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ABSTRACT

In this paper, a nonparametric method is used to measure the
total factor productivity (TFP) growth index in Chinese agriculture
from 1981 to 2017, and the factor bias of technological progress
is identified based on the theory of induced technological pro-
gress. Then, according to the degree of dependence of techno-
logical progress on fertiliser, biased technological progress is
divided into green-biased technological progress and pollution-
biased technological progress, and then empirical test the factors
allocation structure that induce and promote green-biased
technological progress. The results show that China’s agricultural
TFP has undergone three stages of accelerated growth, negative
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growth and fluctuation, and the growth momentum has under-
gone three transformations, which are jointly driven by techno-
logical efficiency and technological progress, dominated by
technological progress and dominated by technological efficiency.
Biased technological progress has contributed to the long-term
growth of agricultural TFP in most regions of China, but it is
mainly biased towards capital-using and fertiliser-using. The
labour/capital ratio and the capital/fertiliser ratio are increased,
reducing the capital/soil ratio, which can induce and promote
green-biased technological progress while suppressing pollution-
biased technological progress. The mechanism test results show
that increasing labour input can indirectly promote green techno-
logical progress by reducing mechanisation.

1. Introduction

Since the ‘green revolution’ in agriculture, the invention and adoption of new tech-
nologies have effectively contributed to increased food production in Asian countries.
In the case of China in particular, less than 10% of the world’s arable soil supports 1/
5 of the world’s population (Fei & Lin, 2016) and even achieved a ‘twelve consecutive
increase’ in food production between 2003 and 2015, responding strongly to the ques-
tion of ‘who feeds China’. In terms of the reasons for China’s rapid agricultural
growth, it is generally accepted in the academic community that it comes from, on
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the one hand, the heavy use of agrochemicals such as fertiliser and pesticide (Gong,
2018a; Wu et al, 2018). On the other hand, the increase in TFP brought by agricul-
tural technology innovation and extension (Gong, 2018b, 2020; Li et al., 2018).

From 1978 to 2016, China’s total fertiliser-using increased by nearly six times
(Wang et al., 2019), accounting for more than 1/3 usage of global fertiliser, but the
utilisation rate was less than half of the world average (Wu et al., 2018), and long-
term excessive use of agrochemicals has caused inestimable damage to environmental
quality, agroecology, food security and human health (Savci, 2012; Wang et al., 2019;
Wu et al, 2018; Xiang et al., 2020). While it is possible to break the growth bottle-
neck of relying solely on increased factor inputs by increasing total factor productiv-
ity, such technological advances, with the primary objective of maximising
agricultural output, still need to be applied to the agricultural production chain
through specific factors of production, such as fertiliser and pesticide, which can have
a negative impact on the ecosystem. This has raised academic concerns about the sus-
tainability of agricultural development in China. At the same time, it has also stimu-
lated extensive discussion in the academic community on what is the theoretical logic
and practical basis for China to embark on the path of chemical agriculture as a trad-
itional agricultural country with a large number of people and little land. How should
the current overuse of chemical farming be transformed and technological progress
induced to favour the green side, while ensuring agricultural growth?

According to Hicks (1932), the relative changes in the prices of production factors
will induce technological innovation or invention, as well as the saving of expensive
or scarce factors and using of cheap or abundant factors in the form of technological
innovation (Ahmad, 1966). On this basis, Hayami and Ruttan (1970) further applied
the induced innovation theory to agriculture, arguing that changes in the relative
endowment of soil and labour are the key factors that determine the direction of agri-
cultural technological change. It is deduced that agricultural technology can be div-
ided into mechanical technology and biochemical technology, the former can save
labour, while the latter can increase the yield of crops per unit of soil area, that is,
the ‘induced innovation hypothesis’ (Binswanger, 1974; Hayami & Ruttan, 1985). The
‘Induced Innovation Hypothesis’ has been proven in many countries once it was pro-
posed. It is more consistent that, in the context of the general rise in labour costs,
agricultural technological progress in various countries has shown labour-saving, and
machinery- and fertiliser-using (Bailey et al., 2004; Balezentis & Oude Lansink, 2020;
Klump & Cabrera, 2008; Managi & Karemera, 2004; Yamauchi, 2016). At the same
time, some scholars have tested whether China ‘s agriculture follows the ‘Induced
Innovation Hypothesis’ and found that under the dual constraints of soil shortage
and rising labour costs, Chinese agriculture generally uses machinery to replace
labour, and uses a large amount of fertiliser to make up for soil shortages (Gong,
2018a, 2020; Wang et al., 2019). The direction of technological progress is consistent
with that of most countries with similar endowment structures, which are represented
by labour- and soil-saving, machinery- (capital), and fertiliser-using (Ito, 2010; Li
et al., 2018; Zhu et al., 2016).

Undoubtedly, this technology structure that matches the factor endowment struc-
ture can enhance agricultural output and TFP (Antonelli & Quatraro, 2010).
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However, if producers blindly pursue the maximisation of private profits and exces-
sive use of cheaper dirty factors, then technological progress will be biased towards
pollution-biased technological progress, causing severe environmental pollution
(Acemoglu et al., 2012). Particularly under China’s current household registration sys-
tem, rural labourers entering urban employment still maintain arable soil and work
part-time in agricultural production activities, which makes it difficult to transfer and
concentrate soil and limits the substitution of machinery for labour (Ito, 2010; Li
et al., 2017). In order to maintain food production, farmers often tend to add more
fertiliser per unit area of soil to make up for the lack of labour input (Liu et al.,
2014; Wang et al,, 2019), which further induces agricultural technology progress
towards the fertiliser-using, aggravating agricultural non-point source pollution
(Xiang et al., 2020). At the same time, however, scholars have found that there is a
negative correlation between land and fertiliser, with a significant 0.5% reduction in
fertiliser and pesticide use for every 1% expansion of land area (Wu et al., 2018).
Moreover, while the scale of the soil is expanding, it can also increase the use of
labour and capital (mechanical) with a cost-benefit advantage (Balezentis & Oude
Lansink, 2020), thereby inducing technological progress-biased capital (mechanical)
using and fertiliser-saving (Ito, 2010; Yamauchi, 2016). So, does it mean that the cur-
rent fertiliser-using biased technological progress can be reversed by optimising the
factor allocation structure? In order to induce technological progress to be green,
what is the specific relationship between the four factors of labour, capital, soil and
fertiliser? The answers to these questions not only help us to understand more clearly
the process of allocation the factors that induce green technological progress in
Chinese agriculture, but also provide important theoretical guidance and practical
implications for reconciling food security and ecological security.

Compared with the existing literature, the main contributions of this paper are
summarised as follows. Firstly, the measurement methods of technological progress
can be roughly divided into parametric methods and nonparametric methods. The
parametric method has a good economic theory foundation, and can be used to
decompose TFP and biased technological progress based on economic theory.
However, due to the need to set functional forms, such as the constant elasticity sub-
stitution (CES) production function (Zha et al., 2017), the Cobb-Douglas production
function (Antonelli & Quatraro, 2010; Ito, 2010), and the translog cost function
(Karanfil & Yeddir-Tamsamani, 2010; Zhu et al., 2016) and stochastic frontier
approach (Shao et al,, 2016; Yang et al., 2018), there is a greater risk of incorrect pro-
duction function setting. In contrast, nonparametric methods do not need to set spe-
cific production functions, can include multiple inputs and multiple outputs, can be
decomposed into multiple indicators, and other advantages, which have increasingly
been favoured by more and more scholars (BaleZentis & Oude Lansink, 2020; Briec
et al, 2011; Li et al,, 2018; Song & Wang, 2016). In view of this, this paper uses a
nonparametric method to measure TFP, and based on the ideas of Fare et al. (1997)
and Li et al. (2018), decomposes and identifies biased technological progress.
However, it is different from the existing nonparametric methods in order to elimin-
ate the degradation of the pseudo-technology of the traditional DEA method; that is,
the current output set has nothing to do with the previous feasible technology. Based
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on the method of Shestalova (2003), this paper uses the output-biased sequential data
envelopment analysis (DEA) method to construct the technological frontier, and
based on the biased Malmquist index, it decomposes input-biased technological pro-
gress from TFP.

Secondly, the existing literature on biased technological progress in agriculture is
mainly focused on descriptive research and only regards the direction of techno-
logical progress as a simple response to the process of factor endowment structural
change. This obviously ignores the logical relationship of adjusting the techno-
logical progress direction by manipulating the factors allocation structure in the
specific production process. According to Hayami and Ruttan (1970), Binswanger
(1974) and Hayami and Ruttan (1985), the relative changes in the factor endow-
ment structure determine the direction of technological change. Therefore, when
this technological progress direction has serious pollution characteristics, the gov-
ernment can adjust the factor allocation structure through policy tools or market
methods, and induce green-biased technological progress (Acemoglu et al., 2012).
Based on this logic, this paper divides technological progress into green-
biased technological progress when technological progress is biased towards
fertiliser-saving (labour-using/fertiliser-saving, capital-using/fertiliser-saving and
soil-using/fertiliser-saving) and pollution-biased technological progress when
technological progress is biased towards fertiliser-using (labour-saving/fertiliser-
using, capital-saving/fertiliser-using and soil-saving/fertiliser-using), and then use
econometric models to explore the factors allocation structure that induce and pro-
mote green technological progress.

Thirdly, the influence mechanism of factor allocation structure on biased techno-
logical progress is an important and complicated issue. Many studies have shown that
labour scarcity (Gong, 2018a; Qiao, 2017) and land scale (Gong, 2018a; Qiao, 2017)
are important factors affecting the agricultural mechanisation. Qiao (2017) and Gong
(2018a) suggest that as the wage rate increased, agricultural machinery became more
widely used as an important substitute for labour input, which can reverse the cur-
rent situation of intensive use of fertilisers by farmers due to insufficient labour (Wu
et al., 2018). According to data, the mechanisation rate of China’s three major staple
foods (rice, wheat and corn) will exceed 80% in 2020. In addition, Balezentis and
Oude Lansink (2020) believe that the expansion of land scale can also use large-scale
machinery at a cost advantage, thereby reversing the bias in the use of fertilisers
towards technological progress, and inducing technological advances in favour of cap-
ital (machinery) using and fertiliser saving (Ito, 2010; Yamauchi, 2016). Based on
this, this paper adopts the level of mechanisation as an intermediary variable to fur-
ther explore the influence mechanism of factor allocation structure on biased techno-
logical progress.

The rest of this paper is organised as follows. Section 2 introduces the research
methods. Section 3 is research design, including variable setting, data source and
processing, descriptive statistics, and empirical model. Section 4 presents the
Malmquist and decomposition results, biased technological progress identification
results, basic empirical, and mechanism test. The research conclusions and policy
implications are shown in the finally.
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2. Methods
2.1. Output-oriented sequential DEA

This paper uses each province as a decision module (DMU) to construct the produc-

tion frontier. Assuming that each DMU uses K inputs, xkj(n =1, ..., K)eR". Where
i represents the i-th province and has obtained M non-negative outputs,
ymj(m =1, ..., M)eR". At the same time, in order to eliminate the degradation of

the pseudo-technology of the traditional DEA method, that is, the current output set
has nothing to do with the previous feasible technology, this paper uses the method
of Shestalova (2003) and uses the output-oriented sequential DEA to construct the
technological frontier.

Pl ={y: y< V% x>X'n2 >0} (1)
where A is the  weight, X =(Xxb,..  X-LX)= (thl,Xt), Y =
(Yh, ...yl Y = (l_/tfl, Yt), and t, is the first period, for which
observations on inputs and outputs are available. However, the construction of
the last set would require information on inputs and outputs before any time f,.
Since this information is missing, we have to truncate set l_’t(x) at some #, and
define.

=t o £ <o 1
P <x|X =Xb, Y :Y°> @)
={y: y< (Yo, ., Y"LY)A x> (X .., XL X)WA >0}
The corresponding production set will be the set {(x, »:y<
(Yo, ., Y"LY)N x> ( Xb, .., XL XA, A > 0}, Therefore, the linear pro-
gram that defines the distance function relative to the sequential frontier becomes.

D!(x',y') = max®6],
t N
st Y Y Mxf <xj,k=LK,SF

p=1i=1

N
izk?)’%i > 04 Vi

p=1 i=1
A0 >0, forall i, k; i=1,...,N

3)

In this case, the optimal solution is denoted by 6! with the constrains ensuring
that (xi, - y..) belongs to P'.

2.2. Malmaquist index and decomposition

According to Chambers et al. (1996), the productivity index between t-period and
t + 1-period based on output biased Malmquist Index (MI) is as follows:
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The MI index is further decomposed into an efficiency change index (EFFCH) and
a technology change index (TECH).

Dy (x',")
t+1 [ )
EFFCHt = W (5)
TECHt+1 _ D2+1(Xt7)/t) " D(t)+1(xt+17yt+l) 2 (6)
t D(t)(xt’yt) D(t)(xt+17yt+l)
MI = EFFCH x TECH (7)

MI, EFFCH and TECH greater than (less than) 1 represent productivity growth
(decrease), technical efficiency is improved (decreased), and technological progress, if
equal to 1, it means that the period from ¢ to t+ 1 is unchanged. It should be noted
that TECH is greater than or equal to 1 except that the base period TECH may be
less than 1.

According to the method of Fare et al. (1997), neutral technology progress
(MTECH) and biased technology progress (BTECH) are decomposed from techno-
logical progress (TECH).

TECH = MTECH x BTECH (8)
Dt+1(xt yt)
t+1 _ “o ’
MTECH;™ = Dty €
Dt+1(xt+1 yt+1) Dt (xt yt) 2
t+1 __ [ ) 0 ’
BTECH,” = { Dé(xH»l,ytJrl) X D(t)+1(xt’yt) (10)

The MTECH and BTECH indexes greater than (less than) 1 indicate neutral
technological progress (regression) and biased technological progress (regression). If
the two indexes are equal to 1, it means that the period from ¢ to ¢ + 1 is unchanged.

In particular, based on the ideas of Fare et al. (1997) and Li et al. (2018), this
paper further decomposes the biased technology progress index (BTECH) into out-
put-biased technology progress (OBTECH) and input-biased technology progress
(IBTECH).

BTECH = OBTECH x IBTECH (11)
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1

DEFL (kL yt1)  DE(xt gt ’
+1 _ 0 ’ m 7
OBTECH,” = { Dt (x+1, yt+) X DEFL (1 o) (12)
Dt+1(xt+1 yt> Dt (xt yt> 2
1 _ ! 7
IBTECH," = { Dol;)(xt+1’yt) X Df,il(xtv)’t> (13)

Among them, OBTECH measures the effect of technological progress on different
proportions of output in the case of multiple outputs. Since this paper considers only
a single output, OBTECH is 1. IBTECH measures the change in the marginal substi-
tution rate of different input factors by technological progress, indicating that the
input-biased technological progress lead to further increase (greater than 1) or
decrease (less than 1) in TFP on the basis of proportional savings on inputs.

Finally, the MI can be decomposed to the following forms.

MI = EFFCH x MTECH x OBTECH x IBTECH (14)

Equation (13) shows that the source of TFP can be decomposed to technical effi-
ciency (EFFCH), neutral technological progress (MTECH), each output-biased tech-
nical progress and input-biased technical progress.

2.3. Biased technological progress identification method

Furthermore, this paper refers to the approach of Li et al. (2018) to determine the
factor bias and output bias of technological progress based on the changes in the fac-
tor ratios during periods ¢ and ¢ + 1 different combinations of IBTECH.

Suppose that from the period ¢ to ¢+ 1, the input has changed to technical
change (biased technical change can be technical change or technological retrogres-
sion), there are two kinds of inputs x; and x;. When IBTECH > 1, x{*'/x{"! > x{/x]
means that the biased technological progress is x; using and x; saving. x{™'/x/™! <
x! /x]‘ means that the biased technological progress is to x; saving and x; using. When
IBTECH <1, x/™'/x{™' > x!/x! means that the biased technological progress is x;
saving and x; using. x;"! /x{*! < x!/x{ means that the biased technological progress is
the x; using and the x; saving. The details are shown in Table 1.

3. Research design
3.1. Data and variables
The data used in this study are provincial-level agricultural outputs and inputs of 28

provinces (Eastern: Beijing, Tianjin, Hebei, Liaoning, shanghai, Jiangsu, Zhejiang,

Table 1. Input mix and input bias towards technological progress.

Input mix IBTECH > 1 IBTECH =1 IBTECH < 1
X > xd X; using, X; saving Neutral X; saving, X; using
XX <X x X; saving, X; using X; using, X; saving

Source: the author based on the original data and empirical results.
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Fujian, Shandong, Guangdong. Central: Shanxi, Jiangxi, Jilin, Anhui, Heilongjiang,
Henan, Hubei, Hunan, Inner Mongolia. Western: Sichuan, Guangxi, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang) in mainland China for
1981-2017. In order to keep the data consistent, Tibet is not included in this paper.
Hainan was included in Guangdong, and Chongging was included in Sichuan.
Twenty-eight provinces were eventually obtained. The data comes from History of
China’s Gross Domestic Product Accounting, New China’s Sixty Years of Agricultural
Statistics, China Statistical Yearbook, China Agricultural Yearbook and the provincial-
level statistical yearbooks. This paper follows the traditional literature (e.g., Gong,
2018a, 2018b, 2020) in selecting inputs and outputs.

3.1.1. Input and output variables

The output variable is the gross value of agricultural output (FGP) and deflated by
the 1978 primary industry output value price index. Labor is measured as the size of
the labour force (in millions) in the agriculture. Capital is agricultural capital stock,
but as the existing statistical data does not provide agricultural capital stock data, this
paper refers to the practices of Fei and Lin (2016) and Zha et al. (2017) uses the per-
petual inventory method to calculate agricultural capital stock, Ki;=
Iii+(1—08;¢)Kit—1. The investment I;; in that year was measured by the gross fixed
capital formation of the primary industry. The base period capital stock refers to the
method of Zha et al. (2017) and is calculated using Kijo7s = I1978/(8 + &), where & is
the capital depreciation rate and is set to 5% according to Dekle and Vandenbroucke
(2010) and Cao and Birchenall (2013), g; is the geometric average growth rate of real
agricultural output value from 1978 to 2017. As for the investment price index, the
existing statistics do not provide the agricultural investment price index. For this pur-
pose, the price index of agricultural means of production is used to convert the cap-
ital stock into a capital stock calculated at a constant price in 1978. Soil refers to the
sown area (in million hectares) reflecting the actual utilisation of the cultivated soil.
Fertilizer refers to the sum of the gross weight of nitrogen, phosphate, potash and
complex fertiliser (in million tons).

3.1.2. Empirical variables

The dependent variables. Y = [InIBTECH, InIBTECH % GTPD, InIBTECH * PTPD].
InIBTECH is the input-biased technology progress index, and In represents the loga-
rithm.GTPD = [GTPDyf, GTPDgg, GTPDgg| is the dummy variable matrix of green
technological progress. According to the aforementioned method of identifying
the direction of technological progress, if technological progress is labour-using/fertil-
iser-saving, then GTPDyr = 1, otherwise 0. If technological progress is capital-using/
fertiliser-saving, then GTPDgg = 1. If the technological progress is soil-using/fertil-
iser-saving, then GTPDsg = 1, otherwise 0. PTPD = [PTPDgy, PTPDgy, PTPDgs] is
the dummy variable matrix of pollution technological progress. If the technological
progress is fertiliser-using/labour-saving, PTPDg; = 1, otherwise it is 0. If techno-
logical progress is fertiliser-using/capital-saving, then PTPDgx = 1. If the techno-
logical progress is fertiliser-using/soil-saving, then PTPDgg = 1, otherwise it is 0.
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Independent variables. The labour/capital allocation structure (InRLK) is expressed
as the ratio of labour to capital. The labour/soil allocation structure (InRLS) is
expressed as the ratio of labour to soil. Labour/fertiliser allocation structure (InRLF)
is expressed as the ratio of labour to fertiliser. Capital/soil allocation structure
(InRKS) is expressed as the ratio of capital to soil. Capital/fertiliser allocation struc-
ture (InRKF) is expressed as the ratio of capital to fertiliser. Soil/fertiliser allocation
structure (InRSF) is expressed as the ratio of soil to fertiliser.

Control variables. In recent years, China’s agricultural structure has undergone tre-
mendous changes. The planting area of staple food crops (rice, wheat and corn) that
use more fertilisers has declined, and some areas have even been encouraged to
return farmland to forests. Thus, the adverse effects of agricultural production on the
environment can be alleviated. This paper refers to Skokanova et al. (2020) use the
ratio of the crop area to the area of arable land to express the agricultural structure
(InASTR). Existing studies generally use per capita GDP to represent the level of
regional economic development and suggest that the regions with higher level of eco-
nomic development will have great advatages in inputting elements of agricultural
production, such as capital, agricultural science & technology and management poli-
cies of cultivated land, thus improving the conditions of agricultural production
(Kuang et al., 2020; McGowan & Vasilakis, 2019). Based on this, this paper uses the
per capita agricultural output value (InAOPC) to express the level of agricultural
development in a country, and believes that the higher the level of agricultural devel-
opment, the more favourable it is to technological progress. It is generally believed
that modern agriculture is fed back by industry, and the continued high yield of agri-
culture depends on the continuous input of industry. However, countries with a high
degree of agriculturalisation lack the input of modern production factors (agricultural
machinery, fertilisers, pesticides and grains), which is not conducive to the progress
of agricultural technology. This paper refers to Gong (2018b) and Xiang et al. (2020)
use the value-added share of agriculture in GDP to express the agricultural level
(InAGDP). Per capita income reflects to some extent the ability of farmers to pay for
environmental protection facilities. This paper refers to Xiang et al. (2020) use the
per capita net income of rural residents to express the per capita income of rural resi-
dents (InRPCNI). According to Hicks (1932), relative price changes are the direct
cause of biased technological progress. This paper uses the ratio of the rural consume
price index to the agricultural data price index to express the relative price change
(InRPC). Descriptive statistics of variables are shown in Table 2.

3.2. Empirical model

In order to clarify the optimal factor allocation structure to promote agricultural
green technology progress and pollution control technology progress, this paper sets
formula (15).
Y,')t = 0 + O(lll’lRLKi,t + Olzli’lRLSi,t + 0L3ll’lRLFi,t + Ot4li’lRKSi,t + OC5ZT’IRKF,‘,¢
+ o6InSF; s + PControl; s + vi + u;y + € ¢ (15)
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Table 2. Descriptive statistics of variables.

Variable Variable symbol N Mean Std. dev. Min. Max.
Input and output variables FGP 1036 301.22 295.56 5.67 1390.7
Labour 1036 1123.54 824.04 37.09 3839.31
Capital 1036 124.09 180.06 3.54 1531.1
Soil 1036 5469.33 3547.02 121 14768
Fertiliser 1036 140.66 124.21 3 716.09
Independent variables InRLK 1036 2.654 1.057 0.252 5.682
InRLS 1036 0.184 0.058 0.055 0.356
InRLF 1036 2.289 0.584 1.139 4.136
InRKS 1036 0.03 0.046 0.001 0.409
InRKF 1036 0.637 0.451 0.049 2.846
InRSF 1036 3.84 0.564 2.662 6.333
Control variables InASTR 1036 0.533 0.07 0.284 0.762
InAOPC 1036 0.061 0.036 0.012 0.197
InAGDP 1036 0.582 0.2 0.077 1.108
InRPCNI 1036 6.433 0.754 4.941 8.596
InRPC 1036 0.686 0.227 0.201 2.063

Source: the author based on the original data and empirical results.

where ¢ is the time, and i is the i-th province, 0-0 and B are the parameters to be
estimated, v;, u;, €, represent the province, the time-fixed effect and the
residual error.

4. Empirical results
4.1. Malmquist index and decomposition results

Based on the aforementioned methods and data, this paper measures China’s agricul-
tural TFP growth index from 1981 to 2017, and decomposes its sources, as shown in
Figures 1 and 2.

It can be seen from Figure 1 that from 1981 to 2017, China’s agricultural TFP
showed an increasing trend in most years. Specifically, 1981-1994 was a stage of
accelerated growth. On the one hand, the continuous increase in technological effi-
ciency (EFFCH) and technological progress (TECH) from 1981 to 1988 jointly driven
the TFP growth. On the other hand, despite the continuous deterioration of EFFCH in
1989-1994, the rate of TECH has been significantly accelerated, thereby pushing the
TFP growth index to its peak in 1994. 1995-2002 and 2012-2017 was the decay phase.
The main reason is that the technical efficiency has deteriorated significantly and the
speed of TECH has slowed down, which has led to a negative growth in the TFP growth
index. From 2003 to 2011, it was a volatile phase. During this period, the TECH index
approached 0, and the technical efficiency showed a large fluctuation state, which also
caused the TFP index to show severe fluctuations. The reasons are mainly from two
aspects: Firstly, this paper adopts serial DEA. This method does not allow technological
decline and regards TECH as a stable process; thus, all the reasons for the decline in
TFP growth index and severe fluctuations are attributed to insufficient technical effi-
ciency and changes (Shestalova, 2003). Secondly, many studies have shown that the
insufficient promotion of agricultural technology in China and the small-scale and frag-
mented agricultural soil management pattern are the primary factors that cause ineffi-
cient technology and hinder the growth of TFP (Brimmer et al., 2006; Wu et al., 2018).
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Figure 1. Changing of the Malmquist, EFFCH, TECH and MTECH across time.
Source: the author based on the original data and empirical results.

In addition, it is worth noting that the neutral technological progress (MTECH)
almost coincides with the TECH, indicating that China’s agricultural technological
progress is dominated by neutral technological progress, and the contribution of
biased technology is minimal. Therefore, in the follow-up research, this paper focuses
only on the analysis of factors biased by technological progress rather than their con-
tribution to TFP growth.

As can be seen in Figure 2, except for Tianjin, Jilin, Inner Mongolia, Henan and
Gansu from 1981 to 2017, the Malmquist index of most provinces is greater than 1,
and mainly from TECH. Eastern provinces have the fastest TFP growth, with
Shanghai ranking highest. However, it is worth noting that the gap between TECH
and MTECH is relatively large, indicating that a large part of the driving force for
the TFP growth in Shanghai comes from biased technological progress. In the central
and western provinces, except Hunan and Guizhou, the EFFCH of the remaining
provinces is less than 1, indicating that low EFFCH is the main factor hindering the
TFP growth of. Moreover, TECH and MTECH almost completely overlap, indicating
that MTECH is the main source of TFP growth.

4.2. Biased technological progress identification results

Table 3 shows the results of the agricultural technology progress direction from 1981
to 2017. Except the base period (1982), the input-biased technological progress index
(IBTECH) was greater than 1, indicating that input-biased technological progress has
contributed to the long-term growth of agricultural TFP.

Comparing labour and capital, except for the technological progress several years,
it is biased towards labour-using/capital-saving, and the rest of the period is biased
towards labour-saving/capital-using. This shows that under the situation of rising
labour costs, agricultural production also tends to replace labour through capital, and
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Figure 2. Changing of the average Malmquist, EFFCH, TECH and MTECH across provinces.
Source: the author based on the original data and empirical results.

the ‘capitalisation’ trend in agriculture is very obvious. Comparing labour and soil,
these two inputs are competitive in technological progress, which is manifested by a
period of labour-using/soil-saving technology progress, and then turned to labour-sav-
ing/soil-using technological progress. Comparing labour and fertiliser, the overall pref-
erence is for labour-saving/fertiliser-using technological progress. In the context of
accelerated labour force transfer to non-agricultural employment, farmers tend to apply
more fertiliser instead of labour (Li et al., 2018; Wang et al., 2019). Comparing capital
and land, most years show capital use/land saving. It shows that under small-scale and
fine-grained agricultural conditions, increasing investment in capital goods such as irri-
gation facilities, machinery and greenhouses has become a feasible path to promote the
growth of agricultural productivity. In terms of capital and fertiliser comparison, it can
be roughly divided into capital-saving/fertiliser-using technology progress stages and
capital-using/fertiliser-saving stage. This shows that the contribution of fertiliser to agri-
cultural growth can be replaced by increasing capital investment, which is beneficial to
the improvement of the ecological environment. Comparing soil and fertiliser, except
for 1982, 2015 and 2016, which showed technical progress in soil-using/fertiliser-saving,
the remaining years were technical progress in soil-saving/fertiliser-using.

To sum up, under the special agricultural conditions in China, fertiliser and capital
together constitute a source of factors that promote the continuous growth of agricul-
tural TFP. Excessive use of fertiliser will cause serious agricultural non-point source
pollution (McArthur & McCord, 2017), but it is possible to suppress the use of fertil-
iser through capital-using biased technological progress (Ito, 2010).

Table 4 shows the results of agricultural technology progress direction from 1981
to 2017. From the perspective of input-biased technological progress index, except for
Hebei and Qinghai, which are smaller than 1, the other provinces are all greater than
1, indicating that input-biased technological progress contributes to the improvement
of agricultural TFP in most provinces in China, and eastern > central > western.
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Table 3. The agricultural technology progress direction from 1981 to 2017.

Year IBTECH L vs. K Lvs.S Lvs F Kvs. S K vs. F Svs. F
1981-1982 0.99863 K S L S K S
1982-1983 1.00217 L L F K F F
1983-1984 1.00144 L S F S F F
1984-1985 1.00564 K S F K K F
1985-1986 1.00303 K S F K F F
1986-1987 1.00454 K S F K F F
1987-1988 1.01035 L L F S F F
1988-1989 1.00530 L L F S F F
1989-1990 1.00396 L L F K F F
1990-1991 1.00466 K L F K F F
1991-1992 1.00788 K S F K K F
1992-1993 1.01599 K S F K K F
1993-1994 1.01466 K S F K F F
1994-1995 1.02054 L S F S F F
1995-1996 1.00545 K S F K K F
1996-1997 1.01036 K L L K K F
1997-1998 1.00025 K L F K K F
1998-1999 1.00025 K L F K K F
1999-2000 1.00396 K L L K K F
2000-2001 1.00736 K L F K K F
2001-2002 1.00309 K S F K K F
2002-2003 1.00396 K L F K K F
2003-2004 1.00231 K S F K F F
2004-2005 1.00235 K S F K K F
2005-2006 1.00192 K S F K K F
2006-2007 1.00078 K L F K K F
2007-2008 1.00250 K S F S F F
2008-2009 1.00288 K S F K K F
2009-2010 1.00686 K S F K K F
2010-2011 1.00301 K S F K K F
2011-2012 1.00393 K S F K K F
2012-2013 1.00326 K S F K K F
2013-2014 1.00414 K S F K K F
2014-2015 1.00493 K S F K K S
2015-2016 1.00816 K L L K K S
2016-2017 1.00839 K L L K K F

Note: L indicates that technical progress is biased toward labour-using, K indicates that technical progress is biased
towards capital-using, S indicates that technical progress is biased towards soil-using and F indicates that technical
progress is biased towards fertiliser-using.

Source: the author based on the original data and empirical results.

From the perspective of the factors of technological progress, China’s agriculture is
mainly manifested in a variety of technological progress such as capital-using, fertil-
iser-using, soil-using and labour-saving.

In the comparison of labour and capital, only Hebei and Qinghai are biased
towards technological progress in labour-using/capital-saving, and other provinces are
technological progress in labour-saving/capital-using. In the comparison of labour
and soil, the eastern, central and western regions all show labour-saving/soil-using
technological progress, but in terms of the proportion of each region, it is expressed
as al (6/8) > western (7/10) > East (5/10) . In the comparison of labour and fertil-
iser, capital and soil, except for Hebei and Qinghai, the other provinces are labour-
saving/fertiliser-using technology progress, and capital-using/soil-saving. In the
comparison of capital and fertiliser, Hebei, Guizhou and Qinghai show capital-saving/
fertiliser-using, and the remaining provinces show capital-using/fertiliser-saving.
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Table 4. Results of agricultural technology progress direction by region from 1981 to 2017.

Province IBTECH L vs. K Lvs.S Lvs. F Kvs. S K vs. F Svs. F
Beijing 1.02738 K L F K K F
Tianjin 1.00423 K S F K K F
Hebei 0.99961 L L L S F S
Liaoning 1.00748 K L F K K F
Shanghai 1.0575 K S F K K S
Jiangsu 1.00103 K S F K K F
Zhejiang 1.00696 K S F K K F
Fujian 1.00135 K L F K K F
Shandong 1.00094 K S F K K F
Guangdong 1.01402 K L F K K F
Eastern 1.01205 K S F K K F
Shanxi 1.00001 K L F K K F
Jiangxi 1.00138 K S F K K F
Jilin 1.00162 K S F K K F
Anhui 1.00067 K S F K K F
Heilongjiang 1.00905 K L F K K F
Henan 1.00142 K S F K K F
Hubei 1.00272 K S F K K F
Hunan 1.00276 K S F K K F
Inner Mongolia 1.00169 K S F K K F
Central 1.00245 K S F K K F
Sichuan 1.00024 K S F K K F
Guangxi 1.00012 K S F K K F
Guizhou 1.00162 K S F K F F
Yunnan 1.00054 K S F K F F
Shaanxi 1.00016 K L F K K F
Gansu 1.00146 K S F K K F
Qinghai 0.99842 L L L S F S
Ningxia 1.00124 K L F K K F
Xinjiang 1.00131 K S F K K F
Eastern 1.00068 K S F K K F
Country 1.00506 K S F K K F

Note: L indicates that technical progress is biased towards labour-using, K indicates that technical progress is biased
towards capital-using, S indicates that technical progress is biased towards soil-using and F indicates that technical
progress is biased towards fertiliser-using.

Source: the author based on the original data and empirical results.

From the comparison of soil and fertiliser pairs, Hebei, Shanghai and Qinghai show
soil-using/fertiliser-saving, and the remaining provinces are soil-using/fertiliser-saving.

Judging from the biased ranking of technological progress factors, Hebei and
Qinghai have biased technological progress more towards labour-using, soil-
using, fertiliser-using and capital-saving (L—L—L—S—F —§), and Yunnan and
Guizhou have biased technological progress more towards fertiliser-using, capital-
using, soil-using and labour-saving (K — S — F — K — F — F). In addition, the remain-
ing provinces favour capital-using, fertiliser-using, labour-using, and soil-saving
(K—L—F—K—K —F), or capital-using, fertiliser-using, soil-using, and labour-sav-
ing(K—S—F—-K—-K-F).

4.3. Benchmark regress results

The first step for the investigation of causality is to determine whether the series has
any integration orders. For this purpose, this paper first carries out a panel unit root
test for each variable. At present, the panel unit root test method is mainly divided
into two types. One is the same unit root test based on Levin et al. (2002) (LLC test),
Breitung and Das (2005) (Breitung test) and Hadri and Larsson (2005) (Hadri test)
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Table 5. Panel unit root tests results.

Variable LLC test Breitung test IPS test Fisher test

InIBTECH —13.0413%** —6.9347%%* —10.7582%** —14.9595%**
IBias.¢ —11.8248%** —3.2519%%* —13.1265%** —15.0146%**
IBiaskr —17.5810%** —5.7264%** —7.6286*** —16.9815%**
IBiassr —22.8257*** —10.5337%** —22.0043*** —19.6738***
IBiasg. —15.2616%** —2.6089%** —17.4336%** —17.9127%**
IBiasgx —12.0673%** —16.5969%** —14.4121%%* —14.9337%**
IBiasgs —20.5621%** —2.3804%** —22.1306%** —19.1272%**
InRLK —3.1344%%* —3.1048%** —3.2877%%* —9.1126%**
InRLS —1.7791%* —1.3015%* —1.7533** —4.1445%%*
InRLF —4.4522%H% —3.0354%** —3.3343%%* —9.5928***
InRKS — 2.1649%** —2.6042%** —3.0617** —10.9062***
InRKF —2.9473%** —4.3745%%* -0.7397 —6.1579%**
InRSF —3.8097*** —2.8230%** —3.61617%%* —9.9344%%*
InASTR —2.7518%** —1.3667* —1.7028** —5.1183%**
InAOPC —1.5052* —2.9422%%* —3.0683%** —5.0179%**
InAGDP —1.4592% —1.4080* —2.7339%** —T7ATT9***
InRPCNI —2.0948** —1.4182%* —3.3979%%* —10.19271%**
InRPC —1.3815% —2.1132%* —1.4533%* —9.9015%**

*HEp <0.01, **p < 0.05, *p <0.1.
Source: the author based on the original data and empirical results.

Table 6. Panel cointegration tests results.

Variable Gt Ga Pt Pa
InIBTECH —5.052%** —17.145%** —23.109%** —15.022%**
(-14.841) (-3.736) (-10.762) (-4.652)
IBias ¢ —6.3847%F* —19.118%** —30.663*** —13.487%**
(-21.77) (-5.096) (-16.944) (-3.630)
IBiasyr —4,905%** —14.349%* —31.249%** —14.942%**
(-14.076) (-1.809) (-17.423) (-4.598)
IBiasse —6.479%F* —19.553%** —42.699%** —19.779%**
(-21.019) (-3.612) (-26.353) (-5.905)
IBiasg, —7.156%** —15.993*** —25.171%%* —18.164%**
(-25.783) (-2.942) (-12.450) (-6.742)
IBiasgx —5.648%** —18.725%** —24.860%** —15.936%**
(-16.712) (-3.087) (=11.406) (-3.583)
IBiasgs —6.386%** —16.311%%* —23.996%** —18.539%**
(-21.779) (-3.161) (-11.488) (-6.992)

The parenthesis are the z-values, ***p < 0.01, **p < 0.05.
Source: the author based on the original data and empirical results.

tests. The other is unit root test based on Im et al. (2003) (IPS test) and Choi (2001)
(Fisher). For the sake of robustness, this paper conducts four panel unit root tests for
LLC, Breitung, Fisher and IPS. The results are reported in Table 5. It can be seen
from the table that all variables have passed the significance test at least at the 5%
level, which indicates that all variables are stationary series.

In addition, according to the cointegration test of panel data Persyn and
Westerlund (2008), the results (Table 6) show that all statistics reject the null hypoth-
esis at the 1% significance level. It is indicating that there is a stable cointegration
relationship between the dependent variable and the independent variable.

Table 7 shows the regression results of this paper. Among them, model (1) is the
benchmark regression result of this paper, and the dependent variables of model
(2)-model (4) are green-biased technological progress (labour-using/fertiliser-saving,
capital-using/fertiliser-saving and soil-using/fertiliser-saving). The dependent variable
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Table 7. Benchmark regress results.

Green technical progress Pollution technical progress
InIBTECH
Variable (1) (2) (3) (4) (5) (6) (7)
InRLK 0.0051%** -0.0001 0.0085*** 0.0059%** —-0.0002 -0.0002 —0.00002
(0.0022) (0.0018) (0.0018) (0.0017) (0.0002) (0.0002) (0.0001)
InRLS 0.3349%** 0.1877*** 0.1998*** 0.1356%* 0.0059 0.0155* 0.0096
(0.0872) (0.0714) (0.0741) (0.0664) (0.0067) (0.0083) (0.0059)
InRLF -0.0780%** -0.0275%* -0.0493*** -0.0436%** -0.0013 -0.0028* —-0.0014
(0.0170) (0.0139) (0.0144) (0.0129) (0.0013) (0.0016) (0.0011)
InRKS 0.049 0.0756***  -0.0105 -0.0811%** 0.0061** 0.0072** 0.0056**
(0.0349) (0.0286) (0.0297) (0.0266) (0.0027) (0.0033) (0.0023)
InRKF 0.0062 -0.0035 0.0185%** 0.0195%** -0.0012%** -0.0020%** -0.0009***
(0.0060) (0.0049) (0.0051) (0.0045) (0.0005) (0.0006) (0.0004)
InRSF 0.0633*** 0.0284** 0.0409%** 0.0369%** 0.0017 0.0032%** 0.0013
(0.0158) (0.0129) (0.0134) (0.0120) (0.0012) (0.0015) (0.0011)
InASTR 0.0085 0.0223** 0.0059 0.0147 -0.0018* -0.002 -0.0015%*
(0.0136) (0.0112) (0.0116) (0.0104) (0.0010) (0.0013) (0.0009)
InAOPC 0.1738%** 0.1011** 0.0772 -0.0063 0.0072 0.0100* 0.0120%**
(0.0619) (0.0507) (0.0526) (0.0471) (0.0047) (0.0059) (0.0042)
InAGDP -0.0333** -0.0173 —0.0069 —-0.0012 -0.0014 -0.0016 —-0.0011
(0.0129) (0.0106) (0.0110) (0.0099) (0.0010) (0.0012) (0.0009)
InRPCNI 0.0086** 0.0015 0.0044 0.0017 -0.0002 0.0009%** -0.0001
(0.0039) (0.0032) (0.0033) (0.0030) (0.0003) (0.0004) (0.0003)
InRPC 0.0123** 0.0052 0.0122** 0.0052 —-0.0001 —-0.0001 —0.00005
(0.0056) (0.0046) (0.0047) (0.0042) (0.0004) (0.0005) (0.0004)
Intercept  -0.1846***  —0.0994***  _0,1498***  -0.1131***  -0.0005 -0.0104%* -0.0014
(0.0450) (0.0368) (0.0382) (0.0342) (0.0034) (0.0043) (0.0030)
Province Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes
N 1036 1036 1036 1036 1036 1036 1036
R? 0.4453 0.2754 0.3596 0.2388 0.1074 0.169 0.1186

The parenthesis are the robust standard error values, ***p < 0.01, **p < 0.05, *p < 0.1.
Source: the author based on the original data and empirical results.

of model (5)-model (7) are pollution-biased technological progress (labour-saving/fer-
tiliser-using, capital-saving/fertiliser-using and soil-saving/fertiliser-using).

It can be known from (1) that, except that the coefficient of InRLF is significantly
negative, the effects of other factor mix on the biased technological progress index
are all promoting effects. It shows that in the allocation of labour and fertiliser, it is
necessary to relatively reduce labour or increase the input of fertiliser in order to pro-
mote biased technological progress. The coefficients of InRLK, InRLS and InRSF are
significantly positive, and although the coefficients of InRKS and InRKF are also posi-
tive, they are not significant at a significance level of 10%. This shows that it is neces-
sary to optimise the combination of factors selectively. Among them, increasing the
labour/capital ratio, labour/soil ratio and soil/fertiliser ratio will help promote biased
technological progress.

The coefficients of InRLK are significant only in (3) and (4) and are positive. It
shows that a relative increase in labour or a relative reduction in capital will help pro-
mote capital-using/fertiliser-saving and soil-using/fertiliser-saving. It is generally sug-
gested that there is a substitute relationship between labour and fertilisers. When
labour is shortage, in order to maintain food production, farmers often tend to add
more fertiliser per unit area of soil to make up for the lack of labour input (Liu et al.,
2014; Wang et al, 2019), which further induces agricultural technology progress



2050 J. HU ET AL.

towards the fertiliser-using, aggravating agricultural non-point source pollution
(Xiang et al., 2020). On the contrary, increasing the labour capital ratio will promote
fertiliser-saving technological progress. The InRLS and InRSF coefficients are signifi-
cantly positive in (2)-(4) and (6), but the coefficients in (6) are relatively small. It
shows that increasing the labour on the unit soil will significantly promote green-
biased technological progress, but at the same time, it will also bring slight capital-
saving-/fertiliser-using biased technological progress. This is because, although
increasing labour is conducive to green technological progress (fertiliser-saving), if
the soil input is not increased accordingly, then due to insufficient soil scale, farmers
tend to apply a lot of fertiliser (Wu et al., 2018). Similarly, if other factors remain
unchanged and simply increase soil, although it is conducive to green technological
progress, it will also cause relative abuse of fertilisers due to insufficient labour and
capital input. The coefficients of InRLF are just the opposite. In (2)-(4) and (6), they
are significant negative effects. It shows that although a relative increase in labour or
a relative reduction in fertiliser input can curb capital-saving/fertiliser-using pollu-
tion-biased technological progress, it also inevitably causes a decline in green technol-
ogy. More complicated is that the coefticients of InRKS are significantly positive in
(2) and significantly negative in (4), indicating that although a relative increase in
capital or a relative reduction in soil is beneficial to labour-using/fertiliser-saving
that is green-biased technological progress. But at the same time, soil-using/fertiliser-
saving green-biased technology will decline due to soil reduction. In addition, the
coefficients of InRKS are also very significant in (5)-(7), indicating that increasing the
ratio of capital to soil will lead to more serious pollution-biased technological pro-
gress. That is to say, there is no substitution relationship between capital and soil.
The relationship between the two is more likely to be a complementary relationship;
that is, adding a certain amount of soil will inevitably increase a certain proportion of
capital investment, so as to be able to simply play the role of promoting the progress
of green technology. The coefficients of InRKF are significantly positive in (3)-(4)
and significantly negative in (5)-(7). It shows that increasing the ratio of capital to
fertiliser can not only increase the green bias towards technological progress, but also
suppress the pollution bias towards technological progress. This is because perfect
irrigation facilities can dilute fertilisers and help crops absorb nutrients (Singh &
Narayanan, 2015). At the same time, the use of large machinery can return crop
waste to the field, which is a green technological advancement.

4.4. Further anaylsis: mechanism test

In order to further explore the influence mechanism of factor allocation structure on
biased technological progress. This paper refers to Qiao (2017) using the natural loga-
rithm of the total power of agricultural machinery to express the level of mechanisa-
tion (InMachine) and uses this as an intermediate variable. The results are shown in
Table 8.

In (8)-(14), the coefficients of the element placement results are consistent with
those in Table 8 in direction and significance, but there are differences in size. This
shows that the added intermediary variable (InMachine) has a disturbing effect on
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Table 8. Mechanism test results.

Green Technical Progress Pollution Technical Progress

InIBTECH InMachine
Variable (8) 9) (10) (11) (12) (13) (14) (15)
InRLK 0.0045**  -0.0003 0.0082***  0.0057*** -0.0003 -0.0002 -0.00001  -0.0968***
(0.0022) (0.0018) (0.0018) (0.0017) (0.0002) (0.0002) (0.0001) (0.0325)
InRLS 0.3342%**  0.1880***  0.1972***  0.1332***  0.0061 0.0154* 0.0097*  -0.3371
(0.0871) (0.0714) (0.0738) (0.0663) (0.0067) (0.0083) (0.0059) (1.3032)
InRLF -0.0813*** —0,0283**  -0.0521*** -0.0456*** -0.0013 -0.0029* -0.0014 -0.6268**
(0.0170) (0.0139) (0.0144) (0.0129) (0.0013) (0.0016) (0.0011) (0.2535)
InRKS 0.0358 0.0738*%*  -0.0284 -0.0955%**  0.0064** 0.0063* 0.0060%* -3.1880***
(0.0355) (0.0292) (0.0301) (0.0270) (0.0027) (0.0034) (0.0024) (0.5218)
InRKF 0.0047 -0.0042 0.0180***  0.0193*** -0.0013*** -0.0020*** -0.0008** -0.2170%*
(0.0060) (0.0049) (0.0050) (0.0045) (0.0005) (0.0006) (0.0004) (0.0888)
InRSF 0.0652***  0.0288** 0.0428***  0.0383***  0.0017 0.0033** 0.0013 0.3894*
(0.0158) (0.0129) (0.0134) (0.0120) (0.0012) (0.0015) (0.0011) (0.2357)
InMachine -0.0046**  -0.0009 -0.0052***  -0.0040** 0.00004 -0.0003 0.0001
(0.0022) (0.0018) (0.0018) (0.0016) (0.0002) (0.0002) (0.0001)
Intercept  —0.1548*** -0.0943**  -0.1132*** -0.0842** -0.001 -0.0085* -0.0021 6.8148%**
(0.0472) (0.0388) (0.0401) (0.0360) (0.0036) (0.0045) (0.0032) (0.6720)
Control Yes Yes Yes Yes Yes Yes Yes Yes
Province Yes Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes Yes
N 1036 1036 1036 1036 1036 1036 1036 1036
R? 0.4473 0.2749 0.3638 0.2412 0.1041 0.1698 0.1188 0.9639

The parenthesis are the robust standard error values, ***p < 0.01, **p < 0.05, *p <0.1.
Source: the author based on the original data and empirical results.

the effect of the factor configuration variable, but this disturbance is relatively small.
Specifically, the coefficients of InMachine are only significant in (8), (10) and (11),
but they are negative. This means that agricultural mechanisation is not only detri-
mental to biased technological progress, but also restrains technological progress
from favouring fertiliser-saving. In (15), any relative increase in the share of labour
input will lead to a decrease in the level of mechanisation, which is consistent with
the conclusion of most studies, that is, there is a substitution relationship between
machinery and labour (Balezentis & Oude Lansink, 2020; Gong, 2018a; Ito, 2010;
Qiao, 2017). In addition, from the influence coefficient of InRLS, InRKS and InRSF
on InMachine, it can be seen that a relative increase in the share of soil input will
promote the rise of the level of mechanisation.

This shows that increasing the share of labour input relative to capital and soil can-
not only directly promote biased technological progress and green technological pro-
gress, but also can play an indirect role by reducing the level of mechanisation.
Increasing the share of soil input relative to capital and fertilisers can directly promote
biased technological progress and green technological progress, and inhibit techno-
logical progress in the use of fertilisers, but it will indirectly inhibit biased technological
progress and green technological progress by increasing the level of mechanisation.

5. Conclusions and policy implications

This paper uses the output-oriented sequential DEA method and the Malmquist
index to measure and characterise China’s agricultural TFP growth trend and its
source contribution from 1981 to 2017, and further identifies the input-biased
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technological progress based on this. Then, this paper divides technological progress into
green-biased technological progress when technological progress is biased towards
fertiliser-saving (labour-using/fertiliser-saving, capital-using/fertiliser-saving and
soil-using/fertiliser-saving) and pollution-biased technological progress when techno-
logical progress is biased towards fertiliser-using (labour-saving/fertiliser-using, capital-
saving/fertiliser-using and soil-saving/fertiliser-using), and then use econometric models
to explore the factors allocation structure that induce and promote green technological
progress. The research conclusions of this paper can be summarised as follows.

China’s agricultural TFP has undergone three stages of accelerated growth, nega-
tive growth and fluctuation; the growth momentum has undergone three transforma-
tions, which are jointly driven by technological efficiency and technological progress,
dominated by technological progress and dominated by technological efficiency. In
the first stage, it is not only a stage of accelerating the growth of agricultural TFP,
but also a stage where technical efficiency and technological progress are jointly
driven. The possible reason is that the Chinese government formally implemented the
Household Responsibility Contract System nationwide in 1978, and the reform divi-
dends brought about by it helped boost the growth of China’s agricultural TFP. In
the second stage, agricultural TFP entered a period of decline, mainly due to the
deterioration of technological progress and technological efficiency, but mainly domi-
nated by technological progress. This paper suggests that the reasons may come from
these aspects. Firstly, the first-stage reform dividend has been fully released, and agri-
cultural production has entered a new round of adjustment period (Gong, 2018a).
Secondly, farmers began to move away from the soil to the coast to engage in non-
agricultural work. In addition, the small-scale and decentralised operation of agricul-
tural soil is not suitable for mechanised farming, resulting in insufficient investment
in agricultural production and hindering the further improvement of agricultural
productivity. Finally, for a long time, China’s agricultural growth has mainly been at
the expense of the ecological environment, which has resulted in insufficient motiv-
ation for the subsequent development of agriculture. In the third stage, China’s agri-
cultural TFP growth index entered a long-term period of fluctuation, mainly caused
by fluctuations in technical efficiency. On the one hand, China’s industrialisation and
urbanisation have further deepened. A large amount of high-quality arable soil has
been replaced with industrial and construction soil, farmers have accelerated their
separation from agricultural production, and the small-scale and decentralised situ-
ation of agricultural soil has not been fundamentally improved. As a result, the super-
position of many unfavourable factors hinders the further improvement of
agricultural TFP. On the other hand, agriculture, as the foundation of the develop-
ment of the national economy, is highly valued by the Chinese government and has
given preferential treatment in terms of policies, which also contributes to the
improvement of the agricultural productivity growth index. The see-saw of the above
resistance and help eventually caused China’s agricultural TFP growth index to enter
a long-term state of fluctuation.

Factor-biased technological progress has contributed to the long-term growth of
agricultural TFP in most areas of China, but it is mainly biased towards capital use
and fertiliser use. As we all know, China’s arable soil resources are relatively scarce.
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To ensure food production, farmers tend to apply more fertilisers per unit area to
make up for the lack of soil input. In addition, under the background of accelerating
labour transfer to non-agricultural employment, on the one hand, farmers tend to use
more fertilisers to replace labour, and the larger the labour transfer scale, the more
fertilisers are used (Li et al.,, 2018; Wang et al., 2019). On the other hand, in recent
years, China has carried out a series of arable soil reconstruction plans, which con-
verts uneven soil with a slope of less than 15 degrees into soil suitable for mechan-
ical farming. This is conducive to the substitution of machinery for labour, making
agricultural technological progress biased towards the use of capital. It is worth
noting that the contribution of biased technological progress to the TFP of agricul-
ture is regionally heterogeneous, presenting the eastern > central >western. The
reason mainly comes from the following two aspects. Firstly, compared with the
west, the eastern and central soil is relatively flat and suitable for input of techno-
logical elements. Secondly, both the economic development level and the level of
science and technology in the east are significantly higher than those in the central
and western regions, thus condensing more technological content in the produc-
tion factors.

The empirical results show that optimising the allocation structure of factors is
conducive to promoting biased technological progress. Specifically, increasing the
ratio of labour/capital, labour/soil, soil/fertiliser and lowering the ratio of labour/fer-
tiliser are conducive to promoting biased technological progress. This means that
relative to capital and soil, the share of labour factors should be increased, and rela-
tive to fertiliser, the share of labour factors should be reduced. Firstly, a large number
of rural labourers in China have been transferred to non-agricultural sectors. This
process is conducive to improving man-soil relations. However, considering the exist-
ence of the household contract responsibility system, even farmers who go to work in
cities will still retain their soil and part-time agricultural production activities, result-
ing in relatively scarce labour (Gong, 2018a; Wang et al., 2019). Secondly, the status
quo of small-scale, decentralised and fragmented agricultural operations in China
makes it difficult to use mechanical (capital) input (Ito, 2010; Liu et al., 2014), and
therefore requires increased labour input. Thirdly, under the dual constraints of
labour loss and the inability to expand the scale of soil, farmers are more inclined to
use fertilisers to replace relatively insufficient labour and soil in order to save time
and cost and ensure food production (Wang et al, 2019). In addition, in order to
induce and enhance green preference for technological progress (fertiliser-saving), the
ratio of labour/capital, labour/soil, capital/fertiliser and soil/fertiliser should be
increased, and the ratio of labour/fertiliser and capital/soil should be reduced.
However, if the purpose is to curb pollution-biased technological progress (fertiliser-
using), the ratio of labour/capital, labour/fertiliser and capital/fertiliser should be
increased, while the ratio of labour/soil, capital/soil and soil/fertiliser should be
reduced. This shows that increasing the ratio of labour/capital and capital/fertiliser,
and reducing the ratio of capital/soil, can induce and promote green-biased techno-
logical progress while suppressing pollution-biased technological progress. Recently,
the Chinese government has paid more and more attention to investment in rural
infrastructure (irrigation, power facilities and roads). Barbier (2020) suggested that a
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sound agricultural infrastructure is conducive to the absorption of nutrients such as
fertilisers, thereby reducing non-point source pollution. However, compared with cap-
ital investment, labour and land investment are still insufficient. Only by relatively
increasing labour and land investment and realising refined and large-scale manage-
ment can it induce and strengthen green-biased technological progress and curb pol-
lution-biased technological progress.

The mechanism test results show that increasing the labour input share relative to
capital and soil cannot only directly promote biased technological progress and green
technological progress, but also can play an indirect role by reducing the level of
mechanisation. Increasing the share of soil input relative to capital and fertilisers can
directly promote biased technological progress and green technological progress, and
inhibit technological progress in the use of fertilisers, but it will indirectly inhibit
biased technological progress and green technological progress by increasing the level
of mechanisation. This may be because, on the one hand, although rural labour is
transferred to the non-agricultural sector, the scale of soil has not been transferred
and concentrated simultaneously. As a result, the agricultural machinery is too small,
the operation efficiency is low and it cannot fundamentally stimulate the progress of
fertiliser conservation technology. On the other hand, the expansion of the soil scale
is undoubtedly beneficial to the use of large-scale machinery, but if the necessary
labour is not increased while the soil is expanded, resulting in a lack of management
of agricultural production, it will also cause the abuse of polluting elements such as
fertilisers.

The above research conclusions imply corresponding policy enlightenment. Firstly,
strengthening agricultural green technology innovation and extension. Most of
China’s agricultural technology innovation and promotion are based on fertiliser and
pesticide technologies (Ito, 2010). Although it helps to increase food production, it
also causes severe environmental pollution (Expdsito & Velasco, 2020; McArthur &
McCord, 2017; Xiang et al., 2020), which limits the sustainable development potential
of China’s agriculture. Therefore, the Chinese government should play a leading role
in agricultural green innovation. On the one hand, encourage scientific research insti-
tutions to pay more attention to the impact of technology on the environment in
agricultural technology research and development, and promote green technology
innovation. On the other hand, strengthen scientific fertilisation propaganda and
technical guidance, and popularise soil testing formula technology. In 2005, the
Ministry of Finance of China arranged a special subsidy of 200 million yuan to con-
duct pilot soil tests and formula fertilisation in 200 major grain-producing counties
across the country, which increased the fertiliser utilisation rate by 3% to 5% (http://
news.sohu.com/20050917/n226983689.shtml). Secondly, the flow of agricultural land
and large-scale operations should be encouraged. More people and less soil are
China’s basic national conditions, but with the rapid advancement of urbanisation
and industrialisation, a large number of surplus rural labour forces have been trans-
ferred to cities and non-agricultural sectors, thus providing a feasible space for
improving the contradiction between man and soil. The Chinese government should
seise this opportunity. On the one hand, it will promote the integrated development
of urban and rural areas, and realise the local employment and entrepreneurship of
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migrant workers, so as to provide farmers with income while further transferring
rural surplus labour. On the other hand, large farm farmers and experts are encour-
aged to contract idle soil, promote the concentration of agricultural soil transfer and
realise soil scale management. Thirdly, increasing subsidies for small and medium-
sized agricultural machinery. The expansion of the soil scale is conducive to the use
of large machinery, thereby reducing the use of fertiliser and pesticide while making
up for the labour shortage, but the concentration of soil transfer is difficult to com-
plete in a short time, and small-scale operations will still be the basic status quo of
agricultural operations in China (Liu et al., 2014). Therefore, the Chinese government
can promote technological progress-biased machinery by increasing subsidies for
small- and medium-sised agricultural machinery and developing the market for agri-
cultural machinery services.

This paper may have the following limitations and directions for further research
in the future. Firstly, in terms of methods, this paper uses the serial DEA and
Malmquist index to measure and identify the direction of China’s agricultural tech-
nology progress. However, the productivity of specific production factors cannot be
decomposed, so that it is impossible to judge whether factor-biased technological pro-
gress is also factor-enhanced technological progress. In the future, it can be explored
to decompose the productivity of specific production factors from nonparametric
methods. Secondly, in the research sample, this study uses regional aggregate data,
which can directly reflect the temporal and spatial differences of agricultural biased
technological progress. However, the aggregated data will smooth out the differences
in farmers’ preference for production factors, and it is difficult to reveal the micro-
mechanisms that induce technological progress. In the future, sample data at the
level of farmers or agricultural products can be used to in-depth explore the micro-
mechanism that induces technological progress.
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