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Forecasting Chinese EPU based on financial uncertainty
in emerging market economies (EMEs): evidence from six
selected East Asian economies

Bing Xu, Mohib Ur Rahman and Haijing Yu

Research Institute of Quantitative Economics, Zhejiang Gongshang University, Hangzhou, P.R. China

ABSTRACT
While the influential role of Economic Policy Uncertainty (EPU) on
economic activity and financial markets is well-documented, little
is known about how to forecast EPU, especially in the framework
of an emerging market economy (EME). We forecast the newly
developed EPU index of China based on financial uncertainty
(measured by a realised volatility) of the selected East Asian
Economies (EAEs) including ASEAN5 and Hong Kong, having close
trade linkages with China, by using LR and DT methods. After
controlling for macroeconomic variables, it is evident that the
realised volatility of regional EAEs significantly forecasts the EPU
of China, except for Thailand. Moreover, comparing the perform-
ance of both models based on the accuracy classification score
test, LR performs better than DT. Policymakers, who aim to keep
and maintain a low level of EPU to achieve effective investment
policies and avoid reduced consumer spending, should take into
account the findings of this study.
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1. Introduction

High uncertainty in economic policy increases the financing cost, and in the case of
irreversible investment, leads to reduced investment (Bernanke, 1983), unemployment
and economic contraction (Bloom et al., 2007). Consistent with this, policymakers,
who aim to keep a low level of EPU, should take proper measures to reduce EPU to
foster a productive investment environment in the economy. Ever since the Global
Financial Crisis (GFC) of 2008–2009, an intensive discussion about the profound
effect of Economic Policy Uncertainty (henceforth, EPU) on economic conditions has
re-emerged. Uncertainty is often considered as one of the fundamental components
that affect economic activity adversely and hinder the economic progress of any econ-
omy (Scheffel, 2016). The impacts of EPU on economic activity are generally trans-
mitted by consumption decisions of households/consumers and deferment in hiring
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plans or through delays in capital expenditure or investment by firms (Visco, 2017).
Since EPU is negatively associated with investment and capital expenditure of firms
(Sum, 2013), and when consumers (investors) perceive a higher level of uncertainty
in economic policy, as a precautionary measure, they tend to postpone their spending
(investments). Similarly, given the irreversibility of investment projects (Pindyck,
1990), firms also postpone capital expenditure, when EPU is high. This process
reduces productivity and leads to unemployment (Bloom, 2009).

Even though the role of EPU is well-documented in economic growth and finan-
cial markets,1 little is known about how to forecast EPU. So far, research related to
forecasting EPU is limited. The study of Wang et al. (2015) was the first that investi-
gated the role of 23 commodity prices in forecasting EPU of the U.S. economy. More
recently, the study of Degiannakis and Filis (2019) forecast European EPU based on
Global EPU and asset market volatilities of Europe and the U.S. stock markets. In
contrast, the prevailing research has mainly focused on investigating the predictive
content of EPU, such as volatility forecasting (Liu & Zhang, 2015), or economic
recessions (Karnizova & Li, 2014).

Against this backdrop, our study aims to investigate the reverse channel, which is
to examine whether stock market volatilities can help in forecasting EPU. For this
purpose, we choose to forecast Chinese EPU based on asset market volatilities of its
neighbouring major trade partners (ASEAN5) and AH premium of Hong Kong, dur-
ing the sample period of March 2011 to June 2018, by employing Logistic Regression
(LR). The study also employed Decision Tree (DT) model for comparison purposes.

Our study tries to inspect the predictive role of asset price volatilities originating
from the six selected major Asian stock markets2 on the EPU of China. According to
our knowledge, our paper is the first attempt that explores the volatilities spillovers
originating from Southeast Asian Economies on the prediction of outstanding points
(outliers) in Chinese EPU. Because of advanced technologies, pervasive media and
frequent communications, the disturbances in any economy can be significantly
spread to other economies around the world (Wu et al., 2016). It is clearly evident
from the 2008–2009 financial crisis that the world’s economies tend to be more
linked in terms of trade and financial integration than they were before, thus it can
be anticipated that instabilities in economic and financial systems of one economy
can be transmitted (directly or indirectly) to other economies.

The economies of ASEAN5 are located in the same region as China and are closely
related by trade policies. They are the top trade partners of China (Soong, 2016).The
economy of China is greatly dependent on the economic events that are occurring in
Asian economies (Morck & Yeung, 2016). Meanwhile, other Asian economies also
rely on China, and given this closer linkage and dependency on each other, this will
lead to affecting the economies of each other (Das, 2014). The intra-regional conta-
gion effect between Asian economies also causes fluctuations in the stock markets of
these countries (Masih & Masih, 1999), which further strengthens the level of inter-
dependency among their stock markets. The increased interaction is the outcome of
the increased liberalisation of stock markets and macroeconomic policy conditions
(Masih & Masih, 1999). Similarly, investment patterns and trade links display the
increased economic integration between Asian economies (Chien et al., 2015).
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ASEAN stock markets are fast-growing and emerging, and according to the report
of the Asian Development Bank (ADB) in 2009,3 due to enhancements in their fun-
damentals, such as improvements in economic and financial services, they have
improved the performance of their equity markets, which has attracted foreign port-
folio investment in these economies. However, these developments and enhancements
do not bring about the improvement of the stability of these markets and the volatil-
ity in these markets is still high due to certain global and internal factors in each
country. Hence, considering the trade linkages with China, it is to be expected that
any fluctuations in these stock markets will have a significant effect on the economy
of China, especially on its economic policy uncertainty (EPU),4 as trade openness
among countries plays a significant role in transmitting volatilities (Nikmanesh,
2016). In an emerging economy like China, where stock markets are less developed
as compared to the developed economies, the shockwaves of financial uncertainty (a
proxy for stock market volatility) transmission could be stronger (Carri�ere-Swallow &
C�espedes, 2013), and given the influences of financial uncertainty on economic activ-
ity (Popp & Zhang, 2016), we expect that financial uncertainty (volatility) of the
selected Asian economies could be a significant factor to predict Chinese EPU.

Our study has contributed to the current research on the forecasting and predic-
tion of EPU and aims to answer two questions: Can the outliers in Chinese EPU be
explained with the help of asset volatilities in ASENA5 and Hong Kong stock mar-
kets?, and Can we analyse and predict the outliers in Chinese EPU by using LR and
DM approaches; if so, which one is better? The findings of our study show that stock
market volatilities of all countries (except for Thailand) significantly forecast Chinese
EPU based on the LR method. The findings of our study are similar to the findings
of Degiannakis and Filis (2019), who also documented the predictive role of volatil-
ities from Europe and the U.S. on European EPU. Among the other control variables,
the trade balance and the exchange rate were also one of the significant variables that
explain the outliers of EPU. The results of the DT model also reveal that asset market
volatilities of ASEAN5 and Hong Kong offer significant predictive gains for Chinese
EPU. However, the overall performance of the LR model in this specific case is better
than that of DT analysis based on the accuracy prediction score test. Consequently,
the LR model with the realised volatilities of regional stock markets and other control
variables is the acceptable framework to encapsulate accurately the future directions
of Chinese EPU (outliers).

The remainder of the paper is structured as follows: section two reviews the rele-
vant studies; Section three describes the data and discusses the methodology used in
the paper; Section four explains the results. The conclusion and policy recommenda-
tions are discussed in section five.

2. Relevant research

Stock market performance reflects the overall economic condition of the economy; its
uncertainty can be denoted by volatility, which is usually computed by standard devi-
ation or by the variance between the returns of the same security or the stock market
(Tsay, 2014), and it is expected that stock volatility will affect adversely the smooth
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operative systems of the economy (Mala & Reddy, 2007). Compared to advanced
economies, in EMEs the relevant influence of stock volatility (a proxy of uncertainty
shocks) is larger on economic activities (Carri�ere-Swallow & C�espedes, 2013). The
focus of this study is therefore to inspect the role of the six selected Asian stock mar-
ket volatilities in forecasting Chinese EPU. Due to reforms in financial policies by
Asian financial markets in recent decades to facilitate and encourage cross-country
investment (Wang & Liu, 2016) and given the importance of stock market volatility
in economic development, consequently, it is reasonable to study the predictive role
of asset volatilities in forecasting EPU as EPU represents the uncertainty in the eco-
nomic policy of any country.

The literature exploring the connection of return and/or volatility of the stock
market with EPU has flourished across the globe, including both developed and
emerging economies. Extensive research has mainly concentrated on exploring the
relationship of own country EPU with the returns/volatility of local stock markets
(Bekiros et al., 2016; Rahman et al., 2019) among others, while various studies
explored the transnational influences of EPU on the stock markets of other emerging
economies such as Brazil, Australia, Canada, Japan, China, South Africa, and on the
financial markets of some trade group countries such as ASEAN, BRIC, EU and GCC
(Balcilar et al., 2019; Carri�ere-Swallow & C�espedes, 2013; Istiak & Alam, 2019; Kang
& Ratti, 2015) among others.

Apart from this, there is increasing research work examining the influence of EPU
on other crucial topics such as monetary policy (Aastveit et al., 2013), inflation and
output (Jones & Olson, 2013), financial stress (Sun et al., 2017), investing behaviour
(Gulen & Ion, 2015), exchange rates (Beckmann & Czudaj, 2017), bank lending
(Bordo et al., 2016), sovereign risk (Wisniewski & Lambe, 2015), foreign exchange
markets (Kido, 2016), cash holding (Demir & Ersan, 2017) and stock price crash risk
(Jin et al., 2019).

When it comes to assessing the impact of Chinese EPU, numerous studies have
focused primarily on the performance of local or mainland stock markets. For
example, Yang and Jiang (2016) inspected the association of stock return with
Chinese EPU. The authors established that stock returns and EPU are significantly
co-related based on the findings of VAR and SVAR, while based on the results of the
DCC-MGARCH technique, the authors established a weak dynamic link between the
coefficient of stock returns and EPU. While the study of Chen et al. (2017) docu-
mented that future returns of Chinese stock markets are negatively forecast by EPU
even after controlling for several other variables that represent financial or macro
uncertainty. The study of Li et al. (2016) established a significant causal association of
Chinese EPU and stock returns of financial markets in the sub-sample period, while
there was no significant causal relationship between them during the full sample
period. Moreover, the study of Xiong et al. (2018) used the DCC-GARCH approach
to examine the time-varying correlation of stock returns with EPU in China; the
authors documented significant responses of stock returns to changes in the absolute
level of EPU. Further, the authors revealed that during the stock market crash in
China and financial crises around the world, this correlation has large fluctuations.
More recently, the study of Rahman et al. (2019) has investigated whether changes in
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Chinese EPU have any substantial influence on the price discrepancy of the dual-
listed AH share premium index. The authors used a counterfactual approach of non-
parametric kernel density estimation technique and concluded that Chinese EPU
explains variations in prices of AH shares, and significantly decreases AH premium
share index returns. Furthermore, some studies have also explored the spillover effects
of Chinese EPU on macro-economic activities (see, for example, Fontaine et al., 2017;
Yan, 2018), leverage decisions of shipping firms in Thailand (Kotcharin & Maneenop,
2018) stock markets (Balcilar et al., 2019; Tsai, 2017).

Moreover, several studies have documented that fluctuations in market conditions
and oil prices cause changes in EPU (Kang & Ratti, 2015; Ko & Lee, 2015) among
others. However, the literature on a reverse channel such as the transnational influen-
ces of asset volatilities in predicting EPU has received little or no research attention
in the empirical literature. Breaking away from the above-mentioned literature, the
purpose of our study is to fill this literature gap. Even so, Wang et al. (2015) docu-
mented that changes in commodity prices predict the EPU of the U.S. economy. The
study of Degiannakis and Filis (2019) documented that European EPU can be forecast
based on Global EPU and European and U.S. asset market volatilities. Hence, we also
maintain that stock market volatilities in regional Asian economies could contain sig-
nificant information in predicting Chinese EPU.

3. Data and research methodology

3.1. Data and their relevant sources

The study employed monthly data for a sample period of March 2011 to June 2018
from different data sources to assess the role of financial market performance (meas-
ured in terms of return and volatility) of Southeast Asian economies in forecasting
Chinese EPU. We obtain monthly data of the Chinese EPU index from the website of
Baker et al. (2016).5 The data for asset prices were obtained from the relevant stock
indices of these countries. The data for these indices were taken from the website of
the WIND database and investing.com. We used the following formula to calculate
stock market return:

Ri, t ¼ Pi�Pi�1

Pi�1
(3.1)

where Ri, t represents monthly returns of a country i at time t, Pi shows current
month prices of stock and Pi�1 shows the last month prices. To calculate volatility,
this study uses monthly aggregate realised volatility (Jorion, 1995) as follows:

RVi, t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
22

Xt�1

i¼t�22

r2t

vuut (3.2)

where RVi, t display monthly realised volatility of a country i at month t, and r2i dis-
play the squared daily returns at time t and t-22 shows the last 22 trading days of
month t.
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Additionally, we also take into account the economic situations of the sample econo-
mies to check whether they could also play any role in forecasting Chinese EPU. We used
the following macroeconomic variables to represent the economic conditions of the sample
countries. These variables include real effective exchange rate (ExRate), GDP growth rate
(GDP),6 trade balance in US dollars (TB), bank policy rate as interest rate (IR) and indus-
trial production index (IPI). These variables were taken from the Economic and Financial
Indicators Database (EFID) of the Asian Development Bank (ADB).

3.1.1. Calculation of EPU outliers/outstanding points
We take EPU outliers as the dependent variable instead of the value of EPU itself,
because the outlier of EPU can better reflect the uncertainty of economic develop-
ment, and the impact of such uncertainty is also greater. On the other hand, since
the models used in our study required binary outcomes of response variable; a tech-
nique is required to classify EPU as ‘1‘or ‘00. We split the EPU data into two out-
comes which are an outlier/outstanding point (1) and no-outlier (0). In order to
predict an outlier7 in the EPU, we used the following process:

Firstly, we calculated the trend of Chinese EPU to obtain the de-trending series.
We ran a time series regression with a ‘time trend’ as a predictor to calculate the
time trend, using the following model:

yt ¼ b0 þ b1t þ 2t (3.3)

Here yt is the response variable (EPU) while time is the explanatory variable,
which is measured in months.

Secondly, we calculated the difference between the true value and predicted trend
value and then we compared this value (difference value) with the standard deviation
of EPU. We found the points at which the difference between the true value and pre-
dicted trend values was greater than the standard deviation and we treated these
points as outliers/outstanding points.

Finally, we created a series of new variables of the outliers/outstanding points, that
is 0 means this point is not an outlier, and 1 means this point is an outlier. Note
that, during this step, if two or more consecutive adjacent points are identified as
‘outliers‘, only the first of them is chosen as an outlier. At the end, 16 points are
selected from 88 points as outliers, which are 8, 10, 36, 39, 42, 46, 50, 54, 56, 58, 68,
71, 73, 76, 83 and 85 as shown in Figure 1.

3.2. Forecasting models

3.2.1. Logistic regression (LR) model
In this study, the relationship between foreign (i.e. ASEAN5 and Hong Kong) finan-
cial and macroeconomic conditions and Chinese EPU has been analysed using the
logit model. The LR model is a standard and the prevalent statistical method which is
used to predict classification type problems. It is considered as an important type of
General Linear Regression Model (GLIM) for categorical response data. It is a dis-
tinctive kind of regression method which has qualitative (dichotomous or binary)
dependent variables and the predictors could be both discrete or continuous or a
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combination of discrete and continuous, i.e. it can evaluate a mixture of all kinds of
explanatory variables (Hair et al., 1995). The benefit of using the LR technique is that
it does not consider the assumption of linearity, normality, and homoscedasticity
between response and predictor variables (Zavgren, 1985) that are based on the
ordinary least square (OLS) approach.

Previously, the logit model has been used as a standard approach to predict cor-
porate bankruptcy (Ohlson, 1980) and crises (Barrell et al., 2010; Demirg€uç-Kunt &
Detragiache, 2005). However, we used the logit model to predict outliers in Chinese
EPU using ASEAN5 and Hong Kong stock market volatilities as predictors while con-
trolling for other macroeconomic variables. It is commonly used to predict the
dependent variable as either crises or no-crises (in our case, outlier or no-outlier)
based on predictive variables. The logit model estimates the probability that outliers/
outstanding points in the regressor (Chinese EPU) will occur with a vector of predic-
tors (Xi,t). The value of the EPU variable (Yi,t) is a zero-one (0,1), that is, it will take
the value of one when a certain quality is present with probability ‘p‘(i.e. when there
is an outlier/outstanding point in the response variable, that is when the value of
EPU exceeds their standard deviation) otherwise it is 0 when a certain quality is
absent with probability ‘1- p‘. The estimation of the logistic model is given by:

Pi ¼ Prob Yit ¼ 1ð Þ ¼ 1
1þ e� ðb0þ b1X1iþ...bkXkiÞ ¼

e ðb0þ b1X1iþ...bkXkiÞ
1þ e� ðb0þ b1X1iþ...bkXkiÞ (3.4)

Similarly:

Pi ¼ Prob Yit ¼ 0ð Þ ¼ 1� Prob Yit ¼ 1ð Þ ¼ 1
1þ e b0þ b1X1iþ...bkXkið Þ (3.5)

Now Equation (3.4) is divided by Equation (3.5) to get the final equation:

Prob Yit ¼ 1ð Þ
Prob Yit ¼ 0ð Þ ¼

Pið Þ
1� Pið Þ ¼ 1þ e ðb0þ b1X1iþ...bkXkiÞ (3.6)

Figure 1. The outstanding points of Chinese EPU. Source: Authors’ Formation.

634 B. XU ET AL.



where b represents unknown coefficients, Pi and 1�Pi indicate the probabilities of 1
and 0 respectively, and e is the exponential constant.

Standard measures used to assess OLS parameters do not apply to the LR model,
but instead the parameters of the LR model are assessed by using the Maximum
Likelihood Method (MLM) and the significance of a particular parameter is tested by
using the likelihood-ratio Chi-Square (or Wald) test. We used the Wald statistic to
identify the significant predictors. Wald test is the square of the asymptotic t-ratio
and is given as:

Wald ¼ b̂

SE b̂
� �

 !2
2
4

3
5 � v2 (3.7)

Another important aspect of the LR method is to check the model fit. For this
purpose, the well-known Hosmer-Lemeshow test is used to check if the model fits
the data well or not. This test was suggested by Hosmer et al. (1989), and it measures
how effectively the response variable is described by the model. Based on expected
probabilities, this approach groups the observations and then tests the hypothesis that
the difference between the observations of the observed and predicted group is
approximately zero, i.e. there is no substantial variation in the values of the observed
group and the values of the predicted group. This test assesses the statistics through
simulation and generally follows the distribution of chi-square. The maximum value
of the Wald statistic (Chi-Square value) is the indication of the minimum standard
error of the corresponding parameter. The Wald test (chi-square value) is only used
for models with binary response data. At least here groups must be made to compute
this test.

3.2.2. Decision tree model (DTM)
The study considers an additional statistical model to forecast Chinese EPU. The DT
is a regular and a strong model for prediction and classification. It is a machine
learning algorithm that splits the data into subsets. They are among the most com-
monly used transparent predictive modeling approaches, because of fewer data
requirements and easily interpretable as well as handling the data well with binary or
categorical characteristics. Unlike parametric models, the DT models do not have
assumptions about the underlying data distribution and there is no need to consider
monotonic transformations such as logarithms. They are tree-like graphs, comprising
of nodes consistent with the predictors (independent variables), and repeatedly split
the data by pecking order (asking a question of ‘if-and-else’) until the classification is
made. The objective is to generate a model that replicates the end value for the target
or dependent variable using several input or independent variables. CART and
CHAID (Breiman et al., 1984) are well-known methods in this field. This study has
used the CART approach. The CART approach is a binary-split category decision
tree procedure that can use both categorical as well as continuous predictors. This
technique is a ‘binary recursive partitioning‘which splits data into two subgroups to
produce similar records in each subgroup which are compared contrary to the prior
subgroup and works repeatedly until identical subgroups are created. This technique
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permits the tree to grow first, then uses a technique of cost-complexity to prune it.
The process of pruning of CART analysis merges and terminates less important nodes
and generates smaller trees.

To select significant variables from a classification tree, a function known as incon-
gruous and gene index is used. The variable with a higher value of gene index (Gini)
is the most suitable and important factor that explains the response variable.

4. Empirical analysis and discussion

4.1. Logistic regression results to predict Chinese EPU outliers

From Tables 1–6 the results of LR are given for Hong Kong and ASEAN5
(Indonesia, Malaysia, Philippine, Singapore and Thailand) respectively. The financial
variables that include returns and volatility of stock markets and other macroeco-
nomic variables from a country (i) are entered in the LR model to predict whether
the stated variables explain the outliers in Chinese EPU or not.

It is clear from Table 1 that volatility in AH premium (at a significant level of 5%)
and trade balance (TB) (at a significant level of 10%) of Hong Kong are the signifi-
cant predictors i.e. they significantly explain the outliers in Chinese EPU.

Panel B of Table 1 shows the model’s goodness of fit test to the data. Generally,
Hosmer-Lemeshow and log Likelihood tests are used to evaluate the model fit. We
used the Hosmer-Lemeshow test (1989) to assess the null hypothesis of whether the
model reasonably fits the data.

Table 1. Panel A: Logistic Regression Results for Hong Kong.
Variables Estimate Std. Err. z-value P>jzj
R_AHP 1.43 6.68 0.21 0.83
VOL_AHP 166.61 67.68 2.46 0.01
GDP �0.71 1.37 �0.52 0.60
ExRate 1.56 2.40 0.65 0.52
TB �0.04 0.02 �1.87 0.06
IR �0.32 1.25 �0.25 0.80
IPI �0.06 0.29 �0.22 0.83
_cons �5.59 16.97 �0.33 0.74
Panel B: Hosmer and Lemeshow test
Chi-Square Df Sig
5.5 8 0.7032

Source: Authors’ Formation.

Table 2. Panel A: Logistic Regression Results for Indonesia.
Variables Estimate Std. Err. z-value P>jzj
R_INDO 18.53 10.21 1.82 0.07
VOL_INDO 47.07 17.89 2.63 0.01
GDP �2.57 2.60 �0.99 0.32
ExRate 0.0002 0.0007 0.24 0.81
TB 0.75 0.52 1.44 0.15
IR �0.06 0.44 �0.14 0.89
IPI 0.09 0.12 0.71 0.48
_cons 7.23 22.74 0.32 0.75
Panel B: Hosmer and Lemeshow test
Chi-Square Df Sig

3.57 8 0.894

Source: Authors’ Formation.
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Table 3. Panel A: Logistic Regression Results for Malaysia.
Variables Estimate Std. Err. z-value P>jzj
R_MAL 16.85 14.02 1.2 0.23
VOL_MAL 44.98 22.29 2.02 0.04
GDP 1.65 0.87 1.89 0.06
ExRate 3.12 1.21 2.59 0.01
TB 1.16 0.64 1.8 0.07
IR 7.16 4.15 1.73 0.08
IPI 0.03 0.23 0.14 0.89
_cons �48.83 19.09 �2.56 0.01
Panel B: Hosmer and Lemeshow test
Chi-Square Df Sig
14.03 8 0.0811

Source: Authors’ Formation.

Table 4. Panel A: Logistic Regression Results for the Philippines.
Variables Estimate Std. Err. z-value P>jzj
R_PHIL 9.63 8.44 1.14 0.25
VOL_PHIL 27.92 16.29 1.71 0.09
GDP �0.21 0.22 �0.92 0.36
ExRate 0.67 0.28 2.4 0.02
TB 0.92 0.62 1.49 0.14
IR 0.68 1.12 0.61 0.54
IPI �0.04 0.05 �0.77 0.44
_cons �34.43 15.03 �2.29 0.02
Panel B: Hosmer and Lemeshow test
Chi-Square df Sig
8.41 8 0.3941

Source: Authors’ Formation.

Table 5. Panel A: Logistic Regression Results for Singapore.
Variables Estimate Std. Err. z-value P>jzj
R_SING 17.10 9.13 1.87 0.06
VOL_SING 21.93 15.74 1.39 0.16
GDP 4.54 8.11 0.56 0.58
ExRate �0.24 0.63 �0.38 0.71
TB 0.21 0.39 0.54 0.59
IR 1.14 0.74 1.53 0.13
IPI 0.00 0.04 �0.08 0.94
_cons �10.40 10.45 �0.99 0.32
Panel B: Hosmer and Lemeshow test
Chi-Square Df Sig
6.47 8 0.5945

Source: Authors’ Formation.

Table 6. Panel A: Logistic Regression Results for Thailand.
Variables Estimate Std. Err. z-value P>jzj
R_THAI 5.75 9.33 0.62 0.54
VOL_THAI 23.14 18.36 1.26 0.21
GDP 0.04 0.34 0.11 0.91
ExRate �0.13 0.31 �0.41 0.68
TB 0.05 0.30 0.15 0.88
IR �2.67 1.80 �1.48 0.14
IPI �0.14 0.09 �1.52 0.13
_cons 6.34 12.71 0.5 0.62
Panel B: Hosmer and Lemeshow test
Chi-Square df Sig
5.97 8 0.6508

Source: Authors’ Formation.
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Based on panel B results, we establish that the model is a good fitting model. The
observed Chi-Square value’s significance level is equal to 0.7032, which means that
there is no significant difference between the values of the observed group and the
values of the predicted group. It can be concluded that it is very meaningful to use
the LR model.

It is clear from Table 2 that stock market return (10%, significant level) and vola-
tility (5%, significant level) of Indonesia are the significant predictors i.e. they signifi-
cantly explain the outliers in Chinese EPU. It is clear from panel B of Table 2 that
the model is good fitting as the observed Chi-Square value’s significance level is equal
to 0.894, which means that there is no significant difference between the values of the
observed group and the values of the predicted group.

Table 3 demonstrates the results of the LR model for the financial and economic
variables of Malaysia. It is clear from the results of Table 3 that stock market volatil-
ity, the exchange rate (5%), GDP growth rate, trade balances and interest rate (10%)
of Malaysia significantly explain the outliers in Chinese EPU. While the observed
Chi-Square value’s significance level is equal to 0.0811, which means the difference
between the values of the observed group and the values of the predicted group is
not large enough.

The results of the LR model (as shown in Table 4) for the Philippines shows that
stock market volatility (10%) and exchange rate (5%) significantly explain the outliers
in Chinese EPU. The observed Chi-Square value’s significance level of goodness of fit
(Hosmer and Lemeshow test) is equal to 0.3941, which means that there is no signifi-
cant difference between the values of the observed group and values of the predicted
group and the usage of the LR method is meaningful.

Tables 5 and 6 show the results for Singapore and Thailand respectively. It is clear
that in the case of Singapore (Table 5) only stock market returns significantly explain
the outliers in Chinese EPU, while in the case of Thailand (Table 6), no variable sig-
nificantly influences the outliers of EPU. However, their goodness of fit test shows
that the observed Chi-Square value’s significance level of goodness of fit (Hosmer
and Lemeshow test) for Singapore and Thailand is equal to 0.5945 and 0.6508
respectively, which means that the usage of LR method is meaningful.

4.2. Decision tree results to predict Chinese EPU outliers

Figures 2–7 give the results of DTs for Hong Kong and ASEAN5 economies
respectively.

Note: In every figure, x[0] represent return (Ri) of country i, x[1] represent volatil-
ity (VOLi) of country i, x[2] represent GDP of country i, x[3] represent Exchange
Rate (ExRate) of country i, x[4] represent Trade Balance (TB) of country i, x[5] rep-
resent Interest Rate (IR) of the country I and x[6] represent Industrial Production
Index (IPI) of the country I.

Figure 2 depicts a tree for predicting outliers in Chinese EPU based on financial
and macroeconomic variables from Hong Kong. Starting with the first node on the
top with 60 samples and a Gini index of 0.18, if the predictor variable is less than
0.023, the DT navigates to the left (true); otherwise, it will be traversed to the right.
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This pattern is repeated until a decision node is reached at which the Gini index
becomes zero. At this point, each node is to be classified as an outlier or no outlier.

From Figure 2 it can be observed that for this specific training set, only three vari-
ables out of seven mattered. More specifically, in order of importance, variables x[1]
(volatility), x[6] (IPI) and x[4] (TB) explain the outliers in Chinese EPU.

Figure 3 indicates a tree for predicting outliers in Chinese EPU based on financial
and macroeconomic variables from Indonesia. Starting with the first node on the top
with 60 samples and a Gini index of 0.18, it can be observed that for this specific
training set, four variables out of seven mattered for predicting outliers in EPU. More
specifically, in order of importance, variables x[0] (returns), x[2] (GDP), x[4] (TB)
and x[5] (IR) explain the outliers in Chinese EPU.

Figure 4 depicts a tree for predicting outliers in Chinese EPU based on financial
and macroeconomic variables from Malaysia. From Figure 2 it can be observed that
for this specific training set, five variables explain outliers in Chinese EPU, which can
be classified (in order of importance) as x[1] (volatility), as x[0] (returns), x[3]
(Exchange rate), x[4] (TB) and x[6] (IPI) respectively.

Figure 5 draws a DT for predicting outliers in Chinese EPU based on financial
and macroeconomic variables from Philippine. From Figure 5 it can be observed that
x[0] (returns), x[3] (Exchange rate), x[0] (volatility), x[6] (IPI) and x[4] (TB) respect-
ively are important variables that explain outliers in Chinese EPU.

Figure 2. The created decision tree for the variables of Hong Kong. Source: Authors’ Formation.
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Figure 6 draws a DT for predicting outliers in Chinese EPU based on financial
and macroeconomic variables from Singapore. It is clear from Figure 2 that for this
specific training set, the important variables that explain outliers in Chinese EPU are
x[5] (IR), x[0] (returns), x[1] (volatility) and x[6] (IPI) respectively.

Figure 7 depicts a tree for predicting outliers in Chinese EPU based on financial
and macroeconomic variables from Thailand. From Figure 7 it can be observed that
variables that mattered to identify outliers in EPU are x[3] (Exchange rate), x[0]
(returns), x[6] (IPI), x[1] (volatility) and x[2] (GDP) respectively (variables are
arranged in order of importance).

4.3. Comparison using the classification accuracy

To identify whether the results of LR and DT analysis are close to each other or not,
we need to classify and identify the accuracy of data. The accuracy score test is the
most popular method of quality assessment. This test can be calculated using the fol-
lowing formula:

accuracy ¼ 1
N

XN
i

dðYi, t Predicted � Yi, t, ActualÞ (3.8)

where

Figure 3. The created decision tree for the variables of Indonesia. Source: Authors’ Formation.
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d x ¼ 0ð Þ ¼ 1 and d x 6¼ 0ð Þ ¼ 0
Yi, t Predicted ¼ Predicted value of EPU in month t
Yi, t Actual ¼ Actual value of EPU in month t

The classification accuracy analysis helps in evaluating the model’s performance by
cross-tabulating the response categories of observed values with the predicted one.
For each case, the predicted response is considered as one if the predicted probability
is greater than the cut off rate; otherwise it is considered as zero. In this study, the
cut-off value for the LR model is set to 0.5. The results of classification accuracy for
all countries are shown in Table 7, for both LR (Panel A) and DT analyses (Panel B).

By using the LR model, the classification accuracy analysis of Hong Kong (Table 7,
panel A) shows that the results for 33% of non-outliers (EPU-0) and 87% of outliers
(EPU ¼ 1) are classified accurately. The results show that 85% of outliers in EPU are
correctly classified, while in the case of DT analysis (Table 7, panel B) the percentage
of correctly classified outliers is 82.1%.

Similarly, it can be observed from the results of Table 7 for other countries, which
show the classification accuracy analysis of both models for ASEAN5 countries
respectively (Indonesia, Malaysia, the Philippines, Singapore, and Thailand), that the
overall percentage of correctly classified outliers, in the case of LR (Panels A for all
countries) is 88.6%, 92.0%, 88.6%, 87.4% and 88.6%, respectively, In the case of DT
analysis (Panels B), the overall percentage of correctly classified outliers is 75.0%.

Figure 4. The created decision tree for the variables of Malaysia. Source: Authors’ Formation.
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71.4%, 71.4%, 55.6% and 75% respectively. Therefore, it can be concluded that the
performance of LR in this specific case is better than that of DT analysis; this may be
due to smaller data set/observations.8

5. Conclusion and policy implications

5.1. Conclusion

We forecast movements in Chinese EPU for the first time, using information from
the six selected East Asian economies (including ASEAN5 and Hong Kong) stock
market volatilities and macroeconomic variables. These economies are the major trad-
ing partners of China, and it is expected that any change, especially in the financial
and economic sectors of these economies, might have significant influences on
Chinese macroeconomic policies. In this regard, we try to evaluate whether Chinese
EPU (outliers/outstanding points) can be explained with the help of asset volatilities
in ASEAN5 and Hong Kong stock markets by controlling other macroeconomic vari-
ables. The study firstly employed the LR method, and the results reveal that stock
market performance of all countries (except for Thailand) significantly predict outliers
in Chinese EPU. These results are in line with the results of Degiannakis and Filis
(2019) who investigated the role of global EPU and asset market volatilities of Europe
and the U.S. to forecast EPU of Europe. The authors concluded that financial asset
realised volatilities of Europe and the U.S. have significant predictive gains on

Figure 5. The created decision tree for the variables of the Philippines. Source: Authors’ Formation.
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forecasting European EPU. Among the other control variables, the trade balance and
the exchange rate werethe significant variables that explain the outliers of EPU.

To draw comparable results, the study also employed DTM to forecast Chinese
EPU. The results show that asset market volatilities of ASEAN5 and Hong Kong offer
significant predictive gains for Chinese EPU. However, the overall percentage of cor-
rectly classified outliers in the case of LR is 88.6%, 92.0%, 88.6%, 87.4% and 88.6%,
respectively for Hong Kong and ASEAN5, while in case of DT model the overall per-
centage of correctly classified outliers is 75.0%. 71.4%, 71.4%, 55.6% and 75%,
respectively. Therefore, it can be concluded that the performance of the LR model in
this specific case is better than that of DT analysis. Consequently, the LR model with
realised volatilities of regional (ASEAN5) and Hong Kong stock markets and other
control variables is the acceptable framework to encapsulate accurately the future
directions of Chinese EPU (outliers).

5.2. Policy implications

High uncertainty in economic policy increases the financing cost, and in the case of
irreversible investment it leads to reduced investment (Bernanke, 1983), unemploy-
ment and economic contraction (Bloom et al., 2007). Consistent with this, policy-
makers, who aim to maintain the low level of EPU, should properly take measures to

Figure 6. The created decision tree for the variables of Singapore. Source: Authors’ Formation.
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reduce EPU to avoid reduced consumer spending and to foster a productive invest-
ment environment in the economy. The outcomes of our study could provide numer-
ous implications. For policymakers, the results of the study will provide important

Figure 7. The created decision tree for the variables of Thailand. Source: Authors’ Formation.

Table 7. Classification Accuracy Table (Comparison of LR and DT performance).

Country

Panel A: Logistic Regression Accuracy Panel B: Decision Tree Accuracy

Predicted Predicted

Observed EPU ¼ 0 EPU ¼ 1
Percent
Correct Observed EPU ¼ 0 EPU ¼ 1

Percent
Correct

Hong Kong EPU 5 0 1 2 33.3% EPU 5 0 23 0 100.0%
EPU 5 1 11 74 87.1% EPU 5 1 5 0 0.0%
Overall Percentage 13.6% 86.4% 85.2% Overall Percentage 100.0% 0.0% 82.1%

Indonesia EPU 5 0 2 1 66.7% EPU 5 0 21 2 91.3%
EPU 5 1 9 76 89.4% EPU 5 1 5 0 0.0%
Overall Percentage 12.5% 87.5% 88.6% Overall Percentage 92.9% 7.1% 75.0%

Malaysia EPU 5 0 5 1 83.3% EPU 5 0 20 3 87.0%
EPU 5 1 6 76 92.7% EPU 5 1 5 0 0.0%
Overall Percentage 12.5% 87.5% 92.0% Overall Percentage 89.3% 10.7% 71.4%

Philippines EPU 5 0 2 1 66.7% EPU 5 0 19 4 82.6%
EPU 5 1 9 76 89.4% EPU 5 1 4 1 20.0%
Overall Percentage 12.5% 87.5% 88.6% Overall Percentage 82.1% 17.9% 71.4%

Singapore EPU 5 0 2 2 50.0% EPU 5 0 13 9 59.1%
EPU 5 1 9 74 89.2% EPU 5 1 3 2 40.0%
Overall Percentage 12.6% 87.4% 87.4% Overall Percentage 59.3% 40.7% 55.6%

Thailand EPU 5 0 2 1 66.7% EPU 5 0 21 2 91.3%
EPU 5 1 9 76 89.4% EPU 5 1 5 0 0.0%
Overall Percentage 12.5% 87.5% 88.6% Overall Percentage 92.9% 7.1% 75.0%

Source: Authors’ Formation.
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insight to ensure growth in investments. The results can provide valuable insights to
policymakers and economists about the substantial predictive role of the regional
financial and economic conditions on EPU forecasting. Policymakers must make their
actions predictable in policy implementation. For example, when there is a rise in the
volatility of the stock market, either from Hong Kong or the ASEAN5 economies,
then the policymakers should know that a certain pattern will be followed by uncer-
tainty in Chinese EPU in the following months, which will help them to control the
situation before (proactive response) rather than responding to it (reactive response).
The policymakers should pay attention to financial uncertainty and should monitor
the financial developments that have been taking place in East Asian Economies to
correctly forecast the Chinese EPU.

Further, based on the findings of this study, it is recommended that this area of
research deserves more attention. As a follow-up on the findings of this study, more
research can be conducted which can investigate the influence of the other regional
economic systems and a US-China trade war to forecast Chinese EPU. Besides the
financial and economic conditions of other associated economies, such as US, BRICS,
etc. could also be used to forecast Chinese EPU. The other studies can also examine
the determinants and the sources of the interaction between them to ensure financial
stability and promote economic growth and development in the global setting.

Moreover, our study has concentrated on financial markets to forecast and predict
EPU while controlling for other macroeconomic variables, however, researchers could
also focus on certain other major uncertain economic events in future, such as polit-
ical events. For example, as pointed out by Baker et al. (2016), the EPU index is
driven by political events and other policy decisions such as election cycles.
Expectations about tax changes (Hassett & Sullivan, 2016) and regulatory complexity
(Davis, 2017) and other financial uncertainty (such as VIX) and macroeconomic
uncertainty indices (Jurado et al., 2015; Scotti, 2016) could also be employed to fore-
cast EPU.

Notes

1. For detail please see the relevant literature section.
2. Donadelli (2015) used the VAR framework and documented that shocks in Asian stock

markets lead to a long-lasting drop in U.S. EPU, which might affect fiscal and monetary
authorities. Hence, we also expect that volatilities in the selected Asian stock markets will
have a significant predictive role in forecasting Chinese EPU.

3. Asian Development Bank (2009), ‘Asian Economic Monitor’, July 2009, Manila. (https://
www.adb.org/publications/series/asian-economic-integration-report?page=1).

4. This uncertainty index captures and highlights the macro level of the Chinese economy,
policy and uncertainty and any fluctuations in it may subsequently affect the economic
growth of China.

5. http://www.policyuncertainty.com/china_monthly.html.
6. Monthly data for GDP was not available; therefore, we used interpolation technique to

change quarterly data into monthly data.
7. Set of observations the values of which deviate from the expected range (which is a

standard deviation in our case).
8. The study of Perlich et al. (2003) established that in the case of smaller datasets, the LR

technique is better while in the case of larger datasets DT analysis is better.
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