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The mechanism of conductivityin the regime of the intrinsic Josephson effect is
studied in layered superconductors with singlet d-wave pairing. The cases of co-
herent and incoherent interlayer tunneling of electrons are considered. The theory
with coherent tunnelling describes main qualitative features of the effect observed
in highly anisotropic high-Tc superconductors at voltages smaller than the ampli-
tude of the superconducting gap, the mechanism of resistivity being related to the
excitations of quasiparticles via the d-wave gap. Interaction of the Josephson junc-
tions formed by the superconducting layers due to the charging effects is shown to
be small.
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1. Introduction

Theoretical understanding of the intrinsic Josephson effect (IJE) in layered high-
Tc superconductors is limited by insufficient knowledge of transport properties of
both the superconducting and normal states. Studies of the energy structure [1,2]
show that the electronic spectral density in directions (0, π) is affected by a strong
interaction with spin fluctuations [3]. At the same time, at low energies, in the
directions (π, π), corresponding to zeros of the order parameter ∆, the electronic
structure can be described in terms of the Fermi liquid. This gives chances to
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describe the IJE at low temperatures and small voltages in terms of the standard
Fermi liquid approach. The aim of this work is to study the resistive properties of
layered high-Tc superconductors and to understand to which extent they can be
described in the frame of the BCS model with intralayer singlet d-wave pairing.

The intrinsic Josephson effect is expected to be qualitatively different in the
cases of coherent and incoherent interlayer transfer. If the interlayer tunneling
is coherent, a layered superconductor is a strongly anisotropic 3D crystal, whose
normal-state resistivity is induced by scattering. On the other hand, a supercon-
ductor with incoherent tunneling can be considered as a stack of Josephson tunnel
junctions.

If the tunneling is incoherent, the in-layer momentum is not conserved in inter-
layer transitions. This results in finite tunneling resistivity along the c-axis. If the
tunnel junctions are formed by conventional s-wave superconductors, the product
of critical current and normal state resistivity Vc = IcRN is of the order of the
gap value which corresponds to the experimental data for high-Tc superconductors.
However, for the d-wave order parameter, independent averaging over directions
of the electron momentum in neighbouring layers in the case of incoherent tun-
neling would result in the zero critical current along the c-axis, and in order to
explain the experimentally observed large values of the critical current along the
c-axis, one must assume a special d-wave-like angle dependence for the probabil-
ity of random interlayer hopping. The fraction of the s-component in the order
parameter in BSCCO was found in the recent tunneling measurements [4] to be
below 10−3. Without the assumption of the special momentum dependence of the
interlayer transfer integral for the incoherent interlayer tunneling, such symmetry
would result in a negligibly small critical current Ic, and in Vc about three orders
of magnitude smaller than the experimentally observed values [5]. Furthermore,
with such small values of jc, the regime of branching in which some junctions are
in the superconducting state, while others are in a resistive state, would be impos-
sible in the range of voltages V ∼ ∆0/e per one resistive junction. Such branching
is the most typical manifestation of the IJE. Thus, it is difficult to understand
main features of the IJE in the frame of incoherent interlayer tunneling and d-wave
pairing.

Since a layered superconductor with coherent tunneling is an anisotropic 3D
crystal, in this case one must not assume a special angle dependence for the in-
terlayer transfer integral in order to explain large experimental values of jc. But
the question whether IJE can be observed in a clean quasi two-dimensional crystal
is still not clear. The finite normal-state resistivity ρc in crystals is induced by
scattering, ρc ∼ 1/τ , in the clean superconductor the scattering rate being small,
h̄/τ � ∆0. Typical voltages in experimental studies of IJE are a few times smaller
than the maximum energy gap ∆0/e [5], i. e., much larger than h̄/eτ . At such volt-
ages (and frequencies of Josephson oscillations), resistivity is expected to decrease
as voltage and frequency increase because of the Drude-like regime of scattering [6].
However, such decaying branches are not observed. The region of finite resistivity
may become more pronounced if the intralayer scattering by impurities is resonant.
Then the bandwidth of the gapless states formed by the scattering is relatively
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large γ ≈ √∆0h̄/eτ [7]. But in a clean superconductor, this gives the region of
linear resistivity still at voltages much smaller, than ∆0. Thus, typical voltage per
one junction in the resistive state, eV ∼ ∆0, can be explained only provided an
additional mechanism for the resistivity is present at frequencies ω > h̄/τ . Such
a mechanism was considered recently in the study of bandwidth of the Josephson
plasma resonance at low temperatures [8]. It is related to the dissipation induced
by the electron excitation via the d-wave gap. However, this mechanism dies out at
voltages larger than the amplitude of the d-wave gap, and to get a finite resisitivity
at high voltages, one must take into account some other mechanisms of scattering.
Finite resistivity may be caused by some contribution of incoherent interlayer tun-
neling at large voltages, or inelastic scattering, e.g. on spin-wave excitations, may
become important at large energies. We do not study these processes here.

In this paper we study, first, the IJE in a perfect highly-anisotropic supercon-
ducting crystal with coherent interlayer charge transfer. We derive equations for
the charge and current densities and calculate the I-V curves at voltages and fre-
quencies of the order of the gap, paying attention to the charging effects. Then, for
comparison, we calculate the I-V curves for the case of incoherent interlayer tun-
neling. We found that the I-V curve calculated for the case of incoherent tunneling
looks rather similar to the experimental data at large voltages.

2. Main equations

Having in mind to study large frequencies and voltages, we calculate expres-
sions for the current and charge densities using collisionless transport equations in

the Keldysh diagram technique for Green’s functions at coinciding times Ĝ (t, t)
derived by Volkov and Kogan [9]. We generalize these equations to the case of lay-
ered superconductors, assuming the interlayer interaction described by the tight-
binding approximation, and the superconductivity described by a BCS type the
Hamiltonian leading to the singlet d-wave pairing. This approach to interlayer
transitions describes the case of a layered single crystal. It is contrary to the case
of random interlayer hopping considered in Ref. [10]. Our results have also been
checked using quasiclassical transport equations for Green’s functions integrated
over momenta [11] generalized for layered superconductors with coherent interlayer
tunneling [12,13]. For the case when the time dependence of the scalar potential
can be neglected, the results can be calculated using a standard expression for the
conductivity in terms of the spectral densities in neighbouring layers. Using this
approach, we calculate I-V curves for the case of incoherent interlayer tunneling.

We consider homogeneous interlayer currents along the c-axis. This case is real-
ized in narrow samples with the width in the ab-plane smaller than the Josephson
length. We solve equations for diagonal and off-diagonal with respect to spin-index
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components gnm(t) and fnm(t) of Keldysh propagator,

ih̄
∂

∂t
gnm +∆n f

∗
nm + fnm ∆m + (µn − µm)gnm

= t⊥
∑
i=±1
(Ann+i gn+im − gnm+i Am+i m),

ih̄
∂

∂t
fnm − 2ξfnm −∆n g∗nm + gnm ∆m + (µn + µm)fnm
= t⊥

∑
i=±1
(Ann+i fn+i m − fnm+i A∗m+i m) .

(1)

Functions gnm(ξ, φ, t), fnm(ξ, φ, t) are matrices in layer indices. Here ξp = ε (p)−
εF , where ε (p) is the single-electron energy in the normal state, εF is the Fermi
energy and p the electron momentum in the ab-plane, φ is the angle of the in-
plane electron momentum and t⊥ is the interlayer transfer integral. Furthemore,
∆n = ∆(φ)n and χn are the anisotropic superconducting order parameter and its
phase in layer n, µn = eΦn+(h̄/2)(dχn/dt) is the gauge-invariant scalar potential,
Φn is the electric potential, Ann+1 = expϕn, where ϕn = χn+1−χn− (2πs/Φ0)Az
is the gauge-invariant phase difference between the layers, and Az is the component
of the vector potential in the direction perpendicular to the layers. Electric field
between the layers is expressed via the gauge-invariant potential as

eEns = µn − µn+1 + h̄
2

dϕn
dt
. (2)

The scalar potential µ is related to branch imbalance [14]. It is responsible for the
charging effects in the Josephson plasma oscillations [15] and in IJE [6,16].

The current density between the layers n and n + 1 and charge density in the
layer n can be calculated as

jn,n+1 =
et⊥
2s

∫
dp

(2πh̄)2
(An+1,n gn,n+1 − gn+1,n An,n+1) , (3)

ρn = − e
4is

∫
dp

(2πh̄)2
(gnn + g

∗
nn) , (4)

where s is the crystalline period in the c-direction.

3. Charge and current densities

We solve Eqs. (1) perturbatively with respect to t⊥ and consider the case of low
temperatures T � ∆0. The contributions of interlayer transitions to the charge
density are quadratic in t⊥. Therefore, in the main approximation, we can take
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into account only intralayer contribution which in the Fourier representation has a
form

gnn + g
∗
nn =

[
2ξ

ε
− 8∆2µω
ε(4ε2 − ω2)

]
tanh

ε

2T
, (5)

where ε =
√
ξ2 +∆2. Inserting this expression into (4), we get in the time repre-

sentation

ρn = −κ
2

8π

∞∫
0

dt1F (t1)µn(t− t1) , (6)

where κ is the inverse Thomas-Fermi screening radius,

F (t) =

〈 ∞∫
−∞
dξ
2∆2 sin 2εt

ε2
tanh ε/2T

〉
, (7)

and 〈· · ·〉 means averaging over φ.
The integral in Eq. (7) describes the non-exponential relaxation of µ with a

relaxation time of the order of h̄/∆0. We will need equation (6) in the case of
slow variations of the scalar potential when F (t) → 2δ(t) so that the integral
in Eq. (6) reduces to 2µ(t). Then, inserting the expression for the charge density
into the Poisson’s equation, with electric field determined by Eq.(2), we express the
difference of the scalar potentials between neighbouring layers, δµn = µn+1 − µn,
in terms of the time derivative of the phase differences

δµn =
a

16
√
1 + a

∑
m

(ϕ̇n+m+1 + ϕ̇n+m−1 − 2ϕ̇n+m)
(√
1 + a− 1√
1 + a+ 1

)|m|
, (8)

with a = 4ε⊥/(κs)2, where ε⊥ is the high frequency dielectric constant in the
perpendicular direction.

To calculate the current density, we must solve Eqs. (1) in the linear approxi-
mation on t⊥. The equations are still difficult to solve for an arbitrary µn(t) and
ϕn(t). Therefore, we calculate the expressions for the current density in two lim-
iting cases. First, we find the solutions in the linear approximation with respect
to the potential µ which describes the charging effects. The conditions for small
effects of the approximation will be discussed later.

gn,n+i =
4t⊥∆2

ε
tanh

ε

2T Cω

ε(4ε2 − ω2) +
∞∫

−∞

dω1
2π

[
(2ω1 − ω)Cω−ω1
4ε2 − (ω − ω1)2 −

iωSω−ω1
4ε2 − ω2

]
µω1

4ε2 − ω21

 .
(9)
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In this limit, the current density between the layers n and n + 1 consists of a
component determined by the phase difference ϕn between the same layers only,
and of an additional component which depends on the difference of the scalar
potentials in these layers,

jn,n+1(t) ≡ jϕ(t) + jµ(t).

Assuming that t⊥ does not depend on the momentum, we get

jϕ(t) = jc

∞∫
0

dt1F (t1) cos
ϕn(t− t1)
2

sin
ϕn(t)

2
, (10)

jµ(t) = jc

∞∫
0

dt1

∞∫
0

dt2F (t2)

{[
cos
ϕn(t− t1)
2

δµn(t − t1 − t2)

− cos
ϕn(t− t1 − t2)

2
δµn(t − t1)

]
cos
ϕn(t)

2
(11)

+ sin
ϕn(t− t1)
2

δµn(t − t1 − t2) sin ϕn(t)
2

}
.

Since according to Eq. (8) δµn(t) depends on the phase differences between different
layers, the component (12) of the current describes the interaction between the
”Josephson junctions” due to the charging effects. Interaction due to the charging
effects was studied in the phenomenological model by Koyama and Tachiki [17],
however, the results are different.

For s = 1.5 nm, 1/κ = 0.2 nm and ε⊥ = 12, we get a ≈ 0.85, and the factor
in front of the sum in Eq. (8) is about 0.04. Thus, δµn is small compared to the
time derivatives of the phase differences. Therefore, the charging effects and the
contribution of δµn to the electric field between the layers must be small as well
(cf. Eq. (2)).

Equations (10) and (12) can be simplified in the limiting cases. At T � h̄ω and
eV � ∆0

jϕ(t) = jc sinϕn + jc
π

2∆0

dϕn
dt
(1− cosϕn) , (12)

jµ(t) = 2jc

∞∫
0

dt1 sin
ϕn(t− t1)
2

δµn(t− t1) sin ϕn(t)
2
. (13)

So, the current can be considered to consist of the superconducting, normal and
interference components, and of the quasiparticle contribution related to the dif-
ference of the scalar potential. In the limit of a linear response, the dissipative
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term in Eq. (12) vanishes because in the spatially uniform case excitations of the
quasiparticles via the superconducting gap are forbidden. In the nonlinear regime,
the related dissipation mechanism is effective because in the presence of a current
along the c-axis, the phase depends on the layer index. This makes the system non-
uniform and the excitations via the gap become allowed [8]. In the regime of the
linear response, this dissipation mechanism becomes possible due to the scattering.
Taking into account the scattering in a similar way as in Ref. [8], we get

j(t)

jc
= ϕn +

2

3τ∆20

dϕn
dt
− π

2∆0
δµn . (14)

The expression for the current density simplifies also at large frequencies and
voltages,

ω, V � ωp , (15)

where ωp is the Josephson plasma frequency. In the most anisotropic materials, like
Bi- and Tl-based cuprates, ∆0 � ωp. Under the condition (15), the electronic AC
current is shunted by the displacement current,

vAC ∼ vDC
(
ω2p

ω2

)
� vDC ,

and time dependence of the phase differences become simple,

ϕn ≈ 2ωnt+ ϕω , ϕω � 1.

When all layers are in the resistive state, then δµ = 0, and the I-V curve has
the form

j =

{
θ (2∆0 − V )

[
2∆0
V
K

(
V

2∆0

)
− E

(
V

2∆0

)]
+ θ (V − 2∆0)

[
K

(
2∆0
V

)
− E

(
2∆0
V

)]}
tanh

V

4T
,

(16)

where, again, V is the voltage per one junction. This expression is also valid in the
limit a→ 0 in which δµ = 0.
At low voltages the I-V curve (16) is described by the linear quasiparticle con-

ductivity σq = πesjc/∆0 = e
2/(8πλ2∆0). This value agrees with the experimental

data of Latyshev et al. [7] and differs from the linear conductivity calculated for
the case of the resonant scattering [7] by the factor 8/π2 ≈ 1. At larger voltages,
the shape of the I-V curve is different from that observed experimentally. It has
a logarythmic anomaly at V = 2∆0 and a decaying branch at V > 2∆0. This
demonstrates that our approach is not valid at large V when contributions of elec-
trons with energy of order ∆0 are important. Such electrons are strongly scattered
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by spin fluctuations which we did not take into account. Any additional mechanism
of scattering, in particular, inelastic processes or presence of the component with
the incoherent charge transfer in the interlayer tunneling, will smear the logaryth-
mic anomaly at V = 2∆0 and add an Ohmic contribution to I-V curves at large
voltages.

Now we consider the regime of branching. At the current values j < jc, a regime
is possible in which some “junctions” are in the superconducting state while others
are in the resistive state. In this case the DC current through the superconducting
junctions is transported as the superconducting current, and the AC current is
transported mainly as the displacement current. The total voltage is formed by
the sum of the voltages across resistive junctions, and the I-V curves consist of
branches which differ by the number of the junctions in the resistive state. The
number of branches is equal to the total number of the layers in the sample. In the
limit of a small a, the n-th branch is described by the first term in Eq. (16) with V
substituted by V/n. Under the condition (15), the current density was calculated
also for arbitrary relation between δµn and ϕ̇n. At ϕ̇n � T ,

jn,n+1 =

√
ϕ̇n + δµn
(ϕ̇n − δµn)3

[
K

(√
ϕ̇2n − δµ2n
2∆0

)
− E

(√
ϕ̇2n − δµ2n
2∆0

)]
. (17)

Note that ϕ̇n differs from the voltage across the resistive junction by δµn (cf. Eq.
(2)). In the limit a → 0, when δµn = 0, the current as function of the voltage V
per one resistive junction is identical for all branches. At finite a, according to (8),
the shape of the branches depends on the neighbouring junctions, whether they are
in the resistive state or not. However, for reasonable values of the parameter a, the
difference between the shapes of the branches presented as functions of the total
voltage divided by the number of the ”junctions” in the resistive state is small, less
than 3 – 4%. Already at a = 0.2, the branches almost coincide, which corresponds
to the experimental results [4,5].

4. Conclusion

The model with the BCS-type d-wave pairing and coherent interlayer transport
describes qualitatively such features of the IJE like the branching with typical
voltages per one junction V ∼ ∆0 at low temperatures. The charging effects are
found to be small for reasonable values of the parameters. The damping in the
system and, hence, the resistivity at such voltages is induced by the transitions of
the quasiparticles via the d-wave gap. However, this model does not describe the
experimental curves at voltages of the order ∆0 and higher because in the regime
when all layers are in the resistive state, it results in the logarythmic singularity
at V = ∆0 and a decaying I-V curve at larger voltages. This discrepancy may
be related either to the inapplicability of the simple BSC-type model with d-wave
pairing, or to some other mechanisms of scattering becoming effective at larger
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energies, like the inelastic scattering, e.g., on spin wave excitations, or other effects
which smear the spectral density. We do not address these processes here.

Note that at elevated temperatures and smaller voltages of the order of 1/τ ,
especially near Tc, one may expect a different regime in which resistivity is related
to the quasiparticle scattering. This mechanism dies out at large frequencies and
voltages ω, V � 1/τ .
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DISIPATIVNI MEHANIZMI INTRINSIČNOG JOSEPHSONOVOG EFEKTA U
SLOJEVITIM SUPRAVODIČIMA S MEDUSLOJNIM TUNELIRANJEM

Proučavaju se mehanizmi vodljivosti u uvjetima intrinsičnog Josephsonovog efekta
u slojevitim supravodičima sa singletnim d-valnim sparivanjem. Razmatraju se
slučajevi koherentnog i nekoherentnog meduslojnog tuneliranja elektrona. Teorija s
koherentnim tuneliranjem opisuje glavne kvalitativne značajke efekta koji se opaža
u jako anizotropnim visokotemperaturnim supravodičima, na naponima manjim od
supravodljivog procijepa, za koji se otpornost svodi na uzbudu kvazičestica putem
d-valnog procijepa. Pokazuje se da je medudjelovanje Josephsonovih spojeva medu
supravodljivim slojevima, koje je posljedica učinaka nabijanja, malo.

156 FIZIKA A (Zagreb) 8 (1999) 3, 147–156


