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Propagation of a finite-amplitude ion-acoustic solitary wave in a weakly-relativistic
plasma consisting of cold ions and warm electrons of two different temperatures
have been studied analytically. Sufficient and necessary conditions for the existence
of ion-acoustic solitons in such a plasma are obtained from which it is observed
that both the relativistic effect and the two-temperature electrons have important
role for the formation of the soliton. Critical values for the soliton amplitude and
its velocity are numerically estimated for different values of the concentration of
two-temperature electrons and relativistic stream velocity.
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1. Introduction

In last few years, propagation of ion-acoustic solitary waves in relativistic plas-
mas have been theoretically investigated by various authors. Das and Paul [1] first
considered a weakly-relativistic plasma for the study of ion-acoustic soliton using
the reductive perturbation method. They showed that the relativistic effect for the
formation of solitons in the plasma is important only in the presence of streaming
of ions. Later, Nejoh [2] introduced the ionic temperature to study the ion-acoustic
solitons in relativistic plasma. Subsequently, the effect of non-isothermality [3],
beam ions [4], magnetic field [5], electron-inertia [5], negative ions [7–9], density
gradient [10] etc., have been considered by other authors in theoretical investiga-
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tions of the ion-acoustic solitons in relativistic plasmas. However, the presence of
two-temperature electrons, i.e. two categories of electrons having lower and higher
temperatures, contributes significantly to the formation of ion-acoustic soliton in
both non-relativistic [11–14] and relativistic plasma [15,16].

It is important to note that most authors used the reductive perturbation
method [17]. They studied the propagation of ion-acoustic solitary waves starting
from the K-dV equation and derived the widths and amplitudes of the solitons. But
Roychowdhury and Bhattacharyya [18] used the pseudo-potential method for the
study of ion-acoustic soliton in relativistic plasma. On the other hand Ghosh and
Roy [19] studied the propagation of ion-acoustic solitary wave in relativistic plasma
following a new analytical method. They obtained some necessary and sufficient
conditions for the existence of solitons in the plasma.

In this paper, we have followed the work of Ghosh and Roy [19] for theoretical
investigation on the ion-acoustic solitons in a weakly relativistic plasma consist-
ing of cold ions and two-temperature electrons. We have found that the necessary
conditions are greatly modified when we assume the existence of solitons in the
presence of two-temperature electrons and we derive a relation between the con-
centration of lower and higher temperature electrons which satisfies the necessary
condition for the soliton in the plasma.

2. Formulation

We consider a collisionless plasma consisting of cold ions and two-temperature
electrons. The ions are weakly relativistic and have streaming motion. So, the basic
equations in normalized form for the dynamics of such plasma in unidirectional
propagation are

∂ni

∂t
+
∂

∂x
(nivir) = 0 , (1)

∂vir
∂t
+ vi
∂vir
∂x
= −∂φ
∂x
, (2)

∂2φ

∂x2
= nel + neh − ni , (3)

where nel = µ exp[φ/(µ+ νβ)], neh = ν exp[φ/(µ+ νβ)], β = Tel/Teh,

vir = vi/
√
1− v2i /c2 ≈ vi(1 + (1/2)v2i /c2) ,

ni and vi are the density and velocity of ions, respectively, nel and neh are the
densities of cold electron and hot electrons, respectively, µ and ν are, respectively,
the equilibrium densities of low- and high-temperature electron components satis-
fying the charge neutrality condition µ + ν = 1, Tel and Teh are the temperatures
of cold and hot electrons, respectively, and φ is the electrostatic potential. c is the
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normalized velocity of light, c = c0(kTeff/mi)
−1/2, where c0 is the velocity of light

in vacuum, k the Boltzmann constant, Teff the effective temperature of the plasma
and mi the mass of ions.

To obtain the solitary wave solution from Eqs. (1) to (3), we change the two
dependent variables to a single independent variable η = x − V t, where V is the
velocity of the soliton. Moreover, we assume the boundary condition at |x| → ∞

ni −→ 1, vi −→ v0, φ −→ 0 .

Therefore, from Eqs. (1) and (2), we obtain

ni =
V − v0
V − vi , (4)

φ(vi) = a0 + viV

(
1 +

v2i
2c2

)
− v

2
i

2
− 3v

4
i

8c2
, (5)

where

a0 = −v0V
(
1 +

v20
2c2

)
+
v20
2
+
3v40
8c2
. (6)

Now, using Eqs. (4) and (5) in Eq. (3), we get

d2φ

dη2
= G(vi) , (7)

where

G(vi) = µ exp

(
φ

µ+ νβ

)
+ ν exp

(
βφ

µ+ νβ

)
− V − v0
V − vi . (8)

Consequently, Eq. (5) leads to

dφ

dvi
= (V − vi)

(
1 +
3v2i
2c2

)
. (9)

Moreover, integrating Eq. (7), we obtain

(
dφ

dvi

)2 (
dvi
dη

)2
= H(vi)−K , 10)

where

H(vi) = 2

∫
G
dφ

dvi
dvi , (11)

and K is an arbitrary constant.
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Now, using Eqs. (6), (8) and (9), we get from Eq. (11)

H(vi) = (12)

2

{
µ(µ + νβ) exp

[
φ

µ + νβ

]
+
ν(µ+ νβ)

β
exp

[
βφ

µ+ νβ

]
− vi(V − v0)

(
1 +

v2i
2c2

)}
.

3. Analytical study

3.1. Necessary and sufficient condition

From Eq. (10), one may obtain the physically admissible solution for the ion-
acoustic solitary wave in a relativistic plasma having two-temparature electrons. In
order to get the physically admissible solution of Eq. (10), it is observed that

(i)

(
dφ

dvi

)2(
dvi
dη

)2
must be positive

(ii) vi and
dvi
dη

must be bounded.

Also, it is observed that G −→ ±∞ as vi −→ V , which follows from vimax < V
or vimin > V .

Consequently, one may take the following requirements:

I. Between v0 and V there exists vimax or vimin such that

H(v0) = H(vimax) = K for v0 < vimax < V ,

H(v0) = H(vimin) = K for V < vimin < v0 .

II. H(vi) ≥ K under the condition either a) v0 < vi < vimax ,
or b) V < v1 < v2 < v0.

The function G(vi) vanishes at most once between (13)
two values of vi, viz. v0 and V .

To prove this assertion, let us assume that G vanishes at two different values of vi,
say v1 and v2 where either a) v0 < v1 < v2 < V , or b) V < v1 < v2 < v0.

From Eq. (8), one can obtain

G(v0) = µ+ ν − 1 = 1− 1 = 0 .

Now, by Rolle’s theorem, there exist values of vi, say v3 and v4, such that

G′(v3) = G′(v4) = 0 , (14)
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where G′(vi) = dG/dvi, and either a) v0 < v1 < v3 < v2 < v4 < V , or
b) V < v1 < v3 < v2 < v4 < v0.

From Eqs. (8) and (14), we get

F (vi) = 0 at vi = v3, v4 ,

where

F (vi) = (15)

(V −vi)
(
1 +
3v2i
2c2

)
− 1

V − v0

{
µ

µ+ νβ
exp

(
φ

µ+ νβ

)
+

νβ

µ+ νβ
exp

(
βφ

µ + νβ

)}
.

Since F (v3) = F (v4) = 0, we have again (by Rolle’s theorem) that there exist a
value of vi between v3 and v4 such that dF/dvi = 0 at vi = v5, so that we obtain

1

2c2
(6viV − 2c2 − 9v2i ) (16)

=
(V − vi)(1 + 3v2i /(2c2))
(V − v0)(µ + νβ)2

[
µ exp

(
φ

µ+ νβ

)
+ νβ2 exp

(
βφ

µ+ νβ

)]
,

for vi = v5.

Regarding Eq. (16), one can say that the right-hand side is definitely positive
for either the case v0 < v5 < V , or V < v5 < v0. Hence, for the left-hand side to
be positive, the only possibility is

1

2c2
(6viV − 2c2 − 9v2i ) > 0 for vi = v5 ,

or 6viV − 9v2i > 2c2 ,

or 6vic− 9v2i > 2c2 for c > V ,

or 3vi(2c− 3vi) > 2c2 ,

or c2 + (c− 3vi)2 < 0 for vi = v5 ,

which is impossible. Hence, G(vi) vanishes at most once between v0 and V for all
values of µ and ν (> 0).

We now establish two new results.

Result A) For a physically bounded admissible solution of Eq. (10), vimax or
vimin are determined uniquely by either a) H(v0) = H(vimax) and v0 < vi < V , or
b) H(v0) = H(vimin) and V < vi < v0.
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This result can be easily proved following the article of Ghosh and Ray [19].

Result B) A real and bounded solution of Eq. (10) will be admitted if the
following conditions (i) and (ii) are satisfied:

(i) V > v0+(1+
3v20
2c2 )

−1/2 for V > v0 or v0 > V +(1+
3v20
2c2 )

−1/2 for V < v0
(ii) H(vi) −H(v0) < 0 . The condition (i) is necessary. If the requirement (ii)

is fulfilled, then one may obtain H(vi) > H(v0) for vi = v0 + ε, where ε > 0 is an
arbitrarily small number. It immediately follows that

H ′′(v0) =
dH

dv2i
> 0 or G′(v0)φ′(v0) > 0 , (17)

where φ′(vi) = dφ/dvi (from Eq. (8), G(v0) = 0). From Eq. (9), we get φ′(vi) > 0
for v0 < vi < V and φ

′(vi) < 0 for V < vi < v0, and using Eq. (17), we obtain

G′(v0) > 0 for v0 < vi < V ,

or

(
µ

µ+ νβ
+

νβ

µ+ νβ

)(
1 +
3v20
2c2

)
− 1

(V − v0)2 > 0 ,

or (V − v0)2 >
(
1 +
3v20
2c2

)−1
,

or V > v0 +

(
1 +
3v20
2c2

)−1/2
for V > v0 . (18)

Similarly, we get from Eq. (17)

v0 > V +

(
1 +
3v20
2c2

)−1/2
or V < v0 −

(
1 +
3v20
2c2

)−1/2
for V < v0 . (19)

The condition (ii) is necessary.

Let us assume H(V ) ≥ H(v0) for v0 < vmax < V ; then we have from the the
requirement (I)

H(v0) = H(vimax) = K

so that H ′(vi) vanishes between v0 and vimax and also between vimax and V .
Similarly, for V < vimin < v0, we have from the requirement I

H(v0) = H(vimin) = K

from which we say that H ′(vi) must vanish between v0 and vimin and also between
vimin and V .
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These considerations mean that H ′(vi)) vanishes twice between v0 and V . We
also have

H ′(vi) = 2G(vi)
dφ

dvi

i.e., G(vi)dφ/dvi vanishes twice between v0 and V . That contradicts assertion (13),
i.e. G(vi) vanishes at most once between v0 and V . From

dφ

dvi
= (V − vi)

(
1 +
3v2i
2c2

)

we see that dφ
dvi
does not vanish between vi and V . Hence this condition is necessary.

Therefore,

H(V ) < H(v0) . (20)

Remark: The conditions (i) and (ii) of the Result B) are necessary as well as
sufficient to hold in the case of ion-acoustic solitary waves in a relativistic plasma
composed of cold ions and one electron component as shown by Ghosh and Ray
[19].

3.2. Simplification of conditions

From the necessary condition H(vi) < H(v0), we can write

µ

[
exp

(
φ(V )

µ+ νβ

)
− 1
]
+
ν

β

[
exp

(
βφ(V )

µ+ νβ

)
− 1
]

(21)

<
(V − v0)2
µ+ νβ

(
1 +

1

2c2
(v20 + v0V + V

2)

)
.

The condition (21) is the relation between µ and ν for which the necessary condition
H(V ) < H(v0) is satisfied. Since β < 1 and µ < 1 because of µ+ν = 1, the condition
(21) changes to

exp(βm) − 1
βm

<<
(V − v0)2
µ + νβ

(
1 +

1

2c2
(v20 + v0V + V

2)

)
(22) .

where m = φ(V )/(µ+ νβ).

4. Numerical study

Retaining terms up to φ3, we obtain from (21)

φ(V )+
1

2
φ2(V )+

1

6

µ + νβ2

(µ + νβ)2
φ3(V )+ . . . < (V −v0)2

(
1 +

1

2c2
(v20 + v0V + V

2)

)
.

(23)
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Simplifying (23), we get

φ(V ) < φc(V ) ,

where

φc(V ) =
(24)

−a1 + a1/31
[(
a2 +

√
a22 − a1(a1 − 2)3

)1/3
+

(
a2 −

√
a22 − a1(a1 − 2)3

)1/3]
,

and

a0 = (V − v0)2
(
1 +

1

2c2
(v20 + v0V + V

2)

)
,

a1 =
(µ+ νβ)2

µ+ νβ2
,

a2 = 3a0 + 3a1 − a21 .

To get the physical ideas about φ(V ) in a weakly relativistic plasma having cold
ions and two-temperature electrons, we have computed the results satisfying Eq.
(24) for different values of µ, ν and β as well as v0/c. Also, we have computed the
critical values of V , i.e., Vc for two different cases, V > v0 and V < v0. All results
are shown in Tables 1A to 5.

5. Critical values of V

From Eq. (18), the critical values of the soliton velocity (i.e. V = Vc) are given
by

Vc = v0 +
1√
1 +

3v20
2c2

when V > v0 .

The critical values of the soliton velocity have been numerically estimated for dif-
ferent values of the stream velocity and the relativistic parametar. They are shown
in Tables 1A and 1B.

From Eq. (19), we have the critical values of the soliton velocity (i.e. V = Vc)

Vc = v0 − (1 + 3v20/(2c2))−1/2 when V < v0 .

The critical values of the above soliton velocity numerically estimated for the dif-
ferent values of stream velocity and relativistic parameter are shown in Tables 2A
and 2B.
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TABLE 1. Critical values of the soliton velocity (Vc) for different values of the
stream velocity (v0) and relativistic parameter.

A) When v0/c = 0.01

v0 0.10 0.15 0.20 0.25 0.30

Vc 1.0999 1.1499 1.1999 1.2499 1.2999

B) When v0 = 0.1

v0/c 0.012 0.014 0.016 0.018 0.020

Vc 1.0999 1.0999 1.0998 1.0998 1.0997

TABLE 2. Critical values of the soliton velocity (Vc) for different values of the
stream velocity (v0) and relativistic parameter.

A) When c = 10

v0 2.0 2.1 2.2 2.3 2.4

Vc 1.0281 1.1315 1.2344 1.3375 1.4406

B) When v0 = 2.1

v0/c 0.21 0.22 0.23 0.24 0.25

Vc 1.1315 1.1344 1.1375 1.1406 1.1438

Using the values of the critical velocity of Tables 1A, 1B, 2A and 2B, the critical
values of the electrostatic potential φc for the existence of ion-acoustic solitary
waves have been calculated which are given in Tables 3 to 5 for different values
of the concentration of two-temperature electrons, stream velocity (v0), relativistic
parameter and β. It is observed from the Tables 3A and 3B (when V > Vc) that
φc is at minimum when the density of the low-temperature electrons (µ) is 0.03 for
β = 0.025. But from Table 3C, we observe that φc will have minimum values for
µ = 0.05 and µ = 0.06 when β = 0.05 and 0.075, respectively.

From Tables 3A and 3C, we also see that the values of φc will be greater in
every case when the soliton velocity and the values of β are increased gradually.
But, the values of φc in Table 3B are gradually decreasing when the drift velocity
(v0) is increasing rapidly. When V > Vc, φc increases when increasing V and v0/c.

Further, from Table 4C, we see that when V < Vc, φc will have minimum values
when µ = 0.03 for β = 0.03, and when µ = 0.05 for β = 0.05. It is interesting
to observe from Table 4B that when V < Vc, φc has no minimum values, and it
increases with the increase of the drift velocity (v0).

In a plasma having single-temperature electrons (i.e., µ = 1, ν = 0), φc has
been calculated and the values are shown in Table 5, from which it is observed that
φc will always be greater than its values given in Table 3D.

FIZIKA A (Zagreb) 9 (2000) 2, 75–86 83



chattopadhyay et al.: on the existence of ion-acoustic soliton in . . .

TABLE 3. Case I. Critical values of the electrostatic potential (φc) for V > v0 and
V > Vc.

A) When v0 = 0.1, v0/c = 0.01, β = 0.025

φ

µ ν When V = 1.67 When V = 1.72 When V = 1.78

0.01 0.99 0.9220 0.9502 0.9913

0.02 0.98 0.8908 0.9177 0.9495

0.03 0.97 0.8861 0.9127 0.9443

0.04 0.96 0.8986 0.9261 0.9581

0.05 0.95 0.9101 0.9377 0.9706

B) When V = 1.67, v0/c = 0.01, β = 0.025

φ

µ ν When v0 = 0.10 When v0 = 0.15 When v0 = 0.20

0.01 0.99 0.9220 0.8903 0.8605

0.02 0.98 0.8908 0.8608 0.8324

0.03 0.97 0.8861 0.8561 0.8281

0.04 0.96 0.8986 0.8684 0.8397

0.05 0.95 0.9101 0.8790 0.8498

C) When V = 1.67, v0 = 0.1, v0/c = 0.01

φ

µ ν When β = 0.025 When β = 0.050 When β = 0.075

0.01 0.99 0.9220 1.1013 1.1864

0.02 0.98 0.8908 1.0491 1.1370

0.03 0.97 0.8861 1.0278 1.1129

0.04 0.96 0.8986 1.0174 1.0978

0.05 0.95 0.9101 1.0171 1.0913

0.06 0.94 0.9261 1.0185 0.9947

D) When ν = 0.99, v0 = 0.1, β = 0.075

φ

µ v0/c When V = 1.67 When V = 1.72 When V = 1.78

0.01 0.010 1.1864 1.2294 1.2807

0.01 0.012 1.1906 1.2340 1.2857

0.01 0.014 1.1957 1.2396 1.2917

0.01 0.016 1.2014 1.2458 1.2986

0.01 0.018 1.2081 1.2530 1.3063

0.01 0.020 1.2154 1.2607 1.3148
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TABLE 4. Case II. Critical values of the electrostatic potential (φc) for V < v0 and
V < Vc.

A) When v0 = 2.55, v0/c = 0.26, β = 0.01

φ

µ ν When V = 1.15 When V = 1.35 When V = 1.55

0.01 0.99 0.6570 0.5723 0.4809

0.02 0.98 0.6783 0.5900 0.4946

0.03 0.97 0.7072 0.6134 0.5122

0.04 0.96 0.7353 0.6363 0.5295

0.05 0.95 0.7548 0.6518 0.5408

B) When V = 1.55, v0/c = 0.26, β = 0.01

φ

µ ν When v0 = 2.55 When v0 = 2.60 When v0 = 2.65

0.01 0.99 0.4809 0.5058 0.5284

0.02 0.98 0.4946 0.5200 0.5436

0.03 0.97 0.5122 0.5398 0.5648

0.04 0.96 0.5295 0.5578 0.5843

0.05 0.95 0.5408 0.5710 0.5984

C) When V = 1.55, v0 = 2.55, v0/c = 0.26

φ

µ ν When β = 0.01 When β = 0.03 When β = 0.05

0.01 0.99 0.4809 0.6144 0.6673

0.02 0.98 0.4946 0.5915 0.6466

0.03 0.97 0.5122 0.5902 0.6377

0.04 0.96 0.5295 0.5919 0.6332

0.05 0.95 0.5408 0.5971 0.6331

TABLE 5. Case II. Critical values of the electrostatic potential (φc) for V > Vc,
v0 = 0.1, µ = 1.00 and β = 0.00.

φ

v0/c When V = 1.67 When V = 1.72 When V = 1.78

0.010 1.2969 1.3482 1.4096

0.012 1.3020 1.3539 1.4155

0.014 1.3080 1.3603 1.4230

0.016 1.3150 1.3680 1.4311

0.018 1.3229 1.3762 1.4403

0.020 1.3312 1.3857 1.4508
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IONSKO-AKUSTIČNI SOLITONI U SLABO-RELATIVISTIČKOJ PLAZMI S
HLADNIM IONIMA I DVOTEMPERATURNIM ELEKTRONIMA

Analitički se proučava širenje ionsko-akustičnog solitonskog vala u slabo rela-
tivističkoj plazmi koja se sastoji od hladnih iona i vrućih elektrona na dvije tem-
perature. Izvode se nužni i dovoljni uvjeti za postojanje ionsko-akustičnog solitona
koji pokazuju važnost kako relativističkih efekata, tako i dviju elektronskih tem-
peratura. Kritične vrijednosti solitonske amplitude i brzine ocijenjuju se numerički
za niz vrijednosti koncentracije dvotemperaturnih elektrona i relativističke brzine
strujanja.
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