed to test the ANN 
models (Table 3). The data were randomly divided into training 
and testing datasets using MATLAB software. The statistical 

parameters of the datasets used in this study are presented 
in Table 3. In this table, the output variables are in bold. In 
addition to overfitting, the amount of data should also be 
considered while developing reliable ANN models. According 
to [43], the ratio of data to input variables should be greater 
than five. In this study, the ratio was calculated as 29.8 for the 
ds1 dataset (149/5) and 21.0 for the ds2 dataset (105/5) (149 
and 105 are the number of data are 149 and 105, whereas 
the number of input variables in the ds1 and ds2 datasets are 
five, respectively). This indicates that the number of datasets 
used in this study is sufficient to develop ANN models for an 
accurate prediction of scouring depths in front of inclined piers.
As shown in Table 3, all variables in the datasets have different 
ranges. To obtain a comparable range for the variables, they 
were first normalised between −1 and 1 using Equation 4 [44]. 
Xmax and Xmin in this equation are the maximum and minimum 
values of variable X in the training dataset, respectively. In this 
study, 1860 ANN models were developed for various scouring 
depths (180 for ds1, 180 for ds2 in MLP and 750 ds1, and 750 for 
ds2 in RBNN). While developing MLP and RBNN models for both 
ds1 and ds2 predictions, NP, B, β, D, d0, and V/Vc were considered 

Table 3. Statistical parameters of training and testing datasets

Dataset Variables No. of data Minimum Maximum Mean

Training (ds1)

NP (No. of piers)

104

1 4 2.39

β [degree] 0 15 10

D [cm] 5 10 6.59

d0 [cm] 3.70 17.50 7.66

V/Vc 0.30 1.86 0.93

ds1 [mm] 12 142 66.48

Testing (ds1)

NP (No. of piers)

45

1 4 2.51

β [degree] 0 15 7.02

D [cm] 5 10 6.44

d0 [cm] 3.70 17.50 8.63

V/Vc 0.32 1.86 0.93

ds1 [mm] 20 130 72.39

Training (ds2)

NP (No. of piers)

73

2 4 3.10

β [degree] 0 15 8.56

D [cm] 5 7 5.96

d0 [cm] 3.7 17.5 7.28

V/Vc 0.30 0.94 0.69

ds2 [mm] 6 62 31.63

Testing (ds2)

NP (No. of piers)

32

2 4 2.88

β [degree] 0 15 7.19

D [cm] 5 7 5.63

d0 [cm] 3.70 17.50 8.40

V/Vc 0.30 0.94 0.61

ds2 [mm] 12 60 29.28
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as input variables. To achieve the best MLP models for ds1 and 
ds2, the hyperbolic tangent sigmoid (tansig) (Equation 5), log-
sigmoid (logsig) (Equation 6), and linear (purelin) (Equation 7) 
functions were used in the hidden and output layers, and the 
number of hidden neurones was varied from 1 to 20. Because 
Levenberg–Marquardt is a training function that is commonly 
used to improve the prediction performance of an MLP model, 
the MLP models developed in this study were trained using this 
training function. However, in the RBNN models, the radial-
basis transfer function (radbas) (Equation 8) was utilised in the 
hidden layer, and the purelin transfer function was utilised in 
the output layer. Moreover, the numbers of hidden neurones 
from 1 to 50 and spread coefficients from 1 to 15 were used to 
obtain the best RBNN models for ds1 and ds2. All ANN analyses 
(MLP and RBNN) in this study were conducted using MATLAB 
software.

 (4)

 (5)

 (6)

(x) = x (7)

 (8)

The prediction performance of the ANN models (MLP and 
RBNN) and previous empirical correlations on the training and 
testing datasets were evaluated using the root-mean-square 
error (RMSE), mean-absolute error (MAE), and coefficient 
of determination (R2). RMSE provides information on the 
"goodness-of-fit" relevant to high output values. However, 
MAE provides a more balanced perspective of goodness-of-fit 
at moderate output values. The R2 provides information on the 
linear relationship between the two variables. The formulae of 
the RMSE, MAE, and R2 statistics (written for ds1) are presented 
in Equations (9) to (11), respectively.

 (9)

 (10)

 (11)

where n is the number of data points, (ds1)measured is the measured 
ds1, (ds1)predicted is the predicted ds1, and  is the mean of the 
measured ds1.

5. Results

5.1.  Prediction of ds1 and ds2 using previous empirical 
models

As mentioned previously, this study aims to develop more 
reliable models for the prediction of ds1 and ds2 using MLP and 
RBNN techniques compared to previous empirical models. 
Therefore, the scour depths in front of the inclined bridge 
piers (ds1 and ds2) were first predicted using the previous 
empirical models. Their prediction performance is presented 
and discussed in this subsection, which is also important 
for evaluating the prediction performance of the developed 
ANN models in the following subsection. Table 4 presents 
the prediction results of the empirical models on the training 
and testing datasets for various numbers of bridge piers. A 
comparison of the measured and predicted scour depths in 
the training and testing stages is shown in Figures 4 and 5, 
respectively. In the number of pier columns in Table 4, the upper 
value in each row indicates the number of piers for which the 
equations are proposed. For example, DS1A was proposed for 
the calculation of the scour depth with a single pier, whereas 
DS1B was proposed for two piers. However, each equation was 
applied to calculate the scour depth for different numbers of 
piers to determine whether a single equation proposed in the 
literature can be used to calculate the scour depth when the 
number of piers changes. As the performance of DS1A is not 
satisfactory when it is applied to more than one pier as in Figure 
4b, the performance of DS1B, DS1C, DS2A, and DS2B are not 
satisfactory when applied to a different number of piers. This 
is the main cause of clustering or data being close to zero, as 
observed in Figures 4 and 5. In addition, in Figure 4 h and j and 
Figure 5 h and j, the predicted scour depths were found to be 
zero. This implies that the equation cannot predict the scour 
depth and should not be used in the prediction. As previously 
discussed, the performance of the equations for different 
numbers of piers was only investigated for academic curiosity. 
It is determined that the DS1A, DS1B, and DS1C models make 
accurate ds1 predictions for one, two, and three to four piers, 
respectively (i.e. yielding low RMSE (≤ 8.17 mm during the 
training stage and ≤ 4.13 mm during the testing stage), MAE 
(≤ 5.17 mm during the training stage and ≤ 3.54 mm during the 
testing stage), and high R2 (≥ 0.922 during the training stage and ≥ 
0.947 during the testing stage) results). However, these models 
produce higher RMSE (≥ 21.31 mm during the training stage and 
≥ 24.03 mm during the testing stage), MAE (≥ 14.79 mm during 
the training stage and ≥ 17.64 mm during the testing stage), and 
lower R2 (≤ 0.604 during the training stage and ≤ 0.703 during 
the testing stage) results when applied to the dataset using 
one to four bridge piers. This is owing to the underestimation 
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Table 4. Prediction results of previous empirical correlations for different numbers of piers

Figure 4.  Comparison of measured and predicted scour depths (ds1 and ds2) in the training stage: a) DS1A model and one pier; b) DS1A model and 
one to four piers; c) DS1B model and two piers; d) DS1B model and one to four piers; e) DS1C model and three to four piers; f) DS1C 
model and one to four piers; g) DS2A model and three piers; h) DS2A model and two to four piers; i) DS2B and four piers; j) DS2B and 
two to four piers

Models Output No. of piers
Training stage Testing stage

RMSE [mm] MAE [mm] R2 RMSE [mm] MAE [mm] R2

DS1A ds1 

1 3.01 2.35 0.984 3.61 3.07 0.992

1 to 4 21.31 14.79 0.666 24.03 17.64 0.703

DS1B ds1 

2 2.19 1.62 0.959 2.22 1.72 0.964

1 to 4 30.91 25.45 0.620 33.86 28.36 0.654

DS1C ds1 

3 i 4 8.17 5.17 0.922 4.13 3.54 0.947

1 to 4 62.00 37.35 0.604 70.78 37.42 0.642

DS2A ds2 

3 18.44 13.33 0.746 16.95 12.60 0.224

2 to 4 20.42 15.89 0.723 17.72 14.22 0.597

DS2B ds2 

4 14.62 11.33 0.690 8.38 5.14 0.596

2 to 4 14.16 11.74 0.746 15.25 12.62 0.655
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in the DS1A and DS1B models, and overestimation in the DS1C 
(Figures 4 and 5) model. Nevertheless, according to [45], there 
is a strong relationship between the measured and predicted 
ds1 by DS1A, DS1B, and DS1C models because R2 ≥ 0.64 in 
the testing stage, indicating that these models can be used 
for the ds1 prediction of inclined bridge piers using one to four 
piers. However, based on the results in Figures 4 and 5, it can 
be said that a new general empirical correlation is required to 
accurately predict ds1 formation in front of inclined bridge piers 
using one to four piers. As mentioned in the previous empirical 
correlations section, the DS2A and DS2B models were proposed 
for the ds2 prediction of three and four piers, respectively.
 Unlike the models used in the ds1 prediction, the DS2A model 
yields high RMSE (≥ 18.44 mm during the training stage and ≥ 

16.95 mm during the testing stage), MAE (≥ 13.33 mm during 
the training stage and ≥ 12.60 mm during the testing stage), 
and low R2 (≤ 0.746 during the training stage and ≤ 0.597 during 
the testing stage) performance for three and two to four piers 
(Table 4 and Figures 4 and 5), causing poor prediction of the 
scouring depth in front of the back pier. For the DS2B model, 
despite producing relatively low RMSE (8.38 mm) and MAE 
(5.14 mm) for four piers in the testing stage, it presents poor 
prediction results for two to four piers (RMSE = 14.16 mm, MAE 
= 11.74 mm, and R2 = 0.746 in the training stage and RMSE 
= 15.25 mm, MAE = 12.62 mm, and R2 = 0.655 in the testing 
stage) (Table 4 and Figures 4 and 5). The results clearly indicate 
that a new general equation is required for ds2 prediction of 
inclined bridge piers.  

Figure 5.  Comparison of measured and predicted scour depths (ds1 and ds2) in the testing stage: a) DS1A model and one pier; b) DS1A model and 
one to four piers; c) DS1B model and two piers; d) DS1B model and one to four piers; e) DS1C model and three to four piers; f) DS1C 
model and one to four piers; g) DS2A model and three piers; h) DS2A model and two to four piers; i) DS2B and four piers; j) DS2B and 
two to four piers



Građevinar 3/2023

248 GRAĐEVINAR 75 (2023) 3, 239-256

Halil İbrahim Fedakar, A. Ersin Dinçer, Zafer Bozkuş

5.2. Prediction by ANN Models

The RMSE, MAE, and R2 results of the best MLP and RBNN 
models in the training and testing stages are given in Tables 
5 and 6, respectively. The comparison of the measured and 
predicted ds1 and ds2 values by the MLP and RBNN models is 
also shown in Figures 6–9.
As mentioned previously, the empirical models (DS1A, DS1B, 
DS1C, DS2A, and DS2B) were proposed for the specific number 
of bridge piers. Therefore, to compare the scouring predictions 
by the MLP and RBNN models with those of the previous 
empirical correlations, the prediction performance of the MLP 
and RBNN models at the specific number of bridge piers (i.e. 
one, two, and three to four piers for the ds1, as well as three 
and four piers for the ds2) is also presented in Tables 5 and 6 
and Figures 6–9. In addition, a comparison of the measured 
and predicted ds1 and ds2 using the MLP, RBNN, and empirical 
models on the testing data (one to four piers for ds1 and two to 
four piers for ds2) is shown in Figure 10.
As seen in Table 5, the MLP models (giving the best estimates 
for ds1 and ds2 among the MLP models developed) use the 
tansig transfer function in the hidden layer, which shows a non-
linear relationship between the input and output variables. The 
results in Tables 4 and 5 clearly indicate that the MLP models 
provide more accurate and reliable predictions for the ds1 of 
one to four piers and ds2 of two to four piers compared to the 
previous empirical models (RMSE ≤ 6.62 mm, MAE ≤ 4.89 mm, 
and R2 ≥ 0.875 in the training stage; RMSE ≤ 5.21 mm, MAE 
≤ 4.44 mm, and R2 ≥ 0.802 in the testing stage), which is also 
seen in Figure 10. Furthermore, it was determined that the 
DS2MLP model provided more accurate predictions for ds2 of 
three and four piers than the previous empirical models (Figure 
10). However, according to the statistical error measures, the 
DS1B model provides slightly more accurate predictions for 
two piers than the DS1MLP model, while the DS1MLP model 

provides slightly more accurate ds1 predictions than the DS1A 
and DS1C models for one pier and three to four piers. Based 
on the findings in Figures 6–7 (a)–(d), the points obtained by 
the MLP models were less scattered and approximate the 
perfect-fit line, which means that the measured ds1 and ds2 can 
be predicted by the MLP models more accurately. In addition, 
the MLP models yield R2 greater than 0.64 at different numbers 
of inclined bridge piers; thus, it can be used to predict the scour-
depth formation in front of inclined bridge piers [45]. As a result 
of the abovementioned findings, it is deduced that the MLP 
models proposed in this study can potentially be used for a 
more accurate prediction of the scouring depths in front of the 
bridge piers.
According to the results in Table 6, the RBNN models provide 
more accurate ds1 and ds2 predictions than the previous 
empirical models (RMSE ≤ 4.68 mm, MAE ≤ 3.41 mm, and R2 
≥ 0.914 in the training stage; RMSE ≤ 6.16 mm, MAE ≤ 5.75 
mm, and R2 ≥ 0.710 in the testing stage), which is also seen 
in Figure 10. As in the MLP models, this was determined to 
be significant in the prediction of ds1 for one to four bridge 
piers and ds2 for three, four, and two to four bridge piers. 
However, the RBNN models provided slightly more accurate 
predictions of the ds1 at the specific number of inclined bridge 
piers compared to the DS1A, DS1B, and DS1C models. Similar 
to the MLP models, in the training and testing stages, the 
RBNN models produced predictions for ds1 and ds2, which 
were less scattered and approximated the perfect-fit line 
(Figures 8 and 9). Moreover, no significant overestimation 
or underestimation was observed in the RBNN model 
predictions (Figure 10).
As mentioned above, the MLP and RBNN models provide more 
accurate predictions of ds1 and ds2 than previous empirical 
models. The comparative results in Tables 5 and 6 shows that 
the DS1RBNN model provides slightly more accurate predictions 
of ds1 than the DS1MLP model (i.e. it has lower RMSE and MAE, 

Models

Transfer functions
hidden 

neurone Output No. of piers

Training stage Testing stage

Hidden 
layer

Output 
layer

RMSE 
[mm]

MAE 
[mm] R2 RMSE 

[mm]
MAE 
[mm] R2

DS1MLP Tansig Purelin 3 ds1 

1 2.24 1.86 0.990 2.43 2.01 0.991

2 1.98 1.69 0.951 2.55 1.55 0.916

3 i 4 5.63 3.94 0.951 3.61 2.63 0.970

1. 2. 3 i 4 4.20 2.83 0.980 3.09 2.19 0.991

DS2MLP Logsig Purelin 11 ds2 

3 3.65 2.94 0.967 5.21 4.44 0.802

4 6.62 4.89 0.875 2.85 2.47 0.972

2. 3 i 4 4.65 3.18 0.937 3.51 2.76 0.924

Table 5. RMSE, MAE, and R2 results of the best MLP models for ds1 and ds2 in the training and testing stages
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and higher R2 in the testing stage). However, the DS2MLP 
model provided slightly more accurate ds2 predictions than the 
DS2RBNN model (i.e. having a lower RMSE (3.51 mm) and MAE 
(2.76 mm) for two to four bridge piers in the testing stage). 

Therefore, the new empirical formulae for ds1 and ds2 were 
derived from the DS1RBNN and DS2MLP models, respectively. 
The derived formulae are provided and explained in detail in 
"Appendix A. Supplementary Material."

Models Spread 
coefficient

No. of 
hidden 

neurone
Output No. of piers

Training stage Testing stage

RMSE 
[mm]

MAE 
[mm] R2 RMSE 

[mm]
MAE 
[mm] R2

DS1RBNN 7 49 ds1 

1 1.17 0.94 0.997 2.15 1.63 0.992

2 0.79 0.62 0.990 0.95 0.85 0.992

3 i 4 1.70 1.27 0.995 2.59 2.06 0.979

1. 2. 3 i 4 1.40 1.03 0.998 2.16 1.63 0.995

DS2RBNN 1 21 ds2 

3 3.08 2.35 0.967 6.16 5.75 0.710

4 4.68 3.41 0.914 4.47 3.39 0.893

2. 3 i 4 3.55 2.60 0.954 4.50 3.63 0.887

Table 6. RMSE, MAE, and R2 results of the best RBNN models for ds1 and ds2 in the training and testing stages

Figure 6.  Comparison of measured and predicted scour depths (ds1 and ds2) by the MLP models in the training stage: a) DS1MLP model and one 
pier; b) DS1MLP model and two piers; c) DS1MLP model and three to four piers; d) DS1MLP model and one to four piers; e) DS2MLP 
model and three piers; f) DS2MLP model and four piers; g) DS2MLP model and two to four piers
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Figure 7.  Comparison of measured and predicted scour depths (ds1 and ds2) by the MLP models in the testing stage: a) DS1MLP model and one 
pier; b) DS1MLP model and two piers; c) DS1MLP model and three to four piers; d) DS1MLP model and one to four piers; e) DS2MLP 
model and three piers; f) DS2MLP model and four piers; g) DS2MLP model and two to four piers

Figure 8.  Comparison of measured and predicted scour depths (ds1 and ds2) by the RBNN models in the training stage: a) DS1RBNN model and 
one pier; b) DS1RBNN model and two piers; c) DS1RBNN model and three to four piers; d) DS1RBNN model and one to four piers; e) 
DS2RBNN model and three piers; f) DS2RBNN model and four piers; g) DS2RBNN model and two to four piers
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Figure 9.  Comparison of measured and predicted scour depths (ds1 and ds2) by the RBNN models in the testing stage: a) DS1RBNN model and 
one pier; b) DS1RBNN model and two piers; c) DS1RBNN model and three to four piers; d) DS1RBNN model and one to four piers; e) 
DS2RBNN model and three piers; f) DS2RBNN model and four piers; g) DS2RBNN model and two to four piers

Figure 10.  Comparison of measured and predicted scour depths by the MLP; RBNN; and empirical models on the testing data: a) ds1 (1–11 for 
one pier; 12–23 for two piers; 24–33 for three piers; and 34–45 for four piers); b) ds2 (1–14 for two piers; 15–22 for three piers; and 
23–32 for four piers)
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5.3. Sensitivity analysis

A series of sensitivity analyses were conducted to determine 
the RI of the input variables used in the DS1RBNN and 
DS2MLP models on the local scouring depths formed in front 
of inclined bridge piers. The results of the sensitivity analyses 
are shown in Figure 11. 

Figure 11.  Results of sensitivity analyses conducted on: a) DS1RBNN; 
b) DS2MLP 

According to the findings in Figure 11, the most influential 
parameter on ds1 is the inclination angle of the pier with vertical 
(β) (25.57 %), followed by the pier diameter (D) (20.99 %), number 
of inclined bridge piers (NP) (20.97 %), approach flow depth (d0) 
(16.81 %), and flow intensity, V/Vc (15.66 %). In previous studies, 
the local scour depths around vertical piers were investigated 
and it was determined that the most important parameter 
affecting the scour depth in front of the first pier was the pier 
diameter [22, 29]. In contrast, in this study, the inclination angle 
was determined to be the most important parameter, which 
could be attributed to the change in the fluid flow pattern 
that decreased the impact of the vortices in front of the pier. 

Regarding the importance of the pier diameter, it can be said 
that the results in Figure 11(a) agree with previous studies [22, 
29]. Note that this is the first study to show the importance of 
the inclination angle of the pier on the scour depth. The results 
also revealed that the input variables used in the DS1RBNN 
model had a significant effect on ds1 formation. In contrast, 
the flow intensity (27.17 %) had the greatest influence on ds2, 
followed by d0 (19.85 %), NP (19.74 %), β (17.95 %), and D (15.29 
%) (Figure 11b). Although it had the lowest influence on ds1, V/Vc 
was found to be the most influential parameter on ds2. While the 
range of the flow intensity for ds1 in the experimental data was 
broad (0.30–1.86), it was narrower for ds2 (0.30–0.94), which 
may have caused an increase in the significance of the flow 
intensity for ds2. However, this should be investigated further.

5.4. Limitations of proposed ANN models

Despite being successfully implemented to complex problems, an 
ANN model cannot correctly extrapolate values that fall outside 
the range of the training data. In other words, because the 
structure, weight, and bias parameters of an ANN structure are 
determined using a training dataset, an ANN model can provide 
accurate predictions for values that fall within the range of 
input variables used when developing the model. Thus, the new 
empirical formulae proposed in this study (Equations 15 and 19) 
are reliable for the ranges of the input variables in Table 3.

6. Conclusions

In this study, two ANN techniques, MLP and RBNN, were used 
to propose new empirical equations for accurate and reliable 
prediction of the scouring depths formed in front of inclined 
bridge piers. The laboratory data previously collected by the 
authors were used to train the MLP and RBNN models and test 
their prediction performance. The results clearly indicate that 
the MLP and RBNN models provide more predictions of ds1 and 
ds2 than the previous empirical models. A series of sensitivity 
analyses were also conducted to determine the most influential 
parameters on the scour depth in front of inclined bridge piers. 
According to the findings of this study, the pier inclination angle 
was the most dominant parameter for ds1. While determined 
to be the least influential parameter for ds1, flow intensity 
becomes the most dominant parameter for ds2. Based on these 
findings, the new empirical equations proposed in this study can 
be employed to accurately predict the scour depths in front of 
the front and back piers. Empirical equations were developed 
from the results of laboratory experiments. In future studies, 
the equations can be tested to calculate the scour depth in 
actual scenarios.
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Appendix A 

The calculation steps for the empirical formulae derived from 
the RBNN and MLP models are described in Equations A1–A8. 
First, each input variable used in the ANN models (DS1RBNN 
and DS2MLP) was normalised between −1 and +1 using 
Equations A1 and A5. The RBNN model employs a radial-basis 
transfer function in the hidden layer and a purelin transfer 
function in the output layer. The net input to the radial-basis 
transfer function (x) is the vector distance between wih and the 
input vector (inputs) multiplied by Bh (i.e. x = | |wih-Inputs||*Bh, 

||wih-Inputs||=(wih-Inputs)0.5) (Equation A3). [x]ds1 and [x]ds2 in 
Equations A2 and A6 are the matrices of the hidden neurone 
results (i.e. obtained after the transfer function was applied 
to hidden neurones) of the DS1RBNN and DS2MLP models, 
respectively. The bias terms used in the output layers (Bo) of 
the DS1RBNN and DS2MLP models were determined to be 
64.04687 and −0.7507, respectively (Equations A4 and A8). The 
matrices of [wih]ds1, [who]ds1, [Bh]ds1, [wih]ds2, [who]ds2, and [Bh]ds2 are 
given by Equations A9–A14, respectively.
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