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Abstract

This paper examines the constraints for the decidability of a logical system by
analyzing the theories of undecidability in formal logic and recursive func-
tions. The proof of the diagonal lemma requires the implicit premise that all
formulas are closed under a variable composition, i.e., the composition of vari-
ables in the formulas signatures. A variable composition is representable in
first-order logic if VyVk(- ¢ (k) > 3y(v A y=Fk)) can be derived, e.g., from
a semantic definition of the quantifiers. A further condition is the assump-
tion of an interpretation providing the existence of what will be defined as an
indeterminate variable signature with a constant interpretation.

A recursion theorem for formulas in analogy to the recursion theorem of
Kleene (1943, pp.52-53) will be proved which covers the diagonal lemma as a
special case. The chosen notation and reasoning intend to make the necessary
conditions for its provability explicit. It will be proved that the representability
of variable composition and the existence of an indeterminate variable signa-
ture to represent a constant interpretation are consequences of the recursion
theorem, i.e., equivalent to the existence of fixed points Vi) 3o (- ¢ <> ¥ (7¢") ).
These results give a reason why the negation of the diagonal lemma can
be proved for a predicative logic that contradicts these premises but holds
the explicit condition of the diagonal lemma, i.e., a language of this logic is
capable of representing all computable functions, as has been shown as a
non-expectable result in Solte 2020. The paper concludes with an outline of
a decidable structure of computable functions. Le., it is possible to provide an
interpretation of a predicative logic without undecidability in this structure.
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UBER DIE SUBSTITUIERBARKEIT VON VARIABLEN
- DIE WURZELN DER UNENTSCHEIDBARKEIT

Zusammenfassung

In diesem Beitrag werden die Bedingungen fiir die Entscheidbarkeit eines lo-
gischen Systems untersucht, indem Theorien der Unentscheidbarkeit, inner-
halb der formalen Logik und der rekursiven Funktionen, analysiert werden.
Eine notwendige und implizite Voraussetzung fiir den Beweis des Fixpunkt-
theorems (Diagonalisierungslemma) ist die Annahme der Abgeschlossenheit
aller Formeln unter einer Variablen-Komposition, d.h., der Verkntipfung von
Variablen in den Signaturen von Formeln. Eine Variablen-Komposition
von Formeln ist in einer Pridikatenlogik reprisentierbar, wenn der Satz
Vyvk (- ¢ (k) <> Jy(v Ay=k)) hergeleitet werden kann, etwa durch eine
geeignete semantische Definition der Quantoren. Als weitere Bedingung wird
im Beitrag herausgearbeitet, dass bei dem Beweis eine Interpretation zugrun-
deliegen muss, aus der sich die Existenz einer in diesem Text definierten vari-
ablen Signatur in einer Unbestimmeten mit einer konstanten Interpretation her-
leiten ldsst.

Es wird ein Rekursionssatz fir Formeln in Analogie zum Rekursionssatz von
Kleene (1943, S. 52-53) bewiesen, der das Diagonalisierungslemma als Spezial-
fall abdeckt. Die hier gewihlte Notation und Beweisfithrung soll die Bedin-
gungen fiir seine Beweisbarkeit deutlich machen. Es wird zudem bewiesen,
dass die Annahmen der Reprisentierbarkeit einer Variablen-Komposition
und der mittels einer variablen Signatur in einer Unbestimmten darstellbaren
konstanten Interpretation aus der Behauptung des Rekursionssatzes folgen,
also dquivalent sind zur Existenz von Fixpunkten V)3 (- ¢ < v(¢')).
Mit diesen Resultaten kann begriindet werden, warum in einem pridikativen
logischen System die Negation des Diagonalisierungslemmas bewiesen wer-
den kann, in dem diese Primissen nicht gelten aber dennoch die explizite
Voraussetzung des Diagonalisierungslemmas erftllt ist. D.h. eine Sprache
der pridikativen Logik ist michtig genug, alle berechenbaren Funktionen zu
reprisentieren, so wie Solte 2020 es als unerwartetes Ergebnis aufgezeigt hat.
Als Ausblick auf ein derartiges logisches System wird eine entscheidbare
Struktur berechenbarer Funktionen skizziert. Das bedeutet, in dieser
Struktur kann eine pridikative Logik interpretiert werden, in der es keine
unentscheidbaren Sitze gibt.

Schliisselworter: Fixpunkttheorem; Rekursionssatz; Entscheidbare Struktur
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Introduction

The diagonal lemma (fixed-point theorem) of logical systems (Gdel 1931)
is fundamental and widely known. In section 2, the diagonal lemma is ana-
lyzed to identify the roots of undecidability. The necessary conditions for its
provability will be explicitly defined. Similar to the diagonal lemma is the
recursion theorem for partial recursive functions of Kleene (1943, pp.52-
53). It will be proved in section 3 that both theorems are equivalent to an
implicit assumption that formulas are closed under an indeterminate vari-
able composition, i.c., that a variable of a formula can actually or syntacti-
cally be replaced by an indeterminate variable function signature. E.g., if
hyy (%) denotes a variable function signature up to an indeterminate y then
f(hpy(Z), 1, ... xy—1) denotes the indeterminate variable composition of
f(zo,... £,—1) with a variable signature up to ¥ in the variable z intended
to be interpreted as a function with 1+n variables. The term zndetermi-
nate variable signature refers to functions, predicates, or formulas. It will
be explained that it depends on the definition of an interpretation whether
formulas denoting the code of indeterminate variable signatures represent
computable functions or result in an infinite recursive interpretation.

As above hy (%), some rather unusual notations are introduced to make
all necessary premises providing the provability of the diagonal lemma and
recursion theorem explicit. The intended interpretation of hyy(Z) is an n-
ary function determined by a Gédel code substituting the indeterminate y
and [y ] denoting a formula in y such that [ "¢” || represents a canonic rep-
resentation of a formula ¢ with Gédel code "¢ . As much as possible, the in-
vented notations aim to adopt the usual intended interpretations in the con-
text of formal logic and computability theory. E.g., in def. 3.2 the notation
[ | {(#)} /) 4] is introduced to represent a composition of a formula 1) with
afunction view on ¢ in a variable x;. This adopts the notation {e}(Z) >~y
used by van Dalen (2013, pp.218) for formulas ¢ represented by recursive
functions with an index (¢) substituting e. The first section gives an ex-
planatory overview of the used notations and their intended interpretation.

The definition of relativized quantification (c.f. van Dalen 2013, p.75) is
a usual notation that should be denoted variable composition.

(3z)(P(z) A ) is interpreted to represent a composition of the variable sig-
nature P(z) up to P with ¢ up to ¢ in the variable 2, i.e., the symbols P and
¢ are treated as indeterminates’ to be replaced by the signature of a concrete

1Formally the whole notation P(z) has to be treated as an indeterminate intended to be
substituted by signatures of unary formulas only.
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formula instance. To illustrate the interpretation of (3z) (P (z) A ¢) asasyn-
tactical replacement, let f,(z) and f,,(Z) denote the functions in variable =
resp. in the variables Z represented as formulas P resp. ¢ and assuming an

arity 1+n of ¢. Then P(fw(f)) < (3x) (P((L‘) A xsz(f)> expresses this
syntactical representation of the variable composition, i.e., the composition
of P(z) with f,(Z) in the variable . In the structure of partial recursive

functions, P (fdf)) is interpreted as® P(x,(f, (%), f.(x))).

In section 4, a decidable structure beyond partial recursive functions and
relations is explained, providing to define an interpretation in equivalence
classes of functions and formulas. This avoids undecidability as the basis of
a decidable logical system capable of representing all computable functions
in terms of this structure.

1. Some remarks to the used notation

In the following, we first explain some details of the used notation, mainly
adopting the notation of van Dalen 2013. The notations to represent the dif-
ferent kinds of substitution and their intended interpretations are formally
defined in section 3, def. 3.2 - def. 3.5.

Let Sp4 denote a signature of a first order language Lora capable of rep-
resenting all computable functions.

Let - denote the provability-relation in Lora,

Let 5f= and <= denote both the usual representations of semantical
equivalence.

Let wy« := wy+ denote an isomorphism of notations, i.e., an interpreta-
tion of the notation denoted by @ - exists, resulting in the interpretation of
the notation denoted by wy-.

Let2 and X denote structures. Let 9 denote the structure (N, +, -, =, =),
with — intended to be interpreted as m > n <= n -~ m = 0.

Let = denote the representation of the relation = in a formal language.

The definition of representability in van Dalen (2013, p.242) (c.f. def.
2.1 below) does not have any notion for variables denoting elements of the
domain of discourse.

2Letx,(fo(Z), fo(2)) = f,,(F). Here we intentionally use the symbol y which Godel uses
to denote a dedicated variable function up to an implicit indeterminate to prove the recur-
siveness of arelation (3z)(R(z, §) A x<f(¥)),inhisnotation (Ex) [2<¢(r) & R(z, )]
by constructing R[ x(¢(z), v), v); c.f., Godel (1931, p.181).
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We define:
Let x; be the representation of an 2-variable i.
Let ¢ denote a list of o — 1 variables x1, ... T,_1.

Let ¥ := xq, ¢ denote a list of x variables zg, 21 ... T,_1.

Let x; denote a variable not in the list of variables xo, 1 ... x,_1.

As usual, small letters v, z, y and 2 also denote Sp 4-variables representing
Q-variables v, x, y and Z.

Let "¢ represent a Godel code of an Sp 4-formula .

Let the G6del code be an element k of the interpreting structure 2.

Let "¢ denote the representation of a Godel code in X.

Let ¢ [ k/ 7] denote the substitution of 7 by k in the signature of a predi-
cate q.

Let ¢[ k/x] denote the substitution of z by k in the formula ¢.

In section 2, notations for interpretations of Lopa expressions with nota-
tional elements to represent substitution are invented:

&, (79" )) denotes the L574 expression equivalent to ¢ where all sub-

stitution elements in ¢ have been resolved. f; denotes the function resulting
in the Godel code of the resolved formula. This notation aims to associate
with the symbol &,, its interpretation as a logical function, mapping the
representation of a Gédel code onto the corresponding formula.

&, (z;)[ xo,..- Tn_1, y] denotes what will be defined as the representation
of an indeterminate variable signature up to x;. The intention behind this
chosen notation is to associate with it an interpretation similar to &,,(x;)
as alogical function representing a special interpretation of a formula with a
Godel code "¢ if x; is substituted by "¢". The intended special interpreta-
tion of this logical function is substitution. The variables zy,... ,,_1, y are
set in square brackets to express syntactically that the signature of the for-
mula represented through &, (z;)[ zo,... T,—1, y] depends on the substitu-
tion of &;. The definition of a constant interpretation makes explicit that the
intended semantic attached to the indeterminate variable signature is only
substitution. With such a definition, the notation of a constant interpreta-
tion is representing a reference notation for a formula where a specific sub-
stitution has been resolved.

[7¢7|,, denotes the LSP4 expression representing a canonical formula
equivalent to ¢ where all substitution elements in ¢ have been resolved.

In section 3, the chosen notation intended to be interpreted in the struc-
ture of partial recursive functions adopts van Dalen (2013, pp. 218) with
some more details which it is necessary to express:
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Let &, denote the structure of partial recursive functions and relations.

Let x5 denote an indeterminate placebolder different from all variables z .
@ denotes any notation to specify a variable, e.g., 7, 0, z—1, etc.

Let [ {xn}~y]| denote an indeterminate signature up to x.

Let (¢) and e, denote an interpretation of a formula ¢ named 7ndex.

Let €, denote a list of x indices g, €1 ... €,_1.

Let [w } @; / 55] denote the substitution of variables by notations repre-
senting indices.

Let [w ‘ {Po)} /] 3?} denote the replacement of variables by notations in-
tended to be interpreted as functions.

Let =((¢)) represent a variable interpretation resolving notational substi-
tutions and compositions in a formula ¢. C.f. def. 3.3.

Let [(¢) |, representan equivalence interpretation in a theory p denoting
a reference notation or normal form of a formula. In this paper, p refers
exemplary to the theory of yi-recursive functions.

Let ¥ denote any list of variables. If none of the above notations are used
to make details explicit, let ¥ denote the list of all variables occurring in a for-
mula.

2. Identifying the roots of undecidability

With the notational modifications mentioned in the first section, the def-
inition of representability and a usual formulation of the diagonal lemma
and its proof will be adopted from van Dalen (2013, p.242 and p.250) into
a second-order notation.

DEFINITION 2.1. Representability.

Let k and k; be elements of a domain of disconrse N.

Let k; denote the representation of a constant function fo(k) = k as a term.

Let ¢ denote an Sp o-formula and y and x,... xy—1 substitutable variables.

(a) A formula ¢(x0,... Tn—1,Y) representsan n-ary function f if forall ko, ... kn—1
f(koskn—1)=k = FVy(d(ko,... kn—1,y) <> y = k).

(b) A formula ¢(xq,... xn—_1) represents an n-ary predicate P if for all ko,... kn—1
P(ko,...kn_1) = F ¢(ko,... kn_1) and

—|P(k0,... kn—l) = F —\gﬁ(Eo,...En_l) .

(c) A term t(xq,... Tn_1) represents an n-ary function f if for all ko, ... kyp—1
f(koy.. kn—1)=k = Ft(ko,...kn—1) = k.
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DEFINITION 2.2. Indeterminate variable signature and constant interpretation
inSpa.
Let f;("¢") denote an interpretation resolving alternative and short notations in ¢

and those notations representing substitutions and compositions such that

L) =" = Fé e

LetS,, ( (" )) denote the resolved Sp a-formula 1) equivalent to ¢.

Let fry, (f:("¢")) denote an equivalence interpretation resulting in the code of a
reference notation or normal form of a formula such that

S (E(9))="7"=F o

Let [ T¢™ |, denote the canonical Sp o-formula ~ equivalent to ¢.

Let &, ()| xo,... n_1,y] denote a formula such that
S,, (fI (FGX(xi)[xo,... Tn—1,Y] [k/xz]j)) =g, (E) [x07... Tio 1,k Tig1,e T, y].
&, (xi)[x0,... ®n—1,y| &s named an indeterminate variable signature up to x;

iff from
”%x(ﬂfi)[wow- Tpo1,Y] [T/%THM =8y, (fz <r®m (fz ( réf’j)) [W/%]))

follows that fmm(fZ (rex(xi) (20, Tn—1,Y] [T/%T)) =f (r¢ [W/l“f)

A formula o, (Z,y) represents a constant interpretation up to x; if

=y (o(@.y) & y=Fo (€ @) w0 2n1,])))
and. for all Sp A-formulas ¢

F Yy <O'X(fv OINCNEARS yEfm,,A(fI (rex(xi)[xo“" Tn-1,] [W/%T»)

REMARK: In the above def. 2.2, an indeterminate variable signature has
been defined to be computable through an equation stipulating thata canon-
ical formula is equivalent to a resolved formula which should not necessarily
be a canonical formula. A definition

[o@tenswsil 5/l |, =TT,

would eliminate this root of undecidability because ” [T/ zi]jﬂ would

not exist since fmm( I (rp[T/ aﬂ)) would result in an infinite recursion and
thus would not be computable for p:>&, (z;)[zo,... -1,y iff 7 < n.

LEMMA 1. Fixed-point theorem of FOL arithmetic.
Let &,,(x) denote an Sp o-formula representing the function fy (f(Z)).
Let 1) be a variable denoting Sp A-formulas with one variable y and

let @ be a variable denoting closed Sp a-formulas.
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Proposition: Vi3 (- <> ¥ (T¢T)).

ProoF. Letoy(x,y) represent a constant interpretation up to %, i.e.,
oy (z,y) =, (FSX(:U) [z, y]j) and

o () =26 (TS @)yl [0 /2] ).

(1) oy (z,y) and oy, ( o, y) represent obviously computable functions!
(2) Let p(x) be the formula Jy (1) A 0y (z,y)) and

let 0 be the formula p( rp(av)j> )

(3) From (2) follows ¢ <+ Ty (w A oy ( "p(x)", y) )
With def. 2.2, it can be concluded

F Yy (UX (W, y) = (rp [ rp(x)ﬂ/;cT>> resulting in

@+ vy (o (0@ ) ©v="9).
Substituting identities in (3) with (4) results in ¢ <+ Jy (Y Ay="p").

(S)Let Iy(v Ay="p") <> (7).
Under this interpretation, it can be concluded - ¢ «+ 9 (77). =

REMARK: Alternatively (c.f. Ebbinghaus, Flum and Thomas 2007) the
diagonal lemma can be proved by defining p(x) in (2) as Vy (o, (2, y) — ¥)
and concluding (5) with the argument Vi)Vk ( = (E) — Yy (yEE — w) ) .

The argument V@DV/{(I— zD(E) > Ely(@b A yEE)) in lemma 1 (5) does
not follow from the definition of representability in def. 2.1. As briefly fig-
ured outin the introduction, itis a consequence of an implicit premise about
the semantics of quantification, which is equivalent to the representability
of a variable composition.

Under the interpretation "¢ # "9)(T¢™)", the closed formula ¢ rep-
resenting a predicate p,, (k) has to be constructed as the representation of
Py (Y) composed with a function g(ky, ... k,—1). This composition has to be
representable as an Sp 4-formula with a formula ¢ (EO v by 1) representing
g(ko,... kn—1) since a representation of g(Kko,... k,—1) as a term can not be
assured. By defining a semantic interpretation of relativized quantifiers (c.f.
van Dalen 2013, p.75) the variable composition is syntactically representable
as 3y(¢ A ¢) and the next theorem can be proved?®.

3Tam grateful to Christoph Kreitz who provided the semi-formal proof of theorem 1 to me.
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THEOREM 1. VyVk(F (k) < Jy(v A y=k)).
Let 1) represent a predicate p(y) and let ¢ represent a predicate q.
Proposition: VipVk (}— P (E) — Jdy (w A yEE) )

Proor.

1. Assume ¢ (E) .

Under the interpretation that 3y (1) A ¢) represents the semantic:
k exists such that = p(k) and = q[ k/7]

it follows - (w(y) A yEE) [E/y] = Jy (’QZJ A yEE).

2. Assume Jy (1/) A yEE).

Under the interpretation as seen above, it follows:

an a exists such that =p(a) and =a = k.

Let the semantic of identity be defined by

a=Fk 5 q(a) = q(k) forall q.

Then we have = p(a) and = p(a) = p(k)

and with = p(k) it can be concluded 3y (v A y=k) = ¥ (k). o

For the following theorem, let [ R(x, %) | x(f(Z), f,(x,¥)) / «] represent a
variable composition of R(x, ) with the function x(f(Z), f,(z,¥)) in z.

Considering recursive functions and relations Gédel (1931, p.181) proved
the recursiveness of a relation (3z)(R(z, %) A 2<f(Z)), in his notation
(E2) [2<(5) & R(w, )| by constructing R x((), ),

THEOREM 2. Existence of a recursive definition of (3x)(R(z, §) N < f(Z)
Proposition: For all recursive relations R(x, ) and recursive functions f(Z), t

relation | R(x, ) | x(f(Z), fo(x,¥)) ] ] is recursive.
Proor.

)-
the

Let , be a variable different from = and not in the list of variables & and /.

lifx =0
Let fa(z) = 0 else

Then a recursive function x (4, f5(z, ¥)) can be defined as follows:

L X(OafR(m7g)) =0,
2‘ a :g fOé(fOé(fR(Ov g)) + fR(Ia g) + XR(TL, fR(xa g))):
3. X(n+17 fR(.CI}, 37)) = a'(n+1) + fa(a)-fR(x,ﬁ).

be a recursive function interpretable as negation.

With x (%, f,(z, 7)) being a recursive function, the variable composition
[R(z,9) | x(f(Z), f(x,¥)) J z]isarecursive relation intended to be interpreted
as equivalent to (3z)(R(z, §) N < f(Z)) o
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The proof of theorem 2 implicitly assumes all recursive functions and re-
lations to be closed under variable composition. Any proof of the recur-
sion theorem has to be constructive since it is possible to consider a non-
standard interpretation of a predicative logic avoiding undecidability (c.f.
Solte 2020). The structure explained in section 4 provides the definition of
an interpretation resulting in a canonical representation of functions and
predicates. A predicate ¢() as defined in the next def. 2.3 is representable.

DEFINITION 2.3. Predicative quantification.
Let P(z) represent a predicate p(T).
Then let §(x) represent a predicate ¢(T) such that

== (@) and = ¢(Ple) ) = b= (k) for ail k.

REarark: The negation symbol in the definition = —¢(7) has intention-
ally been used.

COROLLARY 1. ¢ <> 3x(p) for all closed formulas ¢

Proor.

(1) Since ¢ is a closed formula, it is V:UVE(@ @ [E/x] )

(2) Assuming = ¢, it follows V() and thus 3z ().

(3) Assuming = 3z (¢), it follows 3k (¢ k/z]) and

with (1) it can be concluded = ¢.

(4) Assuming = —, it follows VY (—¢) and thus ~3z(¢p).

(5) Assuming |= —3z(¢), it follows Vk (¢ [ k/z]) and

with (1) it can be concluded = —.

(2) - (5) results in @ <> Jx(p). o

Lemma 2. Fypvo(FFz(p) < ¢(Te7)) = VoIp(- e < v (Te7)).

ProoOF.

B (FBa(e) < ¢ (T97)) AE VeTo(-Ba(p) « 9 (797))

= Vo3p(F3z(p) < ¥ (T¢")) and with - ¢ > Jz(p)

== Ve3p(Fe < v (Te)). B

From lemma 2, it follows that the diagonal lemma cannot be proved by
contradiction if a representation of ¢() exists since the interpretation of
¢("¢") corresponds to Bz ().

Summarizing the analysis, the root of undecidability is the stipulation that

e aconstant interpretation of an indeterminate variable signature exists,
e all formulas are closed under indeterminate variable composition,

TINC 1(2) - December 2022



On the Substitutivity of Variables...

e an indeterminate variable signature is interpreted to represent a refer-
ence notation of a resolved formula, i.e., representations of substitu-
tions and compositions in the resulting formula are not interpreted.

In the following section, this will be proved to be equivalent to the existence

of fixed points.

3. Indeterminate variable composition and
undecidability

The above proof of lemma 1 is very much similar to the proof of the re-
cursion theorem of Kleene (cf., e.g., van Dalen 2013, pp.222-223) applied
to unary functions with index e. To explain the similarity with respect to a
substitutivity of variables, we formulate a recursion theorem of & ,-formulas
adopting the notation in van Dalen (2013) with some modifications aiming
to make explicit the different forms of substitution and including the con-
ceptofacanonical normal form. The defined terminology will be close to the
terminology of the structure of recursive functions and relations. Neverthe-
less, the definitions are intentionally independent of any concrete structure
that is represented in a formal language.

DEFINITION 3.1. & ,-formulas and indices

A syntactical representation @ of a relation which will be notationally illustrated*

as [ Ay. flRW)ﬂM@) :y] is named a & ,-formula.

Let y denote an abstracting indeterminate in the interpretation of &,,-formulas.

The lambda notation is used if an abstraction has to necessarily be considered. Usually,
the explicit notation of the y-abstraction is omitted.

Let @} (Z) denote initial & ,,-formulas | fI'(Z)2y] variable in n parameters.

~

An index e = (w) denotes an interpretable code of a &,,-formula w.

(v) isintended to represent a function that translates a notation into an interpreting
structure.

Let €5, denote the interpretation fe({(w)) of a dedicated formula | fe((w))~y]
as a constant.

Let 2o, denote the interpretation fx((w)) of a dedicated formula | fx({w))=2y]

as a variable. As usual, we use notations like xq . . . X4_1, etc. to denote variables.
Let xy represent an indeterminate different from all variables x.o.

Lemma 2 gives a reason that the recursion theorem cannot be proved by
contradiction but has to be constructive. To make explicit that any proof of

()} and fre)i,(X) are alternatively used notations to denote functions.
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the recursion theorem requires the representability of an indeterminate vari-
able signature and that all formulas have to be closed under variable compo-
sition, we formally define a representation of substitution and composition.

DEFINITION 3.2. Variable substitution and composition.
TV = . o .
Let {1/1 ’ () ] x} denote a variable substitution representing the replacement of

variables x; in the list of variables X in 1) by notations ($;).
—
Let [¢ ‘ {(o0)}/ 36} denote a variable composition representing the replacement of

variables x; in the list of variables X in 1) by notations {(px) } representing the variable
interpretation of (¢;) as a function [y, as explained in the next def. 3.3.

DEFINITION 3.3. Variable interpretation of S ,~-formulas.
Let [ {xn }y] denote an indeterminate signature up to xr representing a variable

interpretation is(xn) resolving notations representing substitutions and compositions.
Let [is(xn)] denote the representation of the result of is(xp).

Let f((¢)) denote the index of the formula | Ny. fii, )y (¥)~=y].

Le., Z denotes a &,,-formula | f=(xn)~y] with index ex representing the variable
interpretation resolving substitutions and compositions in a & ,-formula, i.c.,

(60 = ([is (D))

Let &, (f=((¢))) denote the resolved formula.

Let =((¢)) be named the variable interpretation of a formula.

Let the variable interpretation = be defined inductively:
For all &,,-formulas 1), ¢, variables r, vand s := (¢) or 5 := {(¢) } let

L Z(EW( o5/ D) =2 o]s /)
2 226N |5/ i) == ([ 6]/ A),

5 20| fe((@)) f A5 ) 1) =20 ] fel(=)) f D),

4 B[] Fx (@) ]/ )= {EEE{Z:K(Q”J// P

s =2({[[e]ted rz]|ss ) == ({[v]| EQocls a0 15])),

o =({[[v| Gt 17 [ss 1)) ==(([¢ [ {EWeTs /AT 11])).

DEFINITION 3.4. Eguivalence interpretation of & ,-formulas.
Let [ f=((#)) ], denote an equivalence interpretation resulting in a reference nota-

tion or normal form of a formula.

We refer to Kleene (1943, pp.51-52) for the definition of a normal form of
recursive predicates.

TINC 1(2) - December 2022



On the Substitutivity of Variables...

In def. 3.3 above, we have focused on the main aspects of the variable
interpretation relevant for the following explanations and refrain from doc-
umenting all other details of an inductive definition to resolve substitution
and composition of initial formulas, alternative and short notations, e.g., as

defined in the next def. 3.5.

DEFINITION 3.5. Replacements and substitutions.
Defs. 3.1- 3.3 allow us to define alternative and short notations:

For all variables r

let| | fo(Z) ) 1= [V | {{E(@)))} ] 1] denotethe representation of 1) composed
with the resolved formula ¢ in variable r, i.e., f,(¥) = {(E(()))},

let [V |2 | 1 =Y fx((w)) [ 1] denote the representation of the replacement
of variable r by the interpretation of (@) as a variable x and

let [ |ex/r] =Y | fe({w)) [ 1] denote the representation of the replacement
of variable r by the interpretation of (tw) as a constant €.

- v aa—

Let [ |e,/T] =2 (< [w fe((ow) /] f] >) denote the representation of a for-
mula to be interpreted as closed for 1 being variable in 7.

Let [0] fo@) /r] = [0 | e (L[ 01/))1,)}) 1| denote the representa-

tion of the replacement of variable r by the interpretation of f, (Ex) as a constant.

DEFINITION 3.6. Indeterminate variable &,,-signature and
constant interpretation.

Let &, ()| X] be a notation interpreted to be variable in xx and X.

If for all formulas p, ¢, variables vand s = (p) ors := {(p)}
E(<[6x(%€)[3—é] v/ 2:])) =& (V)| X]

and. for all variables rsuch that r 22 vitis

E(TEC & WZ][s/ Ale /vN])) =E([[8x(e)X] s/ Ale [ vI)),
then &, (xx )| X | is named an indeterminate variable & ,-signature up to xx.

An indeterminate variable & -signature =, (xx )| X | such that Z,,(e,) [ X ] := E(e,)
is named constant interpretation up to Tx.

REMARK: Def. 3.3 (2.) with def. 3.6 provides the interpretation that
a notation Z,(e,)[¥] in Z(([[E.(e,)[¥] |5 /1] | €, / v])) can be substituted by
Z(e,). Assuming the existence of a constant interpretation is intended to be
interpreted as a stipulation of an equivalence interpretation that attaches this
semantic to a notation as, e.g., has been defined in def. 3.6.

A structure is briefly explained in section 4 that allows us to define an
equivalence interpretation [ £({(¢)) | as the representation of a composition
of a canonic interpretation ir(T) and a variable interpretation is(vy) such
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that neither an indeterminate variable signature nor a constant interpreta-
tion exists. Consider that variable substitution and composition have been
defined only for variables and not for the placeholder . 2 is intended to
be interpreted by is () as the unique indeterminate of the interpreting for-
mulas =, ¢, x and [].

Under the interpretation®: for all v = fe(()) 322 fe(({[¥| fe({¢)) /1)), no
formula ¢ exists being syntactically equivalent to [¢ | () /1], i.e., such that

( is the result of a variable interpretation of [v| () / r] resolving notations
representing substitution or composition.

Thusitis¢;2 Z(([¢ | (¢) / r])) and a fixed-point ¢ has to be constructed in-
directly by a & ,-formula  such thatan equivalence interpretation [ £((6))],
is equivalent to the variable interpretation of a formula representing the vari-
able composition of 1) with 6 in r. As a consequence, it can be concluded

- oo U(TE) = = STAONLLY) = S([w | {(6)} /).

The following recursion theorem for &,-formulas can be proved if the
existence of indeterminate variable signatures and a constant interpretation
() = [E(ax)[X]] 22 / 1] up to 2y closed under variable substitution in 2
are assumed. [Z,,(z:)[X] |z /1] intends to assure that 0y, () does not have
the variable r in its signature.

THEOREM 3. Recursion theorem for &,,-formulas.

Let 1) denote a & ,~-formula with n variables T different from xx such that®

forall itis [[9] UV} A ew § 2] 2 [0 {{[6 | ew f )}/ 1

Let a constant interpretation oy, (xx ) = [E,(22)[ E] | 2x / 1| up to Xy closed under
variable substitution in Ty exist.

Proposition: For all 1) it exists an index (0) such that

E(TEON]LD) = EC@1{(0)} ] A)-

Proor.

Pute, = ([ ] {{ou(2x))} / 1]) and 0 : 2 E({[ 0 (2x) | € / 2x])) such that
(ML) = ECTECEgul@) e [ 2])))1,))-

Due to def. 3.3 (1.) it can be concluded

E((TEE( (@) 16/ 2IN],)) = E(CTEou(ax) 6 / 2x]))1,,))-

Under the interpretation due to defs 3.3and 3. 6 it is

E((TEC o) le / 2I)1,)) = EAEC [{lou(@))} /D) Lep [ 2:]))-

®this interpretation is comparable to "¢ # " (7p") " for any substitution of ¥ and ¢.
6Tt is up to the definition of the variable interpretation (c.f. defs. 3.2 and 3.3) whether

(¥ {(&)} /1] ew [ xx] 2 [¥ | {{[¢]|ew J xx])} / 1] as it has been defined above or
([ {@} ) ew [ o] :Z[[¥]|ew [ zx] [{{{¢]ew [2x])} /1]
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From def. 3.3 (2.) it follows

E(EW Y [ {lou(@n} /) 6 [ 2])) = EW[[¢ [ {{ou(z))} /] & [ 2x])).
From def. 3.3 (6.) it follows

E([ [P H{{ou(z))} /e [ 2x])) = EW{[ 9 [{E([oulax) [ € [ a=])))} /D).

Due to the definition of € it follows

E(<[1/)|{< (<[%(fvae)\6p//xx]>)>}// )= E(([¢ [{{6)} / r])) concluding
E((TLECODL.)) = S £} /). n

Finally, it will be proved that the representability of a constant interpreta-
tion [E,(zx)[ %] | 2. / 1] follows from the proposition of theorem 3.

THEOREM 4. Existence of a constant interpretation.

Let ) denote a S ,-formula with n variables © dzﬁ%rent from xx.

Let for all 1 an index () exist such that Z(( [ £((0))],,)) = Z(([¢ [{(6)} / 1))

Proposition: A constant interpretation [Eu(xx)[ || xx ) 1] dosed under variable
substitution in xx is representable.

Proor.

In the most general case, 6 can be considered to be a & ,-formula o}, with 7 vari-
ables  with a variable, e.g., r substituted by an e,, i.e., 0 := Z(([ 0}, | €, / 1])).

Renaming variable r into x avoids conflicts resolving the substitution of r in
Y. Thuslet o, (z:) == E(([ 0y | 2+ / r])) and consider (0) := (Z(([op(zx) | €0 [ 22])))
with £, (e,) 2 {(6)}.

Due to def. 3.3 (1.) itis E((2((¢)))) := E({¢)).

Substituting (¢) it can be deduced”

E(TEENLD) = EC [{E)} /1)
<~

E(TA(ou(ze) [ eg / 2])],)) = ((WH(E(('[ ou(zx) leg [ 2D}/ r])). (D)
Hence it has to be [ f=({[ gy (2x) | €, Jx]))], = E([ou(ax) [eo [ 2x]))
and thus substituting [ £({[ o, (2x) | € / 2:]))], in (I) it has to be

(
E(E([ou(w) [eo /) = E(0 {HE[oulex) lee /2)))} /1]))
Due to def. 3.3(1.), (6.) and (2.) this is equivalent to

= ([ o) e f 1)) 2 S | (o)} £ ) o f )

This represents the semantic that

[1]

the variable interpretation of [0, (@) | €, / ]
has to be equivalent to

the variable interpretation of [Z(([ ¢ | {{ou(2x))} /1])) | €0 /] =]

!
"Let wy+ 122w+ denote “there has to be an isomorphism of notations ty « and wx-”
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The only option to achieve this equivalence is to define
o= ([ [{(ou(xx))} / r]) considering a representability of
[0 (@) | € [ @] = [E(ep) | €0 / @] Which is equivalent to the existence of a con-
stant interpretation [Z,, (@ )[ ¥ ]| zx / r] up to x such that from

[Eleg) | €p [ @] = [[Epu(ax)[X] |22 /] [ € [ 2]

it follows

S TE([ou(ax) leg / 2I)1,)) =EL I{(O)} /1)

which is equivalent to the conclusion that it has to be
!

o) 2 [Za)[ &) | f and ey 2 (4| {{au(a)}) /1)

and thus the representation o, (x ) of a constant interpretation has to exist.

4. Computable relations beyond recursion

As explained in the previous section, the existence of a representation of an
indeterminate variable signature, a constant interpretation and all formulas
to be closed under variable substitution and composition, is equivalent to
the fixed-point theorems. The recursion theorem for & ,-formulas holds for
structures providing a constant interpretation of an indeterminate variable
signature. This raises the question of how to define a structure that avoids
undecidability but includes the class of predicates definable as the roots of
partial recursive functions. An answer is given next by explaining

e abasal structure (D, ¢ , 4, x, =) of elements named binerals and
e a conceptual interpretation of binerals.

We illustrate the structure (D, $ , 4, x, =) by referencing a usual notation
of alanguage L574 itbi (abbreviation for “intended to be interpreted”) with
a standard interpretation J in the structure (N, +, -, —, =).

DEFINITION 4.1. Binerals and the function % .
Binerals dy, are the elements of a universe D ithi as a set of disjunct representations
nanduofn € N, ie,
encNSgEneN,
e nc N :‘ |=ﬁ € N,
enceNgEngN
10 dllustrate the intended interpretation of dy dw, consider a signed number
representation (I s(du), d,,) = I(0)| g, -2y 1y b 4, Of a bineral dy as an infinite bi-
nary band with a default symbol b, on the left end.

Let <I§(dn) , b/dn) denote the ones’ complement of (Is(dn) , b/d,,)'
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Let I(n) denote a set® to reference the elements® sq, € {9, 0} at position s€1(n).
Let |1(n)| denote the cardinality of I(n) itbi as the number of binary digits to rep-

resent a number n.

Considerdn % d := [ (...6 4, Zs(dn) % .0 4, Zs(dw)) (G a, $ 6 a,) || resulting in
the bitwise connection of binaries Bx$ By, skipping symbols at the left end equal to
(5dn ¢ 5dm )

{% } isintended ro be functionally complete wrt. a boolean algebra.
Let =dy :=2 dy § dy be an abbreviating notation for which on : =0 and -n :=n,

The structure (D, +, x, =) will be defined in a way such that d, ¢ d, is not
representable in (D, 4, x, =) for all d,:2 dy,.

DEFINITION 4.2. Functions 4, X and < on binerals.
Let T denote a term of LSPA without variables ithi in (N, +, -, —, =).
Let 0,1, n and m denote decimal representations of elements of N.
Let J,(|1|) denote the cardinality of an indexset I,,.
Let w273, (|In]), i.e., let w denote the ordinal of N.
Let 3,(|7|) denote the bineral v for whichn = |3, (7)| and
let 3 (|T|) denote the bineral 0 for which n = |J,(7)|.
We illustrate the intended interpretation of the functions on D:
+ is defined inductively:
1 it 223, (4 m)
3y(ln= ml) ifn > m
Jjm = n=1|) dse

3 nem:2T (In+m+1])

2. n4m:=

0 is named the additive identity.
% is defined inductively:

L axm 23 (|n-ml)

2. M m = 0ox (jN(\n+1\) xh) ifn >0
3 0% 0:=0 ithi as (w— 1) - w
4. oxm =T (|m = 1) ithi asw — m
5o a2 oxJ(|[n41]) xox T (|m+1])
6. OX0: =1 ithi asw —(w = 1)

1 is named the multiplicative identity, i.c., the neutral element wrt. x.

8E.g., I(n):=2 {i|i <2mand2™~! < n < 2m}. 54 isitbias the "symbol at the position cur-
rently under the head”.
IWe interpret 0 := ¢ and as a binary 1, # := 4 and as a binary 0.
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=dy) 220X dy defines the inverse element wrt. 4, i.e.,
(edy)

J|n= 1)) ifn >0,
0.
3

I

&/

In + 1)

From the definition of 4 (2.), it follows J,(|m ~ 1|) :=5+4th

From the definition of x (2.), it follows 7x 0 :22 ¢ itbi as (w (n +1)w

From the definition of =, it follows (= 0) := 1.

The element 0 allows us to representa function in the structure (D, 4, x, =)
equivalent to =d,, considered to denote a negation.

LEMMA 3. Foralld, € D : =dy = 0x (dy41)
Proor.
Case 1: dy -2 T (|n)).

Then itis dn4i:23,(||n| + 1|)

and thus 0x (dy4-1) :2T3,(||n| + 1= 1]) 2T (|n|).
Case 2: dy :27,(|n]).

3(IInl = 1[) if |n| > 1,
Thenitisd,41:= ¢ 0if |n| =1,
J(1 = |n| = 1)) if [n| = 0

oxoxJ(||n] = 141)) =T (|n|) if |n| > 1,
and thus0x (dn4-1) := ¢ 0x0:X1if |n| =1,
oxJ,(|n|) :=6if |n| = 0. 4

An advantage of the structure D is the existence of a canonical normal
form of formulas ¢ interpreted in D such that this normal form can be in-
terpreted as a signed element, i.e., atuple (sgn(¢), abs(¢)). Briefly explained,
consider in a first step formulas of a structure (D, 4, %, =) and a structure
(D, %) separately. The canonical normal form of (D, 4, x, =) can be de-
rived in analogy to a polynomial normal form in a monomial order. The
canonical normal form of (D, 4 ) can be derived in analogy to an algebraic
normal form. Now consider canonical forms with the signature of (D, % ) as
variables in (D, 4, x, =) and vice versa to derive the canonical normal form
of a formula of (D, $ , 4, x, ). Under this interpretation, let d:x denote
an infinite list of elements of D and consider a formula ¢ as the represen-

tation of a relation {(d;x, y) ‘ y€e [gf) oy //3‘:’} g sgn([d) g //f} )} for

some formula € that interprets [gb ‘ duny [ f} as the representation of a char-

acteristic function.
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The definition and interpretation of a formal language in (D, $ , 4, x, =)
will be documented in a separate paper.

References
« Ebbinghaus, H.D., Flum, J. and Thomas, W. (2007) Eznfiihrung in die
mathematische Logik. Sth. ed. Berlin, Heidelberg: Springer Spektrum.

« Godel, K. (1931) ”Uber formal unentscheidbare Sitze der Principia Math-
ematica und verwandter Systeme I”,Monatshefte fiir Mathematik und
Physik, 38,173-98.

+ Kleene, S.C. (1943) "Recursive Predicates and Quantifiers”,
Transactions of the American Mathematical Society, 53, 41-73.

. Solte, D. (2020) 91 - A non-standard language of arithmetic”. Sub-
mitted 02/2020 to JSL. Preprint doi=10.13140/R G.2.2.17602.30403.

« van Dalen, D. (2013) Logic and structure. Sth. ed. London: Springer.

1(2) - December 2022 TINC



	by Jure Zovko
	Hans Lenk
	Was Kant a Methodological Interpretationist?

	Identitätsbegriff und Identitätspolitik
	Nietzsche’s Concept of the Affirmation of Life

	Button 13: 


