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By allowing for quartic corrections to the Hamiltonian of the harmonic oscillator we
study the effect that these corrections have on the thermal energy of an anharmonic
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1. Introduction
The great progress achieved in the science of statistical physics came about be-

cause the systems studied did not admit long range interactions, and the collisions
between particles did not leave any memory effects [1,2]. Thus the transition from
quantum statistical mechanics to the classical Boltzmann-Gibbs approach can be
understood in a way wherein both the exclusion principle and the classical dis-
tinguishable nature of particles have a statistical meaning that is simple, and the
theory fits the experimental data [3,4]. However, when long-range interactions are
present and a non-Markovian memory exists for particle collisions, the principles of
statistical mechanics must be re-thought [5]. Situations in both condensed matter
physics and in the large-scale scale structure of the universe demand a new approach
to statistical mechanics to accommodate the multi-fractral structure brought about
by non-Markovian memory effects [6–8]. Motivated by studies in multi-fractrals,
Tsallis [5] introduced a non-extensive form for the entropy that accommodates the
self similarity for systems with long-range interactions and non-Markovian memory
[9]. Applications of the non-extensive statistics of Tsallis to the solar plasma have
provided a cutoff for the high energy tail of the Maxwell-Boltzmann distribution
leading to the production of solar neutrinos in accord with experimental findings
[10–12]. Other applications of the Tsallis statistics include studies of a general-
ized H theorem [13–15], the fluctuation-dissipation theorem [16], the Langevin and
Fokker-Planck equation [17], the classical equipartition theorem [18], the Ising chain

FIZIKA A (Zagreb) 9 (2000) 3, 129–136 129



wolf: The anharmonic oscillator and Doroczy-Tsallis statistics . . .

[19,20], paramagnetic systems [21] and the Planck radiation law [22]. Limits on the
non-extensive statistics parameter can be set by studying how the non-extensive
statistics affects the primordial helium abundance in cosmology [23]. In a previous
note, we studied the effect that the non-extensive statistics of Tsallis had on the
Debye theory of heat capacities [24]. In that study, we had to resort to an approxi-
mate treatment to calculate the chemical potential and occupation numbers of the
various states, while in the present note we improve on this treatment by calculat-
ing the chemical potential at low temperature by summing over the ground state
and the first excited state which will have the dominant occupation numbers at
low temperature. Also, in that study we applied the q statistics of Doroczy-Tsallis
to a bosonic oscillator, which might suggest an inconsistency in that Abe [25] and
Tsallis [26] explicitly related the q statistics to the q deformed commutation rela-
tions. However, a generalized q statistics can be thought of as independent of the
bosonic, fermionic, or intermediate statistics of the particles involved (suggested
by commutation relations) and can be applied to the energy levels of a system
exclusively. This is essentially the ingredient involved in the first form of Tsallis
statistics discussed in Ref. 9. In this approach, the statistics of particles discussed is
put in at another stage. The discussion of the q expectation value involves lumping
together the q form of the entropy and the deformed commutation relations. We do
not use this approach, but rather apply the q (Tsallis) modified entropy with the
conventional form of the expectation value for the energy. Thus, by using the usual
form for the expectation value, we do not engage in an investigation of q deformed
commutation relations, in our approach level occupation numbers emerge solely
from a variational principle for the entropy along with the constraints on energy
and total number of particles. Which approach in Ref. 9 is correct can only be
decided by experiment. We also add an anharmonic term to the Hamiltonian of the
harmonic oscillator and show that the low temperature limit is calculable, but the
high temperature limit gives rise to complicated expressions for the chemical poten-
tial in terms of parabolic cylinder functions. By just studying the ground state and
the first excited state, we recover the formula for the Einstein heat capacity [27]
at low temperatures with the absence of the anharmonic term. We then discuss a
modification of the Debye theory for low temperatures when the anharmonic term
is present for the lattice vibrations and Tsallis statistics is the relevant statistics
for the modes of the lattice vibrations. Finally, we point out that the inclusion of
an anharmonic term might serve to describe the non-linear effects of the electro-
magnetic field at high temperatures [28] when the modes of the electromagnetic
field exhibit a multi-fractral structure. Such a situation would be realized in the
very early universe [29] when the fields are strong enough so that non-linear effects
modify the equations of electromagnetism.

2. The anharmonic oscillator at low temperatures and
Doroczy-Tsallis statistics

In Ref. 24, we discussed a perturbative approach to Doroczy-Tsallis statistics
by varying the expression for the entropy (Ni is the occupation number of state i
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and q is the non-extensive parameter)

S =
Nk

q − 1

(∑ Ni

N
−

∑ (
Ni

N

)q)
. (2.1)

along with the constraints∑
Ni = const

∑
i

Niεi = const , (2.2)

to yield

Ni =
N

q1/(q−1)
exp

(
1

q − 1
ln

(
1 +

(µ − εi)(q − 1)
τ

))
. (2.3)

After expanding µ = µ0 + αµ1 + α2µ2, where α = q − 1, we find the following
expressions for µ0, µ1 and Ni (in terms of α) (τ = kT , k is the Boltzmann constant
and T the absolute temperature)

eµ0/τ =
e∑

e−εi/τ
, (2.4)

µ1 = −τ

2
+

1
2τ

∑
(µ0 − εi)2e(µ0−εi)/τ∑

e(µ0−εi)/τ
, (2.5)

Ni = Ne−1 e(µ0−εi)/τ

[
1 + α

(
1
2

+
µ1

τ
− (µ0 − εi)2

2τ2

)]
. (2.6)

To calculate the average thermal energy of a single particle, we have

〈ε〉 =
∑

εiNi

N
=

∑
e−1 εi e(µ0−εi)/τ (2.7)

+αe−1

[(∑
εie(µ0−εi)/τ

)∑
(µ0 − εi)2e(µ0−εi)/τ

2τ2
∑

e(µ0−εi)/τ
− 1

2τ2

∑
εi(µ0 − εi)2e(µ0−εi)/τ

]
.

Eq. (2.7) is the result of substituting Eq. (2.5) into Eq. (2.6) and then averaging
over all states. In Ref. 24, we calculated µ1 = −τ/2 and µ0 = h̄ω/2 for h̄ω/τ À 1
(low T ). However, these results do not fully take into account the states above
the ground state in approximating µ0 and µ1. In the present study, we develop a
more precise calculation of µ0 and µ1 at low T when the Hamiltonian also contains
an anharmonic term proportional to x4. For the energy levels of the anharmonic
oscillator described by the Hamiltonian

H = − h̄2

2m

∂2

∂x2
+

kx2

2
+ k̄x4 ,
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we find from time independent perturbation theory (β2 = mω0/h̄)

E =
(

n +
1
2

)
h̄ω +

3k̄

4β4
(2n(n + 1) + 1) (2.8)

(see Ref. [30]). Eq. (2.8) can be written as

En = a + bn + cn2 , (2.9)

with a = h̄ω/2 + 3k̄/(4β4), b = h̄ω + 3k̄/(4β4) and c = 3k̄/(2β4). At very low T
(h̄ω/τ À 1), we may approximate Eq. (2.4) and Eq. (2.7) by summing over the
ground state and the first excited state. Then Eq. (2.4) becomes

eµ0/τ =
e1+a/τ

1 + e−(b+c)/τ
. (2.10)

From Eq. (2.9), ε0 = a and ε1 = a + b + c, and Eq. (2.10) becomes

µ0 = τ
(
1 +

a

τ

)
− τ ln

(
1 + e−(b+c)/τ

)
,

and finally,
µ0 = a + τ − τe−(b+c)/τ for (b + c)/τ À 1 . (2.11)

From Eq. (2.7), we find, after a long calculation upon summing over the ground
state and first excited state while keeping powers of e−(b+c)/τ up to the first order,
the following expression for the average energy of an anharmonic oscillator

〈ε〉 = a + (b + c)e−(b+c)/τ +
α

2τ2
(2τ(b + c)2 − (b + c)3)e−(b+c)/τ . (2.12)

In Eq. (2.12), if we set the anharmonic term equal to 0 (c = 0), and we pass to
the Boltzmann limit of Tsallis statistics (α = 0), we have 〈ε〉 = a + be−b/τ . For 3N
oscillators, we have U = 3Nh̄ωe−h̄ω/(kT ) (after subtracting off the vacuum energy)
and

Cv =
(

∂U

∂T

)
v

= 3Nk

(
h̄ω

kT

)2

e−h̄ω/(kT ) . (2.13)

Equation (2.13) is just the Einstein value of the heat capacity at low temperatures
[27]. To derive the corrections to the Debye formula at low temperatures, we rewrite
Eq. (2.12) as

〈ε〉 = −
(

h̄ω

2
+

h̄ω

eh̄ω/τ

)
(2.14)

+
(
a + (b + c)e−(b+c)/τ +

α

2τ2
(2τ(b + c)2 − (b + c)3)

)
+

h̄ω

2
+

h̄ω

eh̄ω/τ
.
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The number of modes of phonons between ω and ω+dω in a solid at low temperature
is 3ω2/(2π2V 3

0 )dω (V0 is the speed of sound in solid). Neglecting the vacuum energy
in a term, the total energy is

U =

ωM∫
0

h̄ω

eh̄ω/τ−1

3ω2

2π2V 3
0

dω +

ωM∫
0

(
(b + c)e−(b+c)/τ − h̄ω

eh̄ω/τ − 1

)
3ω2

2π2V 3
0

dω (2.15)

+

ωM∫
0

α

2τ2

(
2τ(b + c)2 − (b + c)3

)
e−(b+c)/τ 3ω2

2π2V 3
0

dω .

Equation (2.15) can be written as

U = CDT 4 +
(
C1T

4e−3k̄/(β4kT ) + C2T
3e−3k̄/(β4kT ) − CDT 4

)
(2.16)

+α[D1T
4 + D2T

3 + D3T
2 − E1T

4 − E2T
3 − E3T

2 − E4T ]e−3k̄/(β4kT ) .

In Eq. (2.16)

C1 =
(

k4

h̄3

)
3

2π2V 3
0

∞∫
0

x3e−xdx , D1 =
(

k4
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)
3

2π2V 3
0

∞∫
0

x4e−xdx ,

E1 =
1
2

(
k4

h̄3

)
3

2π2V 3
0

∞∫
0

x5e−xdx , CD =
3k4

2π2h̄3V 3
0

(
π4

15

)
,

C2 =
9
2

1
2π2V 3

0

(
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β4

)(
k

h̄

)3 ∫
x2e−xdx , (2.17)
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2π2V 3
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)(
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D3 =
3

2π2V 3
0

(
3k̄

β4

)2 (
k2

h̄3
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E2 =
3

2π2V 3
0

(
3k̄

β4

)
3
2

(
k3

h̄5
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3

2π2V 3
0
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3k̄

β4

)2 3
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(CD is constant in Debye formula). In Eq. (2.16), we have redefined the range on
x = h̄ω/τ from 0 to h̄ωM/τ , where ωM = (3N 2π2V 3

0 )1/3 is the maximum frequency
of phonon modes, and we have extended it from 0 to ∞ at low τ = kT . In Eq.
(2.16), if the anharmonic term vanishes (k̄ = 0), then the heat capacity at low T
will have corrections of orders T 3, T 2, T and T 0 after differentiating Eq. (2.17)
(CV = ∂U/∂T ). The factor exp(−3k̄/(β4kT )) in Eq. (2.16) is purely due to the
anharmonic term and would be significant at low T . Equation (2.12) would also
apply to the black body spectrum at low T if the anharmonic term is set equal to
0. In that case, Eq. (2.12) reads

〈ε〉 = a + h̄ωe−h̄ω/τ +
α

2τ2

(
2τ(h̄ω)2 − (h̄ω)3

)
e−h̄ω/τ . (2.18)

Subtracting off the vacuum term (a), we have (τ = kT )

〈ε〉 = h̄ωe−h̄ω/τ +
α

2τ2

(
α

kT
− α(h̄ω)3

(kT )2

)
e−h̄ω/τ .

For the energy per unit frequency range we have

dU(ν) =
(

hν + α

(
(hν)2

kT
− (hν)3

2(kT )2

))
e−hν/kT 8πν2dν

C3
. (2.19)

If the correction term is to be of the same order as the CMB anisotropy, we have
from Eq. (2.19) α ≤ 10−5 [31] since at T = 3 K, hν = kT for microwaves (λ ' 1
cm). Also, in Ref. 24 it was pointed out that the limits on q − 1 = α were given as
α < 2 × 10−5 which was based on the primordial helium abundance and is of the
same order of magnitude as that predicted by the CMB anisotropy.

3. Conclusion
The above discussion has given us an approach to the problem of how to deal

with anharmonic perturbations for lattice vibrations in a solid at low T when
the non-extensive statistics applies. The very low temperature domain leads to a
simplifying condition since we only have to deal with the ground state and the
first excited state. Also, for the modifications of the Einstein theory for the heat
capacity due to the non-extensive statistics, we have to multiply Eq. (2.12) by 3N
and differentiate with respect to T . The result is

Cv = 3N

[
k(b + c)2

(kT )2
e−(b+c)/(kT )

]
(2.20)

+3Nα

[−(b + c)2

kT 2
+ 2

(b + c)3

k2T 3
− (b + c)4

k3T 4

]
e−(b+c)/(kT ) .
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In Eq. (2.20), we have the measurable corrections to the heat capacity at low T [32]
for solids that admit an anharmonic term and also have a multi-fractral structure
admitting to non-extensive statistics. One problem is that the usual Einstein theory
better fits the experimental data at higher temperatures when the solid can be
thought of as vibrating in one mode. However, if the anharmonic term is large
enough, we can imagine that the non-linearity can cause a coupling between all the
atoms and thus generate one dominant mode at low T . The experimental problem is
to search for such a system, and study it’s low temperature heat capacity where the
anharmonic term essentially creates a multi-fractral structure making it necessary
to apply Tsallis statistics. For normal solids, if very precise measurements can
be made, the validity of Eq. (2.16) could be compared with experiments to gain
some measure of the non-extensive parameter. Since very low temperatures are now
attainable in the low temperature laboratories [33], it seems worthwhile to ask if
any anomalies in Cv might be explained in terms of the formulas derived in the
present study. Also, the high temperature domain can be studied by integrating
over n which makes the evaluation of Eq. (2.7) possible. The result of these integrals
leads to parabolic cylinder functions whose asymptotic behaviour has to be carefully
analyzed in order to make contact with experiment.

The testing ground for such high-temperature effects would be in the thermal
radiation where non-linear effects of the electromagnetic field generate the anhar-
monic term leading to modifications of the equation of state at high T and also
give rise to modifications of the scale-factors evolution in cosmology during the
early radiation era [34]. Although a very complicated mathematical analysis would
be necessary in terms of parabolic cylinder functions, the high temperature do-
main would bring to focus the influence of non-extensive statistics on cosmological
evolution.
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ANHARMONIČKI OSCILATOR I DOROCZY-TSALLISOVA STATISTIKA NA
NISKOTEMPERATURNOJ GRANICI

Uvodenjem popravaka četvrtog reda u Hamiltonovu funkciju harmoničkog oscila-
tora, proučavamo njihov učinak na toplinsku energiju anharmoničkog oscilatora u
okviru Doroczy-Tsallisove statistike na niskotemperaturnoj granici.
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