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Biological fractals are truncated, i.e., their selfsimilarity extends at most over a few
orders of magnitude of separation. In J. Theor. Biology 212 (2001) p. 47, we have
shown that the nonlinear coupled oscillators, modeling one of the basic features of
biological systems, may generate truncated fractals: a truncated fractal pattern for
basin boundaries appears in a simple mathematical model of two coupled nonlin-
ear oscillators with weak dissipation. We show here that the degree of truncation
decreases with increasing energy. We point out that at the level of a sufficiently
fine precision technique, the truncated fractality acts as a smooth (nonfractal)
structure, leading to predictability, but at a lower level of precision it is effectively
fractal, limiting the predictability of the long term behaviour of biological systems.
Consequently, a possible erratic nature of the system’s behaviour due to truncated
fractality may disappear once the experimental errors in the measurement and/or
treatment of biological system reaches a certain level of precision. We point out a
possible significance of this result for the biological control of processes.

PACS numbers: 05.45.Pq, 87.80.4+y UDC 53.047

Keywords: fractals, truncated fractals, basin boundaries, coupled oscillators, biological
oscillators, biological systems, obstruction to estimating long term behaviour, control of
biological processes

1. Introduction

In a recent paper [1], we have proposed a possible new approach to gain insight
into the fundamental question of the origin of truncated fractals in biological sys-
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tems, which is a continuation of our former investigations related to the problem
of chaotic transients and truncated fractals [2-12]. Two simple models for the sym-
metric and asymmetric system were studied in Ref. [1], showing the appearance of
a truncation of selfsimilarity for coupled nonlinear dissipative oscillators. Here we
investigate the energy dependence of truncation for the asymmetric model.

Significant progress has been made in physical and biological sciences due to
discovery of fractal geometry of nature [13-15]. In biological and medical sciences,
there is an increasing number of applications of both spatial and temporal frac-
tal structures. Many biological phenomena appear to be fractal, for example the
structure of bronchial tree [16], heartbeat dynamics [17-20], protein surfaces [21],
chromatin microscopic images of breast epithelial cell nuclei [22], fetal breathing
dynamics [23], microbial growth pattern [24], reduction law of metabolism [25], fetal
heart rate [26], convoluted surface of mammalian brain [27], neural networks [28],
urinary collecting tubes [28], long-range power-law correlation in DNA [29-31], neu-
ronal shape [32], pattern in human retinal vessels [33], structure of biomembranes
[34], blood vessel system [35,36], etc. In some of fractal biological phenomena, it is
the spatial shape of a biological object itself that exhibits obvious fractal features,
while in other cases the fractal properties are more hidden and can only be per-
ceived if data are studied as a function of time or of some other variable, or mapped
in some particular way [37], which is referred to as a hidden fractal property.

The reason why nature prefers fractal structures to those generated by classical
scaling is that more effective function is achieved, but it may also be related to
higher tolerance that fractal structures and processes possess over those of classical
structures and processes [38]. It was argued that the fractal geometry may not only
be a design principle for living organisms, but may also underlie an evolutionary
advantage of biological systems having fractal dimension [39].

In all fractals, the underlying concept is selfsimilarity. In mathematical ideal-
ization, fractals are selfsimilar at all scales. This is a feature of exact mathemati-
cal fractals like, for example, Cantor set or Koch curve [13,40]. A similar feature
appears also for fractal basin boundaries computed for mathematical models of
dynamical systems [41-43], associated with multistability which is a fundamental
property of nonlinear systems.

On the other hand, contrary to such mathematical fractals, for any real object
in nature, statistical fractal properties are observed only over a limited size range.
As pointed out by Mandelbrot, naturally fractal objects are statistically selfsimilar
above some lower cutoff € up to some upper cutoff value 2 [13]. Thus, the dimension
of a naturally occurring fractal is associated with selfsimilarity over some region of
space or interval of time. Therefore, such fractals are referred to as truncated frac-
tals. On the basis of fractality of a wide range of natural systems, it was pointed out
to the narrow range of appropriate scaling properties for declared fractal objects,
centered around 1.3 orders of magnitude [44]. One of the most extensive fractal sys-
tems found in nature are the sedimentary rocks, formed from a mixture of organic
and inorganic debris deposited in aqueous environment, with the range of length
scales extended to over three decades [45].

In Ref. [1], we have addressed the following theoretical question: Can truncated
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fractals be generated in simple mathematical models, bearing some features of
basic dynamics characterizing biological systems? As a guideline to identify such a
simplified mathematical model, we turn to the well known observation that the key
biological systems, such as, for example, cardiac, neural, respiratory, neuromuscular
and hormonal, display intrinsic oscillatory behaviour [46-52]. Biological oscillators
interact both with one another and with the environment. Moreover, there are
innumerable feedback loops acting on physiological variables. Instigated by this
observation, we have looked in Ref [1] for a possible origin of truncated biological
fractals at the level of a simple mathematical model of coupled oscillators.

Nonlinear systems can produce fractal basin boundaries that separate basins
of different attractors [41,43,53,54] and even more complicated examples of riddled
and intermingled basins were found for specific dynamical systems [42,43,55]. In
Ref. [1], we have considered fractal basin boundary as a hidden fractal property in
the framework of biological systems, showing that the fractal basin boundary asso-
ciated with dynamical systems of coupled oscillators, modeling some basic aspects
of biological systems, can be truncated.

A possibility that the basin boundaries are truncated fractals was previously
investigated for sinusoidally forced pendulum by introducing an additional expo-
nential factor, so that the nonautonomous driving term exponentially decays to
zero [56,57]. Moreover, in the case of a single Duffing oscillator, it was found that
truncated fractal Arnold tongues can be finely intermingled with selfsimilar fractal
Arnold tongues [10].

2. Asymmetric system of coupled oscillators

A simple model for asymmetric dissipative system is given by a one-well oscil-
lator and a nonlinear double-well oscillator coupled by a linear interaction term,
with equations of motion [1]

Pty —z+ad+alzr—y)=0
j+r+y—alz—y) =0, (1)

where v and « are the dissipation and coupling strength, respectively. (The linear
term a(x — y) in the equations of motion corresponds to a quadratic term in the
corresponding Hamiltonian.) The linear coupling between the two oscillators in the
equations of motion was previously considered for the nonlinear mass-spring system
[58] and in connection with scalar diffusion [59].

The system (1) has two attractors at positions of local minima of potential
energy,

(Z‘, y) = (ijin; ymin) and (_Iminy _ymin) ) (2)

where zmim = 1/vV1+a and ymin = «/4/(1+ «)3. In the graphical presenta-
tion for basin boundaries, we denote the initial conditions ending in the attrac-
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Fig. 1. Basins of attraction for the nonlinear system (1) with weak dissipation
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Fig. 2. Basins of attraction for the nonlinear system (1) with dissipation v = 0.05

and coupling strength o = 0.05 at the initial energy Ej
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We have computed basin boundaries for the asymmetric system of coupled os-
cillators (1) looking for the energy dependence of the pattern of truncation. The
coupling parameter o and the dissipation parameter v used in this paper have size-
ably lower values than used in Ref. [1], in order to get a more selfsimilar pattern
revealing the energy dependence of the truncation effect on the initial energy. Sim-
ilarly as in Ref. [1], the basins of attraction are calculated for a grid of 570 x 400
initial conditions (xg,Zo) from the interval —1.8 < zy < 1.8, —1.6 < @¢ < 1.6.
Here, the calculations are performed for two different values of initial energy Ey,
1 and 1.5. For each case, successive magnifications are shown until the structure
with smooth boundaries is reached. The results are displayed in Figs. 1 and 2,
respectively.

Introduction of dissipation into the system leads to a decrease of effective non-
linearity with time. As time evolves, the energy of the system gradually decreases
leading to truncation of the chain of stretchings and foldings. The larger is the
initial energy, the sooner will stop the chain of successive stretchings and foldings.
Our results show that for the energy of 1.0, the chain of repeated magnifications
stops at a smooth pattern after three steps (Fig. 1), while for the energy of 1.5,
the chain of repeated magnifications stops after six steps (Fig. 2). This is consis-
tent with the statement from Ref. [1] that the fractals of truncated type remain as
“shadows” of stationary chaos in the conservative system, additionally revealing a
dependence on energy.

3. Discussion

In connection to the relevance of the present results for biological systems we
note, similarly as in Ref. [1], that a nonlinear two-coupled-oscillator model was
implemented in some recent studies of the dynamics of various biological systems,
as for example for description of oscillations in two cyclin dependent protein ki-
nases activity, involving mutual inhibitions of two oscillators and coexistence of
various attractors [61], for simulation of calcium oscillations in leaves of Desmod-
ium pulvini [62], for description of temporal organization of insects in the interior
of caves regarding coupled moulting and oviposition cycles of Folsomia candida
[63], for representation of a dopaminergic neuron as a set of electrically coupled
oscillators [64], for the study of mode locking and Arnold tongues in the case of
two synaptically coupled neural oscillators [65], for description of a cell patterning
method with a plasmodial slime mold in which parameters of coupling can be sys-
tematically controlled [66], for the study of the cultured cells of cardiac pacemakers
[67], for discussion of the circadian locomotor rhythm of nocturnal rodents in terms
of regulation [68], for description of the human sleep-wake and body temperature
rhythms [69], for a model of coupled oscillators employed as a model of the cen-
tral pattern generator generating functional (also locomotional) rhythms [70], for
interpretation of circadian rhythmicity in photoperiodic induction of diapause in a
drosophilid fly Chymomyza costata [71], for a simple model of the sinoatrial node
with cells being electrically coupled by linear conductance [72] and for a model for
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the study of heartbeat dynamics to describe the interaction between the sinoatrial
and the atrioventricular node [73]. Presumably, many more examples of coupled
biological oscillators will be found to play an important role in biological processes.

Furthermore, as pointed out in Ref. [1] and additionally elaborated here, a
simple mechanism of coupled oscillators can lead to a complex coexistence of various
modes involving a truncated fractal pattern, as truncated fractal basin boundaries
and consequently the fractal boundaries in the parameter space. This fractality may
play a role in generating some basic features of biological systems. On one hand,
the appearance of fractality at a certain range of scale can be associated with a
higher tolerance in physiological functions which is important for the adaptability
of biological systems [39]. On the other hand, the appearance of truncation in
the fractal pattern enables an appearance of a predictable long term behaviour
of the system in conjunction with fractality once a certain level of precision in
investigating and/or treating biological system has been achieved. Consequently, a
possible erratic nature of the systems behaviour due to truncated fractality may
disappear once the experimental errors in the measurement and/or treatment of
biological system reaches a certain level of precision.

4. Conclusion

We point out that a model of coupled nonlinear oscillators with weak dissipation
generates a truncated fractal pattern for basin boundaries, and consequently of
boundaries in parameter space, which can be considered as a kind of hidden fractal
property in the context of biological fractals.

It is clear that truncated fractals are more common in biological applications
than the idealized case of true fractals. At a rougher precision technique truncated
fractals can cause for practical purposes a similar obstruction to estimating the
long term behaviour as true fractals, but on the other hand, at a sufficiently fine
precision technique the predictability of the long term behaviour of biological sys-
tems is not fundamentally limited. This may give a new insight into the problem
of truncated fractals in biological systems, which are characterized by a plethora of
oscillatory behavior. In particular, this may shed new light on the problem of sensi-
tive dependence on the type of therapy, basically limiting its efficacy in the clinical
praxis. On the basis of our approach we are proposing an idea that a sufficient
increase in precision of determining parameters involved in a particular therapy
might lead to a regime of more deterministic and thus of more successful medical
therapy in cases hindered due to effects associated with fractality. In order to test
this idea, detailed clinical studies in relevant cases are desirable.
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ENERGIJSKA OVISNOST REZANJA SAMOSLICNOSTI U SUSTAVU SLABO
VEZANIH DISIPATIVNIH OSCILATORA OD ZNACENJA ZA BIOLOSKE
SUSTAVE

Biologki oscilatori su odrezani, tj. njihova samoslicnost se proteze kroz najvise
nekoliko redova veli¢ine. U radu J. Theor. Biology 212 (2001) p. 47 pokazali smo
da nelinearni vezani oscilatori, koji modeliraju neka od bitnih svojstava bioloskih
sustava, mogu stvarati odrezane fraktale: odrezani fraktali za granice bazena po-
javljuju se u jednostavnom matematickom modelu dvaju vezanih nelinearnih os-
cilatora sa slabom disipacijom. Ovdje pokazujemo da se stupanj odrezanosti frak-
tala smanjuje s porastom energije. Ukazuje se da na razini dovoljno precizne
tehnike odrezana fraktalnost djeluje kao glatka (nefraktalna) struktura, koja vodi
na prediktibilnost, ali na razini manje preciznosti ponasanje je efektivno fraktalno,
ograni¢ujué¢i moguénost predvidanja dugoro¢nog ponasanja biologkih sustava. Kao
posljedica, moguéi eraticni tip ponasanja sustava zbog odrezane fraktalnosti moze
isceznuti kada eksperimentalne pogreske pri mjerenju i/ili tretmanu bioloskog sus-
tava dosegnu neku odredenu razinu preciznosti. Naglasena je mogucéa vaznost tog
ucinka za kontrolu bioloskih procesa.
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