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The pattern of energy dependence for the onset of chaos is investigated for conser-
vative system of two linearly coupled asymmetric oscillators, harmonic oscillator
and a two-well nonlinear oscillator. With increase of energy, the amount of chaotic-
ity first grows up to a certain critical energy, according to the KAM scenario, and
above this point, with a further increase of energy, the amount of chaoticity de-
creases according to the inverse KAM scenario. At the point of transition, there is
an overlap of the two scenarios. The position of the critical energy increases with
increasing value of the coupling strength between oscillators.
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1. Introduction

A classical case of the regularity-to-chaos transition according to the Kolmogorov-
Arnold-Moser (KAM) theorem [1] in conservative system is the Henon-Heiles model
[2,3] which can be considered as two single-well oscillators coupled by a cubic in-
teraction term in the Hamiltonian. Parameters in the Henon-Heiles model are kept
fixed at constant values and, therefore, the extent of destruction of KAM tori
depends only on energy. For low values of energy, most of the trajectories are
associated with the KAM tori. The pattern of energy dependence seen with the
Henon-Heiles model is as follows [2,3]. At low energy, the chaotic behaviour is
barely noticeable because it is confined to very small regions of phase space. As the
energy increase, the KAM tori begin to dissolve and the chaotic regions begin to
expand. After the last KAM torus disappeared, a single chaotic trajectory covers
the entire energetically allowed region of the phase space. Thus, for a sufficiently
high energy, a fully chaotic pattern is achieved and a regularity-to-chaos transi-
tion is fully completed. This is referred to as the universal behaviour of energy
dependence of chaoticity for nonintegrable Hamiltonian systems.
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A qualitatively similar type of universal behaviour was obtained for chaotic
pattern in the case of two single-well oscillators coupled by symmetric quartic in-
teraction term in the Hamiltonian [4-6]. Similar phenomena have been investigated
for the order-chaos-order sequence in the spring pendulum [7].

On the other hand, in the investigations of the double pendulum another pattern
of chaotic behaviour was found [6] with a regularity-to-chaos-to-regularity transi-
tion. Furthermore, independence on the strength of interaction between coupled
oscillators a chaos to regularity-to-chaos transition was also found [8].

In this paper we study the interplay between chaotic and regular behaviour with
the increase of energy in the case of the coupling harmonic oscillator and nonlin-
ear double-well oscillator by a linear interaction term. Each independent nonlinear
oscillator is an autonomous system with one degree of freedom and, therefore, in-
tegrable. Therefore, the system of uncoupled nonlinear and linear oscillators is
integrable, too. However, the introduction of coupling between oscillators can in-
duce chaos in the system, the pattern of which depends on the coupling strength.
The basic question is whether in this system the energy dependence of the onset
of chaos exhibits a universal behaviour, similar as of the Henon-Heiles system, or
it shows a more complex pattern. This point may be relevant also in a broader
framework if a weak dissipation is added to the Hamiltonian system, leading to the
appearance of truncated fractal basin boundaries [9,10]. Namely, if the dissipation
is excluded, according to the KAM scenario, chaos can appear with increase of
energy. Then the appearance of chaos is associated with the stretching and folding
in the phase space. It is clear that the introduction of dissipation is associated
with changes in the system, but it will not completely change its character. Be-
cause of the presence of dissipation in the system, periodic orbits cannot exist any
more and, therefore, there is neither stationary chaos nor a homoclinic orbit. How-
ever, the truncated fractal basin boundaries remain as a kind of ”shadows” of the
Hamiltonian or transient chaos [11-22].

2. Nonlinear system of linearly coupled harmonic and
double-well nonlinear oscillators
We study the evolution of chaoticity with increasing energy for a Hamiltonian

system of a harmonic oscillator (y-oscillator) and a nonlinear double-well oscillator
(z-oscillator) coupled by a linear interaction term, with the equations of motion

i—z+adtalz—y)=0
jtytaly—z)=0 (1)

where « is the coupling strength. The linear term a(z—y) in the equations of motion
corresponds to a quadratic term in the corresponding Hamiltonian. The linear
coupling between the two oscillators in the equations of motion was previously
considered for the nonlinear mass-spring system [23] and in connection with the
scalar diffusion [24].
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Equations of motion (1) describe the motion in the two-dimensional potential
V(z,y) =a*/4+[y* — 2 + a(zr —y)*)/2. (2)

This potential has two minima at the points (Zmin, Ymin) and (—Zmin, —Ymin) Where

ZTmin = 1/v/1 4 @, Ymin = a/+/(1 + a)3. The values of the potential energy at these
1

points are equal to V(Zmin, Ymin) = V(—Tmin, —Ymin) = P TgETER The saddle
point is at the position (0, 0) and the value of the potential energy at this point is
V(0, 0) = 0. For small values of the coupling strength «, the positions of minima
are approximately given by: Zmin & 1 — /2, Ymin = «. With the increase of the
coupling strength «, the positions of the minima are shifting, but even for very

large values of «, they will differ from the saddle point.

For a fixed value of the coupling strength « and energy FE, Poincaré sec-
tions (x, &) are computed, defined by the intersection with the plane given by
Y Tmin — T * Ymin = 0 with the condition gy > 0. The plane of Poincaré section de-
fined in this way passes the points of minima of potential energy (Zmin, Ymin) and
(—Zmin, —Ymin)- To fill out the Poincaré section, a set of initial conditions extended
over the energetically accessible region are chosen in each calculation.

For = 0, the two oscillators, denoted as z-oscillator (nonlinear double-well
oscillator) and as y-oscillator (harmonic oscillator), are decoupled and the system
(1) is integrable. For @ > 0, at a fixed value of energy, the fraction of chaotic regions
in the Poincaré section gradually increases with the increasing coupling strength «.

The aim of the present investigation is to study how the fraction of chaotic
regions evolves with increasing energy at a fixed value of the coupling strength. In
Figs. 1, 2 and 3, we display some characteristic Poincaré sections with increasing
energy at three fixed values of the coupling strength o = 0.05 (weak coupling),
a = 0.5 (moderate coupling) and a = 5 (strong coupling), respectively.

3. Discussion

Let us first discuss the computed results for the case of weak coupling a = 0.05
(Fig. 1). At low energies, as in Fig. la, the Poincaré section exhibits an integrable
pattern. The orbits are trapped in one of two potential wells of the z-oscillator,
forming the corresponding families of elliptic orbits. Such orbits, restricted to one
potential well, are referred to as small orbits. With the increase of energy, a sec-
ondary family of elliptic orbits appears around an additional elliptic point lying
below the region of each central elliptic family (Fig. 1b). These families of elliptic
orbits are referred to as the lower deformed families. Simultaneously, the KAM sce-
nario starts to develop and patches of chaotic regime are noticeable, in particularly
in the region around the saddle point between the two wells of potential energy
and in the regions surrounding the regions of central and lower deformed families
of orbits and between these families (Fig. 1b).

With a further increase of energy, the orbits moving through both potential
wells of the z-oscillator become energetically accessible. Such orbits are referred
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Fig. 2. Poincaré sections (z, @) of the system (1) at o = 0.5 (moderate coupling)
for increasing values of energy as in Fig 1.

to as the large orbits. This is accompanied by a rapid onset of chaos, and the
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remaining KAM tori are restricted to two central islands of the xz-oscillator, to
smaller islands immersed into chaotic sea and to the region of large elliptic orbits
encircling the chaotic sea (Fig. 1c).

When increasing the energy, the energetically accessible phase space region fur-
ther increases, and according to the universal behaviour for energy dependence
of degree of chaos for nonintegrable Hamiltonian systems, one would expect that
the regions of regularity will gradually decrease in size, finally resulting in a fully
chaotic pattern. Contrary to that, with a further increase of energy above a certain
critical value, a new stretched island appears around the elliptic point placed above
the saddle point of the z-oscillator (Fig. 1d). This regular island will be referred to
as the upper deformed island.

As the energy increases further, the two islands formed by small orbits, referred
to as central islands, gradually shrink, but contrary to the expectations according
to the universal scenario, the newly borned upper deformed island survives. The
chaotic sea occupies ever smaller percentage of the energetically accessible region
of phase space, and more outer large elliptic orbits appear (Figs. le, f and g). Thus,
in the case of weak coupling, with increasing energy, the onset of chaos follows the
pattern of universal behaviour up to a certain energy, and above it the degree of
chaos decreases with a further increase of energy.

In Fig. 2, Poincaré sections are presented for the case of the ten times stronger
coupling than in Fig. 1, i.e., for &« = 0.5. The Poincaré section at low energy is still
regular, as in the previous weak coupling case, but its pattern is different (Fig. 2a).
Namely, the coupling between the oscillators acts in such a way that the family of
small elliptic orbits around potential energy minimum of each well of the z-oscillator
(with elliptic point at = 0) from the weak coupling case is replaced by two families
of small deformed orbits, one with & > 0 and the other with & < 0 (Fig. 2a). With
the increase of energy, chaotic regions are developed in accordance with the KAM
theorem (Fig. 2b), but similarly as in the previous case, additional new upper
deformed island appears around the elliptic point placed above the saddle point
of the z-oscillator (Fig. 2c¢). However, with a further increase of energy above the
critical value, the upper deformed island shrinks. Simultaneously, more and more
outer large elliptic orbits are generated, taking an increased fraction of percentage
of energetically accessible region of the phase space (Figs. 2e, f and g). However,
the onset of the inverse KAM scenario takes place at higher critical energy than for
the case of weak coupling shown in Fig. 1.

In the case of strong coupling, a qualitatively similar behaviour is seen, but the
critical energy at which the KAM scenario switches into the inverse KAM scenario
is at a much higher energy, above the energy E = 50 (Fig. 3).

Quite generally, as the energy increases to sufficiently high values, the structure
of Poincaré sections is dominated by a family of large elliptic orbits. This pattern
tends to the set of large elliptic orbits which correspond to the limit of decoupled
integrable z-oscillator

i+ad=0 (3)

which arises from the system (1) in the large amplitude limit, corresponding to the
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limit of high energy.
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Fig. 3. Poincaré sections (x, &) of the system (1) at « = 5 (strong coupling) for the
same increasing values of energy: a) E=0,b) E=0.5,¢) E=2,d) E =10, e)
E =50, f) E =1000. There is no Poincaré section for E = —0.05 because the local
minimum of potential energy lies higher.

Thus, we can argue that the system (1) has two asymptotically integrable limits,
the low-energy and the high-energy limit. With an increase of energy, the system
evolves first in accordance with the KAM scenario, but before it is completed,
an inverse KAM scenario sets in and dominates a further evolution of the system
towards the high-energy integrable limit. A particular role in the overlap of KAM
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and inverse KAM scenario is played by an upper deformed island, which has the
basic role in preventing the formation of fully developed chaos.

4. Conclusion

We investigate the pattern of energy dependence for the onset of chaos in a
system of linearly coupled harmonic and double-well nonlinear oscillator. We have
found that at low energies the pattern follows the KAM scenario of increase of
chaoticity with increase of energy. However, at a certain critical value of energy,
the KAM scenario switches into the inverse KAM scenario, with decrease of chaotic-
ity when further increasing the energy. The value of the critical energy increases
when increasing the coupling strength, and it is much higher in the case of strong
coupling than in the case of weak coupling. These results may be of significance not
only for the study of the Hamiltonian systems, but also for better understanding of
the dissipative systems with weak dissipation, because some important phenomena,
truncated fractal basin boundaries remain as a kind of “shadows” of the Hamilto-
nian chaos, while, on the other hand, there is a plethora of coupled oscillators in
many systems in nature, like for example in biological systems [25-29].
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PREKLAPAJUCI KAM-SCENARIJI ZA LINEARNO VEZANE
ASIMETRICNE OSCILATORE

Struktura energijske ovisnosti evolucije kaosa istrazuje se za konzervativni sustav
dvaju linearno vezanih asimetri¢nih oscilatora, harmonijskog oscilatora i nelin-
earnog oscilatora s dvije jame. S porastom energije stupanj kaoti¢nosti najprije
raste do odredene kriti¢ne vrijednosti energije, sukladno KAM scenariju, a iznad te
energije, s daljnjim porastom energije, udio kaoti¢nosti pada sukladno inverznom
KAM scenariju. Pri prijelazu iz jednog scenarija u drugi dolazi do njihovog preklopa.
Vrijednost kriticne energije raste s porastom jakosti vezanja medu oscilatorima.
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