
An Intelligent Server load balancing based on
Multi-criteria decision-making in SDN

433

Original Scientific Paper

Vani K. A.
Department of Information Science and Engineering,
Dayananda Sagar College of Engineering, Visveshwaraya Technological University, Bangalore, India
vanika-ise@dayanandasagar.edu

RamaMohanBabu K. N.
Department of Information Science and Engineering,
Dayananda Sagar College of Engineering, Visveshwaraya Technological University, Bangalore, India
ramamohanbabu-ise@dayanandasagar.edu

Abstract –In an environment of rising internet usage, it is difficult to manage network traffic while maintaining a high quality of
service. In highly trafficked networks, load balancers are crucial for ensuring the quality of service. Although different approaches
to load-balancing have been proposed in traditional networks, some of them require manual reconfiguration of the device to
accommodate new services due to a lack of programmability. These problems can be solved through the use of software-defined
networks. This research paper presents a dynamic load-balancing algorithm for software-defined networks based on server response
time and content mapping. The proposed technique dispatches requests to servers based on real-time server loads. This technique
comprises three different modules, such as a request classification module, a server monitoring module, and an optimized dynamic
load-balancing module using content-based routing. There are a variety of robust mathematical tools to address complex problems
that have multiple objectives. Multi-Criteria Decision-Making is one of them. The performance of the proposed scheme has been
validated by applying the Weighted Sum Method of the multi-criteria decision-making technique. The proposed method Server
load balancing based on Multi-criteria Decision Making[SDLB-MCDM] is compared with different load-balancing schemes such as
round robin, random, load-balancing scheme based on server response time [LBBSRT], and An SDN-aided mechanism for web load-
balancing based on server statistics [SD-WLB]. The experimental results of SDLB-MCDM show a significant improvement of 58%
when weights are equal and 50% when unequal weights are assigned to various QoS parameters in comparison with the ROUND
ROBIN, RANDOM, LBBSRT and SD-WLB techniques.

Keywords: Quality of Service. Software-Defined Networks, Load-Balancing, Open Flow

1.		 INTRODUCTION

Over the past few years, there has been a remark-
able increase in services residing in modern data cen-
ters. Some of the critical components of data centres
include different types of servers, storage systems,
switches, routers, and application delivery controllers.
The applications of data centres range from social net-
working, video streaming, web search, data storage,
data processing and many more. With these growing
applications, the frequency of communication be-
tween the nodes has increased to a greater extent.

Further, the users who access these applications
expect greater QoS with a minimum response time
from the application servers. The response time is the
amount of time a service provider takes to respond to
a request.

However, data centre operators must deal with the

complexity of managing traffic both within and across
data centers. This includes providing the necessary
resources and establishing a connection, regardless
of how they are hosted. On the other hand, network
management and dynamic configuration using tradi-
tional networks impose a challenging task. The con-
figuration of the network components in traditional
networks is very laborious and time-consuming for the
network operators. This is due to fixed functionalities of
network components, vendor dependency and struc-
tural complexities and many more [1]. This architecture
consists of a control plane, a data plane, and a manage-
ment plane, as shown in Fig. 1. The control plane and the
data plane are decoupled. The entire global view will be
present in the controller, which acts as the brain of the
network. The data plane is regarded as the forwarding
plane that governs the flow rules laid out by the control-
ler. The communication between SDN controllers and
data plane elements is carried out via the Open Flow

Volume 14, Number 4, 2023

434 International Journal of Electrical and Computer Engineering Systems

protocol. This protocol enables flow-level programma-
bility in software-defined networking, which may be
used to program the network according to application
QoS needs as well as network traffic conditions [2,3].

Fig. 1. SDN Architecture

During heavy traffic scenarios, deploying a dynamic
load-balancing technique can aid in managing the net-
work traffic more effectively. However, optimizing the
response time while handling heavy network traffic
and mapping the content is another challenging task.
Though much research is carried out to address load-
balancing in SDN, as discussed in [4], most of them
perform load-balancing either based on the server’s
response time or content mapping. But this proposed
research work takes both response time and content
mapping into account while performing load-balanc-
ing in the server pool.

The major contribution of this research work is server
load-balancing based on response time and content
mapping, as well as optimization of routing rules and
mathematical analysis using Weighted Sum Method
[WSM] of the Multi-Criteria Decision-Making [MCDM]
technique to select the best server in the server pool.

The paper is organized as follows: Section 2 discusses
the related work and introduces an overview of soft-
ware-defined networks along with strategies for load-
balancing. Section 3 reviews the proposed model. Sec-
tion 4 covers experimentation Section 5 covers evalu-
ation and results. Section 6 concludes the work with a
future scope.

2.	 RELATED WORK

There have been a number of studies on load- bal-
ancing in software-defined networks. Nevertheless,
this research work focuses on providing a dynamic
load-balancing solution in data center networks that is
based on response time in SDN. The response time is
one of the crucial aspects when we are evaluating the
QoS of any network. Some of the research related to
controller response times and server response times is
discussed in this section.

2.1.	 Load balancing based on the
	controller ’s response time

This section provides some of the research work
related to load-balancing based on a controller’s re-
sponse time.

The authors in [5] proposed an SDN framework for
load-balancing based on the controller’s response time
that makes use of network heterogeneity and context-
aware vertical mobility concepts. This scheme designed
a mechanism for load dissemination between control-
lers called reducing the overhead. The scheme studies
the bandwidth requirement based on ongoing traf-
fic, not the type of service requirement. The study by
Senthil et al. aims to compare the performance of two
load-balancing algorithms, flow-based load-balancing
and traffic pattern-based load-balancing, using distrib-
uted controller architecture [6]. Authors in [7] provided
a mathematical analysis of existing techniques in SDN
and proposed the Response Surface Methodology to
reduce the response time of a controller. While adding
a new QoS policy to this scheme requires repetition
and analysis to determine the QoS-related outcome.

To reduce the response time during load-balancing
among the controllers, a two-phase dynamic controller
clustering is proposed in [8]. According to the scheme,
the optimal cluster size was not taken into consider-
ation. The majority of research studies achieved load-
balancing during heavy loads but did not achieve con-
tinuous load-balancing among the controllers. To ad-
dress this issue, a new scheme named multiple thresh-
old load-balancing (MTLB) switch migration scheme is
proposed in [9]. Most of the research focused on the
static assignment of controllers and switches. Due to
this, some of the controller's response time was high. In
order to reduce the controller's response time, a two-
phase algorithm is proposed in [10].

2.2.	 Load-balancing based
	on servers response time

In conventional networks, it was extremely chal-
lenging to take advantage of server reaction time due
to hardware restrictions. Many academics have sug-
gested load-balancing plans based on server response
time in SDN to fill this need. In this section, several of
these methods are covered. The authors of [11] recom-

435Volume 14, Number 4, 2023

mend load-balancing based on server response time.
This scheme supports the same kind of data traffic as
the other scheme.. The research work discussed in [12]
performs server load-balancing based on switch port
statistics. [13] Investigated how to maximize server
utilization while minimizing response time in a cloud
environment using SDN-based load- balancing. This
scheme makes use of an application module and server
pool. The type of service provided is classified as com-
pute request or data request in this case. The authors
of [14] discussed multiple server tests in demonstrat-
ing the quality of service with a limited number of serv-
ers to demonstrate the benefits of SDN in accessing
servers. To assess performance, the scheme compared
round-robin, random, and least-bandwidth algorithms.
In order to exploit the dynamic performance of servers
using SDN and to showcase the limitations of tradition-
al networks, the authors in [15] have designed server
load-balancing based on round-robin and weighted
round-robin techniques using POX controller [16].
However, this technique attempts to address server
load-balancing using the POX Controller.

For the efficient distribution of load among multiple
servers based on bandwidth and round-robin fashion,
the authors in [17] have proposed server load-balanc-
ing using SDN. This scheme compared the results of

bandwidth-based and round-robin-based load- bal-
ancing and proved that the former yields better results
in comparison with the round-robin technique. Based
on the concept of server clustering that is widely used
to provide availability and achieve high performance
and scalability, the study in [18] proposed a novel dy-
namic weighted random selection load- balancing
algorithm. This technique considers real-time server
loads when assigning requests among the servers. This
method works well in a single-controller architecture.
The authors in [19] proposed a multiple regression-
based search algorithm for selecting an optimal server
with an optimal routing path. The scheme distributes
the traffic to the server with the fewest connections
and the lowest path cost from the floodlight control-
ler. Further utilizing the concept of correlation analysis,
this scheme predicts the response time based on the
load and bandwidth.

This proposed method considers diverting the in-
coming requests to the appropriate server based on
the type of traffic with optimized routing rules.

3.	 PROPOSED METHOD

The proposed system model is depicted in Fig. 2. The
system is composed of clients and servers connected
to a Ryu controller, along with a load balancer module.

Fig. 2. System Architecture

The proposed model works on the principle of op-
timised routing rules laid out by the controller. This
model is designed to support web services at different
server pools. At each level, the controller directs the
requests to the respective servers in the server pool
based on the load balancer result for the required con-
tent type and response time. The different server pools
are classified as video server pool, audio server pool,
image server pool, and text server pool, respectively, as
depicted in Fig. 2. This architecture consists of mainly

three modules, namely: the request classification mod-
ule, the server monitoring module, and the optimized
dynamic load-balancing module. These three modules
are discussed in detail below.

3.1	 Request Classification module

The main idea behind creating this module is to clas-
sify the type of request based on its content. The model
makes use of URL mapping instead of regular IP map-

436 International Journal of Electrical and Computer Engineering Systems

ping. The request classification module is depicted in
Fig. 3 below. Let us consider a scenario where the cli-
ent requests a video by specifying it in the URL. e.g.,
myapp/switch/app/video. The request is sent to the
controller via the OpenFlow Zodiac switch. The classi-
fication module determines the type of request, such
as video, image, text, or audio. Once this information is
extracted, it is sent to the load-balancing module.

Fig. 3. Request classification module

The algorithm for request classification module is de-
scribed in algorithm 1.

Algorithm 1: Request classification module

Input : Server Metrics

Output: Request classification

While(true)

Read (Content-Type =’img’)

If (Content-Type =’img’)

Send image data

If (Content-Type =’video’)

Send video data

If (Content-Type =’txt’)

Send text data

If (Content-Type =’audio’)

Send audio data

End

3.2 Server monitoring module

This module is implemented in such a way that the
servers in the server pool keep sending the load infor-
mation to the controller every 5 milliseconds [ms]. The
algorithm for this module is described in Algorithm 2.
The severity metrics, like CPU utilization, memory uti-

lization, requests per second, time per request, trans-
fer rate, waiting time, and many more, are sent to the
controller. The most interesting part of this module is
the response time of the server. The response time of
each server in different server pools is collected via this
module based on real statistics.

Algorithm 2: Server Monitoring

Input: Server metrics

Output: Server monitoring

Start

While (true)

start the servers

if(time=’T’ ms)

 start the server script for sending metrics

 for each(T=5 ms)

Send metrics like CPU utilization, Memory

 Utilization, requests_per_second,

 time_per_request, transfer_rate, waiting_time

 to the controller

 time.sleep (INTERVAL_SECONDS)

end

3.3	 Optimized Dynamic load-balancing
	module using content-based
	routin g

This module implements dynamic load-balancing
using content-based routing. Upon the arrival of the
client’s request, the content is parsed by the load-bal-
ancing module in the controller, which runs algorithm
3 to find the server with the least response time in each
server pool, and the controller installs the flow based
on the requested content and the server with the least
response time. Based on the content, for example, if the
request pertains to images, it will be forwarded to the
image server pool; similarly, if the request is to retrieve
video, it will be forwarded to the server that handles
video; the same holds true for text and audio files.

Algorithm 3: Optimized Load-Balancing module
based on the requested content

Input: server metrics

Output: Best server [BS] with fast response time

Start the RYU controller

while (true)

Initially Bs=null

if (time=’T’ ms)

Collect server metrics and run the optimized

load balancer module

Initialize Load-balancing module to Read the

content of the request

if(Content Type= ‘Img”)

send the request to image server queue

437Volume 14, Number 4, 2023

if(Content Type= ‘video”)
send the request to video server queue
if(Content Type= ‘text”)
send the request to text server queue
if(Content Type= ‘audio”)
Send the request to audio server queue
Calculate the server with least response time[Rt]
Forward the requested content to the server
 with minimum response time [Rt], according
 to equation 2
end
The response time [Rts] and the average response

time [ARTs] of each server are calculated as given in
equations [1] and [2], respectively.

(1)

Where

(2)

Here, ‘Xi’ represents the response time of each server
serving ‘n’ number of requests. ‘Tnr’ represents the to-
tal number of requests. ‘Ns1’ is the number of requests
served by server 1, and ‘Rs1’ is the response time of
server 1 serving the required content. Similarly, ‘Ns2’ is
the number of requests served by server 2, and ‘Rs2’ is
the response time of server 2. The requests served by
the nth server are represented by Nsn, and the response
time of the nth server is represented by Rsn.

4.	 EXPERIMENT AND RESULTS

The experiment setup consists of a controller, an
OpenFlow switch, a pool of web servers, and various
client machines. The experimental testbed is as shown
in Fig. 4, the experiment is carried out in data centre
network where a number of clients and various web
servers, such as Apache 2, Ngnix, and SimpleHTTPServ-
er, are connected to the RYU controller via a real-time
Zodiac-fx switch. The load balancer module is placed
within the RYU controller.

 Initially, the experiment was carried out to perform
load-balancing based on various techniques such as
round robin, random, LBSSRT, SD-WLB, and SDLB-
MCDM. The single-objective optimization and analysis
approach is no longer widely used due to the increas-
ing complexity and multiplicity of the load-balancing
problem. Due to the fact that perfect load-balancing
is driven by multiple dimensions, a good decision-
maker may look into various parameters, such as non-
economical or economical, that can be compromised
in certain situations. The experiment is formulated us-
ing the multi-criteria decision-making [MCDM] math-
ematical model to find a suitable solution for the load-
balancing problems involving multiple and conflicting
objectives. This model works on the basic principle of

the weighted sum method [WSM], i.e., the rank of the
best load-balancing technique is evaluated based on
the WSM of the MCDM technique [20-25].

Fig. 4. Experimental setup

This technique takes into account various parame-
ters and values, along with criteria.The criteria column
represents the various methods used for evaluation,
such as round robin, random, LBBSRT, SD-WLB and the
proposed method SDLB-MCDM. The parameters to be
considered are outlined in Table 1 below:

Table 1. Parameters used

Criteria
Average

Response
time

Transfer
rate

Time
per

request

Request
per

second

Waiting
time

Random 0.875 s 2496.68
kbps 3.357ms 297.85/s 4

Round
robin 0.888 s 2246.57

kbps 3.223 ms 290.06/s 3

LBBSRT 0.723 s 3445.85
kbps

 2.452
ms 312.14/s 2

SD-WLB 0.678 s 3876.45
kbps 2.126 ms 366.31/s 2

SDLB-
MCOM 0.065 s 6687.23

kbps 0.157 ms 543.67/s 1

When we look at the measuring units of each of
these parameters, they are different. In order to resolve
this issue, the weighted sum method is used. The steps
of experimentation using the WSM-MCDM technique
are as follows:

Step 1: Construct a conversion scale that ranges from
low to excellent as shown below in Table 2.

Table 2. Conversion scale

Low 1

Below average 2

Average 3

Good 4

Excellent 5

438 International Journal of Electrical and Computer Engineering Systems

Step 2: To obtain the decision matrix, assume that
the decision maker has determined the importance
(or measure of performance) of alternative Ai based on
criterion Cj (for i = 1,2,3,..., M and j = 1,2,3,...,N), and Wi
represents the weights assigned, as shown in Table 3.

Table 3. Decision matrix

Here, a decision-makers primary objective is to select
the best alternative or rank all possible alternatives. Af-
ter considering all of the decision criteria, Pi (for i = 1, 2,
3 …M) represents the final preference for alternative Ai.
We can calculate the preference Pi for alternative Ai (i =
1, 2, 3…M) using the formula below [26-29].

(3)

(for i=1, 2,3… M)

Step 3: The next step is to categorize the parameters
as beneficial or costly. The beneficial parameters are
the ones whose higher values are preferred, and the
costly parameters are the ones whose lower values are
preferred [30]. Accordingly, the table is categorized by
parameters as shown below in Table 4.

Table 4. Parameter categorizing table

Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
request

Request
per

second

Waiting
time

Random 0.875 s 2496.68
kbps 3.357 ms 297.85 /s 4

Round
robin 0888s 2246.57

kbps 3.223 ms 290.06 /s 3

LBBSRT 0.723 s 3445.85
kbps 2.452 ms 312.14 /s 2

SD-WLB 0.678 s 3876.45
kbps 2.126 ms 366.31 /s 2

SDLB-
MCDM 0.065 s 6687.23

kbps 0.157 ms 543.67 /s 1

Step 4: Further, the table needs normalization. In or-
der to normalize the following expressions are used.

(4)

(5)

Step 5: Applying the expression in equations (4) and (5),
the table is normalized as shown below in Table 5 below.

Table 5. Normalized values

Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
request

Request
per

second

Waiting
time

Random 0.875 2496.68 3.357 297.85 4

Round
robin 0.888 2246.57 3.223 290.06 3

LI313SRT 0.723 3445.85 2 452 312.14 2

SD-WLB 0.678 387645 2.126 366.31 2

SDLB-
MCDM 0.065 6687.23 0.157 543.67 1

Step 6: The next step is to obtain a weighted normal-
ized matrix by adding weights to all these criteria. Here
the proposed technique is evaluated for both equal
and unequal weights for all the criteria, as shown be-
low in Table 6 below.

Weightage 20% 20% 20% 20% 20%

Normalization Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
request

Request
per

second

Waiting
time

Random 0.875 2496.68 3.357 297.85 4

Round robin 0.888 2246.57 3.223 290.06 3

LBBSRT 0.723 3445.85 2.452 312.14 2

SD-WLB 0.678 3876.45 2.126 366.31 2

SOLB-MCDM 0.065 6687.23 0.157 543.67 1

Step 7: The next step is to obtain the performance
matrix to select the best among the given alternatives,
as shown in Table 7 below.

Table 7. Performance Matrix for equal weights

Weightage 20% 20% 20% 20% 20%

Normalization Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
request

Request
per

second

Waiting
time

Random 0.014857 0.05 0.07467 0.2 0.10957

Round robin 0.01464 0.066667 0.06719 0.192017 0.106704

LBBSRT 0.017981 0.1 0.103058 0.146083 0.114827

SD-WLB 0.019174 0.1 0.115936 0.126661 0.134755

SDLB-MCDM 0.2 0.2 0.2 0.009354 0.2

Step 8: Obtain the performance ranking matrix as
shown in Table 8.

From the final performance table, it is seen that the
proposed method SDLB-MCDM stands out best among
all the other techniques such as random, round robin,
LBBSRT, and SD-WLB. The results are discussed in the
next section.

439Volume 14, Number 4, 2023

Table 8. Ranking Matrix for equal weights

Weightage 20% 20% 20% 20% 20%

RA
N

K Normalization Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
request

Request
per

second

Waiting
time

Random 0.449097 4

Round robin 0.447217 5

LBBSRT 0.481948 3

SD-WLB 0.496525 2

SDLB-MCDM 0.809354 1

Step 9: The performance matrix for unequal weights
are shown in Table 9 below.

Weightage 25% 20% 10% 20% 25%

Normalization Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
renuest

Request
per

second

Waiting
time

Random 0.018571 0.0625 0.07467 0.1 0.10957

Round robin 0.0183 0.083333 0.06719 0.096008 0.106704

LBBSRT 0.022476 0.125 0.103058 0.073041 0.114827

SD-WLB 0.023968 0.125 0.115936 0.06333 0.134755

SDLB-MCDM 0.25 0.25 0.2 0.004677 0.2

Table 9. Performance Matrix for unequal weights

Step 10: Obtain the final performance ranking matrix
as shown below in Table 10

Table 10. Performance ranking

Weightage 20% 20% 20% 20% 20%

RA
N

K Normalization Costly Beneficial Beneficial Beneficial Costly

Criteria
Average

Response
time

Transfer
rate

Time per
request

Request
per

second

Waiting
time

Random 0.365312 4

Round robin 0.371536 5

LBBSRT 0.438402 3

SD-WLB 0.462988 2

SDLB-MCDM 0.904677 1

From the final performance table, it is seen that the
proposed method SDLB-MCDM stands out best among
all the other techniques such as random, round robin,
LBBSRT, and SD-WLB. The results are discussed in the
next section.

5.	 RESULTS

An analysis of the results obtained using the real
experimental setup implemented using an OpenFlow
environment is presented in this section. The experi-
mental setup included a Ryu controller and Zodiac-FX
switch, as well as web servers such as Apache 2, Ngnix,
and SimpleHTTPServer, and a set of client machines in-

stalled with Ubuntu 20.0. The steps are configured as
follows:

The hosts are configured to use services such as im-
age data, video data, audio data, and text data. Apache
Bench is used to generate the traffic. Here different
metrics such as average response time, transfer rate,
time-per-request, requests-per-second, and wait-
ing time are considered for the performance evalua-
tion of SDLB-MCDM. The comparison of SDLB-MCDM
with different techniques like random, round robin,
LBBSRT, and SD-WLB is considered. In this experiment,
the SDLB-MCDM module runs on a Ryu controller that
runs three different algorithms: the request classifica-
tion module, the server monitoring module, and the
optimized dynamic load-balancing module using con-
tent-based routing. Averaging ten experiments yielded
the reported results. The proposed mechanism, SDLB-
MCDM, shows better performance in comparison with
other techniques, and this mechanism can be used in
many data center environments.

The graphs shown in Fig. 5 illustrate the average re-
sponse time of different schemes like round robin, ran-
dom, LBBSRT, SD-WLB, and SDLB-MCDM. The proposed
scheme (SDLB-MCDM) shows better performance in
comparison with other techniques.

Fig. 5. Average Response Time

Fig. 6 depicts the transfer rate, which indicates that
the proposed technique performs better at transfer-
ring more data in comparison with other techniques.

Fig. 6. Transfer Rate

440 International Journal of Electrical and Computer Engineering Systems

The time-per-request is depicted in Fig. 7, which in-
dicates the proposed [SDLB-MCDM] technique takes
very little time to serve the request.

Fig. 7. Time per request

The results in Fig. 8 clearly indicate that the proposed
method [SDLB-MCDM] serves a greater number of re-
quests per second in comparison with other techniques.

Fig. 8. Request per second

It is very important for any method to have a short
waiting period that indicates a very small number of
requests are waiting in the queue.

Fig. 9. Waiting Time

The results shown in Fig. 9 clearly indicate that the
proposed method has a very low number of outstand-
ing requests.

6.	 CONCLUSION

This proposed research work presents an optimized
load-balancing in a software-defined network based
on a multi-criteria decision-making technique [SDLB-
MCDM]. The SDLB-MCDM method proposes three algo-
rithms based on response time and content mapping
to choose the best server among the pool of servers.
In order to appreciate the efficacy and feasibility of the
proposed technique, different parameters are consid-
ered for decision-making rather than a single param-
eter, which makes it more efficient in comparison with
other techniques. The proposed technique makes use
of WSM and the MCDM method to determine the load-
balancing technique. The experimental results show a
58% improvement in the performance of the proposed
method when equal weights are assigned. The re-
sults show a 50% improvement in the performance of
SDLB-MCDM when unequal weights are assigned. The
performance results under both equal and unequal
weights show better performance in comparison with
round robin, random, LBBSRT, and SD-WLB techniques.

The proposed SDLB-MCDM method can be adopted
in data centre networks where load-balancing among
many virtual machines is a major challenge. The future
scope of this research work can be tested in a heteroge-
neous environment with different servers.

7.	 REFERENCES

[1]	 C. H. Benet, "Traffic Management in Software-

Defined Data Center Networks", Faculty of Health,

Science and Technology, Department of Mathe-

matics and Computer Science, Karlstad University,

PhD Thesis ,2021.

[2]	 M. M. Tajiki, B. Akbari, N. Mokari, “Optimal Qos-

aware network reconfiguration in software de-

fined cloud data centers”, Computer. Networks,

Vol. 120, 2021 pp. 71-86.

[3]	 K. Benzekki, A. El Fergougui, A. Elbelrhiti Elalaoui,

“Software-defined networking (SDN): a survey”,

Secure Communication Networks, Vol. 9, No. 18,

2016, pp. 5803-5833.

[4]	 L. Li, Q. Xu, “‘Load balancing researches in SDN: A

survey”, Proceedings of the 7th IEEE International

Conference on Electronics Information and Emer-

gency Communication, Shenzhen, China, 21-23

July 2017, pp. 403-408.

[5]	 M. Alotaibi, A. Nayak, “Linking handover delay

to load balancing in SDN-based heterogeneous

networks”, Computer. Communication., Vol. 173,

2021, pp. 170-182.

441Volume 14, Number 4, 2023

[6]	 S. Prabakaran, R. Ramar, Software-defined net-
work: Load balancing algorithm design and analy-
sis”, The International Arab Journal of Information
Technology, Vol. 18, No. 3, 2021, pp. 312-318.

[7]	 A. Moravejosharieh, S. Ahmad, K. Ahmadi, “Short-
ening the response time in software-defined
networking: A sensitivity analysis approach”, Pro-
ceedings of the IEEE 7th International Conference
on Communications and Electronics, Hue City,
Vietnam 18-20 July 2018, pp. 90-95.

[8]	 H. Sufiev, Y. Haddad, L. Barenboim, J. Soler, “Dy-
namic SDN controller load balancing”, Future In-
ternet, Vol. 11, No. 3, 2019, pp. 1-21.

[9]	 H. Mokhtar, X. Di, Y. Zhou, A. Hassan, Z. Ma, S.
Musa, “Multiple-level threshold load balancing in
distributed SDN controllers”, Computer Networks,
Vol. 198, 2021, pp. 108-369.

[10]	 T. Wang, F. Liu, J. Guo and H. Xu, "Dynamic SDN
controller assignment in data center networks:
Stable matching with transfers", Proceedings of
the 35th Annual IEEE International Conference on
Computer Communications, San Francisco, CA,
USA, 2016, pp. 1-9.

[11]	 H. Zhong, Y. Fang, J. Cui, “Reprint of ‘LBBSRT: An ef-
ficient SDN load balancing scheme based on serv-
er response time”, Future Generation Computer
Systems., Vol. 80, 2018, pp. 409-416.

[12]	 K. Soleimanzadeh, M. Ahmadi, M. Nassiri, “SD-
WLB: An SDN-aided mechanism for web load bal-
ancing based on server statistics”, ETRI Journal,
Vol. 41, No. 2, 2019, pp. 197-206.

[13]	 A. A. Abdelaziz, E. Ahmed, A. T. Fong, A. Gani, M.
Imran, “SDN-Based load balancing service for
cloud servers”, IEEE Communication Magazine,
Vol. 56, No. 8, 2018, pp. 106-111.

[14]	 J. V. O. Farias, E. F. Coutinho, C. I. M. Bezerra, “Apply-
ing load balancing algorithms for multiple access
management on software-defined networking
servers”, Proceedings of the 10th Euro-American
Conference on Telematics and Information Sys-
tems, New York, NY, USA, November 2020 ,pp. 1-5.

[15]	 A. S. Linn, S. H. Win, S. T. Win, “Server Load Balanc-
ing in Software Defined Networking”, National
Journal of Parallel and Soft Computing, Vol. 1, No.
1, 2019, pp. 261-265.

[16]	 S. Kaur, K. Kumar, J. Singh, N. S. Ghumman, "Round-
robin based load balancing in Software Defined
Networking," Proceedings of the 2nd International
Conference on Computing for Sustainable Global
Development, New Delhi, India, 2015, pp. 2136-
2139.

[17]	 A. K. Arahunashi, G. G. Vaidya, K. V. Reddy, "Imple-
mentation of Server Load Balancing Techniques
Using Software-Defined Networking", Proceed-
ings of the 3rd International Conference on Com-
putational Systems and Information Technology
for Sustainable Solutions, Bengaluru, India, 2018,
pp. 87-90.

[18]	 M. L. Chiang, H. S. Cheng, H. Y. Liu, C. Y. Chiang,
“SDN-based server clusters with dynamic load
balancing and performance improvement”, Clus-
ter Computing, Vol. 24, No. 1, 2021, pp. 537-558.

[19]	 G. S. Begam, M. Sangeetha, N. R. Shanker, “Load Bal-
ancing in DCN Servers through SDN Machine Learn-
ing Algorithm”, Arabian Journal for Science and Engi-
neering, Vol. 47, No. 2, 2022, pp. 1423-1434.

[20]	 M. Cinelli, M. Kadziński, G. Miebs, M. Gonzalez, R.
Słowiński, “Recommending multiple criteria deci-
sion analysis methods with a new taxonomy-based
decision support system”, European Journal of Op-
erational Research, Vol. 302, No. 2, 2022, pp. 633-651.

[21]	 B. Sarkar, “Fuzzy decision making and its applica-
tions in cotton fibre grading”, Soft Computing in
Textile Engineering, 2011, pp. 353-383..

[22]	 S. G. Ozcan, M. Sayit, “Improving the QoE of DASH
over SDN: A MCDM Method with an Intelligent
Approach”, Proceedings of the 22nd Conference on
Innovation in Clouds, Internet and Networks and
Workshops, Paris, France, 2019, pp. 100-105.

[23]	 S. Chakraborty, T. K. Jana, S. Paul, “On the applica-
tion of multi criteria decision making technique
for multi-response optimization of metal cutting
process”, Intelligent Decision Technologies, Vol.
13, No. 1, 2019, pp. 101-115.

[24]	 J. Gyani, A. Ahmed, M. A. Haq, “MCDM and Various
Prioritization Methods in AHP for CSS: A Compre-
hensive Review”, IEEE Access, Vol. 10, 2022, pp.
33492-33511.

[25]	 E. Triantaphyllou, A. Sánchez, “A sensitivity analy-
sis approach for some deterministic multi-criteria

decision-making methods”, Decision Sciences.,

Vol. 28, No. 1, 1997, pp. 151-194.

[26]	 P. C. Fishburn, “Letter to the Editor—Additive Utili-

ties with Incomplete Product Sets: Application to

Priorities and Assignments”, Operations Research,

Vol. 15, No. 3, 1967, pp. 537-542.

[27]	 S. Das, A. Ghosh, “A Fuzzy Multi-Criteria Decision-

Making Approach for Grading of Raw Jute”, Jour-

nal of Natural Fibers, Vol. 18, No. 5, 2021, pp. 685-

693.

[28]	 A. Hussain, J. Chun, M. Khan, “A novel multicrite-

ria decision making (MCDM) approach for precise

decision making under a fuzzy environment”, Soft

Computing, Vol. 25, No. 7, 2021, pp. 5645-5661.

[29]	 J. Ali and B. H. Roh, “A Novel Scheme for Controller

Selection in Software-Defined Internet-of-Things

(SD-IoT)”, Sensors, Vol. 22, No. 9, 2022, p. 3591.

[30]	 J. Ali, B. H. Roh, S. Lee, "QoS improvement with

an optimum controller selection for software-de-

fined networks", PLoS ONE, Vol. 14, No. 5, 2019.

442 International Journal of Electrical and Computer Engineering Systems

