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Summary 

In this paper, exact hydrostatic particulars equations for the centre of buoyancy curve and 

metacentric locus curve are given for rectangular cross section using quadratic functions. Those 

equations have not been given for the hyperbola range of the heel angles so far, and here it is 

done by using basic quadratic functions and their horizontally symmetric immersion shapes, 

with two new methods defined: 1. Rotation of basic cross section shapes, and 2. Hydrostatic 

cross section area complement method that uses homothety or scaling properties of emerged 

and immersed areas of the rectangular cross section. Observed metacentric curve for rectangle 

consists of semi-cubic parabolas and Lamé curve with 2/3 exponent and negative sign, resulting 

in the cusp discontinuities in the symmetry of those functions definition. In order to achieve 

above, two theorems are given: the theorem about scaling using hydrostatic cross section area 

complement and the theorem about parallelism of centre of buoyancy tangents with waterlines. 

After non-dimensional bounds are given for the existence of the swallowtail discontinuity of 

metacentric curve for rectangular cross section in the Part 1 of this paper, the proof of its 

position in the symmetry of rectangle vertex angle is given in this Part 2 of the paper, thus 

confirming its position from theory. 

Keywords:  centre of buoyancy curve; metacentric curve; rectangular cross section; 

quadratic functions; basic geometric shapes; hydrostatic area complement 

1 Introduction 

1.1 Basic theory about metacentric locus curve 

In the naval architecture theory and general theory of floating bodies, one of the most 

important hydrostatic properties for determination of ship's equilibrium is the centre of 

buoyancy and its evolute, i.e. metacentric locus M-curve. The foundations for their 

determination are set in the work of Archimedes, [1], Bouguer, [2], Euler, [3], Atwood, [3], La 

Croix, [5], and others, while their exact function equations are set in the work of many 

mathematicians like Huygens, [6], Neile, [7], and Van Heuraet, [8], with their examination of 

semi-cubical parabola as evolute of quadratic parabola. The usage of basic functions was first 

done by numerical integration methods by Kepler, [9], known by the name Simpson’s rules, 

while D. W. Taylor, [9], first use polynomials for description of ship’s geometry and her 

hydrostatic properties, directly. It was Bouguer in “Treate du Navire”, [2], who already 
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determined that centre of buoyancy curve is hyperbola, [11], and this was further examined in 

theory by many naval architects. In the 20th century, von Stainen, [12], and Robb, [13], have 

shown the possibility of description of centre of buoyancy curves for regular cross sections 

using quadratic functions, and their findings will be re-examined in this paper, with emphasis 

on hyperbola and its evolute Lamé curve with 2/3 exponent and negative sign, [14], [15].  

Today, the modern theory about it is set in the bifurcation/catastrophe/singularity theory 

by Thom, [16], Zeeman, [16], Poston and Stewart, [18], and Arnold, [19], as a part of singularity 

theory, and control theory also. Recently, theoretical aspects of metacentric curve role in the 

evaluation of ship’s stability are examined in the works of Mégel and Kliava, [20], Spyrou, 

[21], and many others, with the need for analytical examination of it for two-dimensional and 

three-dimensional problems for regular cross section shapes and bodies, like in recent quadratic 

approximation of centre of buoyancy curve for trapezoidal and pentagonal cross section in the 

work of Smirnov and Khashba, [22], or practical applications for general ship geometry and 

hydrostatics determination like in, [23], [24] and [25]. 

 

Fig. 1  Rectangle calculation regions defined by deck immersion/bottom emersion heel angle 

ranges 

In general, regarding ship stability calculations, the goal is observing centre of buoyancy 

B-curve and its evolute M-curve for heel angles  range from 0°to 90°. Therefore, in order to 

examine for heel angle values , three ranges  I) to III) are determined for the first coordinate 

system quadrant, as shown in the Fig. 1, defined by geometry deck immersion/bottom emersion 

intersection with actual waterline for heel angles 1, 2 and 90°: 

Range I) designated with light grey colour, for heel angles from 0 = 0° to the first deck 

immersion/bottom emersion heel angle 1, and waterlines from WL0 to WL1 with 

centre of floatation staying in a point F0 = F1. In this region, the quadratic equation that 

describes the centre of buoyancy B-curve is parabola that is proved in theory by many 

authors, like in Uršić, [26], and Von den Steinen, [12]. For this range, an initial 

calculation basic shape is rectangle with breadth b1 = B and draught d1 = d, as shown 

in the Fig. 1, with initial immersed cross section area A = Bd. 

Range II) designated with medium grey colour, for heel angles from the first deck 

immersion/bottom emersion heel angle 1 to the second deck immersion/bottom 
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emersion heel angle 2, and waterlines WL1-2 between WL1 and WL2 with variable 

centre of waterline F1-2. In this region, the quadratic equation that describes the centre 

of buoyancy B-curve is hyperbola that is not proved in theory yet, and that is done in 

this paper. 

Range III) designated with dark grey colour, for heel angles from the second deck 

immersion/bottom emersion heel angle 2 to the heel angle 3 = 90°, and waterlines 

from WL2 to WL3 with centre of floatation staying in a point F2 = F3. In this region, 

the quadratic equation that describes the centre of buoyancy B-curve is parabola that 

is proved in theory by many authors, also. For this range, an initial calculation basic 

shape is rectangle with breadth b3 = D and draught d3 as shown in the Fig. 1, that will 

be calculated from the initial immersed rectangle cross section area A = Bd. 

After the existence of the cusp discontinuities of the metacentric locus curve for 

rectangular cross section pontoon are examined in the Part 1 of the paper, [26], in this, Part 2 

of the paper, the explicit equations of the centre of buoyancy and metacentric curve are given 

that enables additional examination of the position of the swallowtail cusp discontinuity in the 

hyperbola segment of heel angles, not done so far. Therefore, the equations of quadratic 

parabola, [28], and hyperbola, [29], and their evolutes, semi-cubical parabola, [6], [7], and 

Lamé curve with 2/3 exponent and negative sign, [14], [15], are given in this paper, both explicit 

and parametric forms of those equations, not done so far also. 

The theory of general quadratic functions with their application for the description of 

basic geometrical shapes is then given in the Chapter 2, with the description of two new/old 

methods for centre of buoyancy B-curve and metacentric locus M-curve description: 1. Rotation 

of basic cross section shapes, and 2. Hydrostatic complementary cross section area scaling 

method. Both mentioned methods are based on the basic, horizontally symmetric, immersed 

cross section shapes of a pontoon and finding appropriate one for description using quadratic 

functions, with former already used in theory by Uršić, [26], and Von den Steinen, [12], for the 

parabola equation determination of the centre of buoyancy curve in the Range III) of the 

calculation heel angles , that is described in the Subchapter 3.4 of the paper. In this paper, the 

rotation of the isosceles triangle is used in the Range II) to determine hyperbola equation of the 

centre of buoyancy curve as will be explained further. 

In the Chapter 3, the centre of buoyancy B-curve and metacentric M-curve, explicit and 

parametric equations are given, using above mentioned quadratic functions and their evolutes, 

for all three curve segments in the first coordinate system quadrant, not done so far for all 

segments. The overall equations for calculation of rectangular cross section centre of buoyancy 

B-curve and metacentric M-curve for all three heel angle segments using quadratic functions 

are then given in the Chapter 3.5 of the paper, for the situations of the existence of sixteen 

cusps, for A > AT /2 and A  AT /2, together with equations for semi-cubical parabola and cuspidal 

Lame curve as metacentric locus M-curve segments. 

The evaluation of the obtained equations for the calculation of the centre of buoyancy B-

curves and metacentric M-curves in the hyperbola segment of heel angles, between the first and 

the second deck immersion/bottom emersion angles, is then done in the Chapter 4, with the 

examples of the both cases of an immersion area of the rectangular shape relation to maximal 

cross section area, i.e. A  AT /2 and A > AT /2. For the first case A  AT /2, the rotated triangular 

cross section method is applied, while for the second case, where A  AT /2, the hydrostatic cross 

section area complement method is used, showing the accuracy of the methods set in this paper.  

1.2 General immersion shapes for the first coordinate system quadrant 

The main geometric characteristic of a pontoon with rectangular cross section geometry 

is that it has horizontal and vertical symmetry and four vertices v with all vertex angles equal 
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 = 90°. Therefore, in order to examine the centre of buoyancy B-curve and metacentric M-

curve characteristics, only one coordinate system quadrant can be examined, with three heel 

angle  ranges that are observed in the first quadrant of coordinate system y – z, with the 

characteristics described in the Fig. 1, above. 

As a results of a rectangular pontoon transversal inclination, the intersection of 

rectangular pontoon with waterplane for arbitrary heel angle  results in the change of the 

immersed volume shape giving three basic geometric shapes depending on the general 

condition below. 

Condition 1: The ratio of immersed and total rectangle cross section areas 

2TAA  or 2TAA  (1) 

The basic shapes that can occur for rectangular cross section in the first coordinate system 

quadrant as shown in the Figs. 2 and 3, below, are then: 

Case 1: General rectangular trapezoid, 

Case 2: General rectangular triangle, for A  AT /2 

Case 3: General rectangular convex pentagon, for A > AT /2 

 

Fig. 2 General rectangular trapezoid cases 

 

 

Fig. 3  a) General rectangular triangular cross section case, b) General rectangular pentagonal cross section case 

 

The equation of centre of buoyancy B-curve in the first Range I) is quadratic parabola 

and for this heel angle range basic quadratic function can be used, directly. The same is for the 

Range III) of the heel angles but for rotated coordinate system axes for 90°, thus basic quadratic 
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function can be used too, as for Range I), for general rectangular trapezoid immersion shapes 

shown in the Fig. 2, above.  

For the rectangle heel angle Range II), the rectangular triangle immersion shape occur for 

A  AT /2 and rectangular pentagon immersion shape occur for A < AT /2, as shown in the Fig. 3, 

above, for which suitable quadratic functions generating immersed shapes should be found, 

with corresponding basic quadratic functions description, as will be shown further in the paper. 

2 General quadratic functions and their evolutes 

2.1 Centre of buoyancy curves 

The general equation for centre of buoyancy B-curve description for regular floating body 

cross sections with unit length until the first deck immersion/bottom emersion heel angle 1 of 

floating pontoon deck immersion/bottom emersion is given by Von den Steinen, [12], with 

quadratic function: 

22
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where  is function parameter, and r0 = b2/a, with b and a being horizontal and vertical semi-

axis of quadratic functions. 

This formula represents the explicit equation of possible plane intersections with cone 

giving observed quadratic functions. It is obtained from metacentric curve calculation of centres 

of buoyancy coordinate components for rectangular cross section pontoon with respective 

parametric equations in y and z coordinates for as 
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where α is vertex angle of observed geometry as shown in the Fig. 1, above. 

The formulae in (2) can be written as 
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By introducing initial metacentric radius 00BM  (5) becomes 
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(6) 

where r = 00BM , I() is moment of inertia of actual waterline, depending on angle of heel , 

and  is constant volume displacement of the floating body. 

Therefore, above equation (6) depends on parameter  with its values valid for respective 

basic cross section shapes that generate following quadratic equations that will be used for 

centre of buoyancy curve description in heel angle ranges I) to III): 
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Since the goal of this paper is examination of hydrostatic properties for rectangle, only, 

the equations for circle and ellipse cross sections are omitted here, and regular shapes with 

vertices will be examined further. Corresponding centre of buoyancy equations for rectangle, 

isosceles triangle and trapezoid, basic cross section geometries, are shown in Table 1, below. 

Table 1  Centre of buoyancy curve equations for rectangle, isosceles triangle and trapezoid 

Cross section geometry 
Centre of Buoyancy 

Equation 
Description 

Rectangle pzy 22   Parabola, p = b2/a 

Isosceles Triangle and 

Isosceles Trapezoid 9

4

9

4 22
222

2 ab
yaz

b
  Hyperbola, a = 2/3d 

It can be seen already that the quadratic function for the description of B-curve in the first 

Range I) of heel angles is quadratic parabola with equation given in the Table 1. The equations 

for other heel angle ranges should be derived yet and that will be done in the Chapter 3, with 

belonging parametric equations for heel angle , needed in naval architecture for practical 

calculation, given also. 

2.2 Evolutes of centre of buoyancy curves 

The metacentric curve characteristics are well studied in the hydrostatic theory of the 

floating bodies as well as in the mathematical singularity theory. This curve basically depends 

on centre of buoyancy B-curve characteristics, as it analytically represents metacentric locus or 

evolute M-curve of centre of buoyancy B-curve z = f(y) of a floating body. 

In the naval architecture, the relation for the determination of the metacentre M position 

for known centre of buoyancy B and for given heel angle , can be obtained using actual 

metacentric radius r = MB = I/ value with 

   sin/BM  Iyy  (8) 

   cos/BM  Izz  (9) 

Above parametric equations in (8) and (9) will be further used for metacentric M-curve 

determination later in the paper, while the character of the curves will be determined using 

explicit equations from the Table 2, below. 
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Table 2  Evolutes of centre of buoyancy curve equations for rectangle, isosceles triangle and trapezoid 

Cross section geometry Metacentric Curve Equation Description 

Rectangle 







 22
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Cuspidal Lamé curve             

a = 2/3d 

 

The Tables 1 and 2, above, give explicit equations for centre of buoyancy B-curve and 

metacentric M-curves for rectangular and triangular basic cross shapes, as defined in theory in 

Von den Steinen, [12] and Uršić, [26]. For rectangular basic cross section, the centre of 

buoyancy B-curve is parabola, [28], with its evolute, the metacentric M-curve, being semi-

cubical parabola, [30]; while for triangular basic cross section, the centre of buoyancy B-curve 

is hyperbola, [29], with its the metacentric M-curve being Lamé curve with exponent 2/3 and 

minus sign, [14], as shown in the part 1 of the paper, [26]. (This name for Lamé curve with 

exponent 2/3 and minus sign will be shortened in the text further on to cuspidal Lamé curve.) 

Both metacentric M-curve functions for rectangle and triangle basic shapes in the Table 2 are 

even functions, horizontally symmetrical, and therefore have cusp discontinuity in the 

symmetry of their definition, and therefore the same feature will be required for their definition. 

In the case of inclined triangles, that means that they should be isosceles triangles with intrinsic 

symmetry that they should have, as will be shown in the next chapters of the paper.  

The most interesting part of the metacentric curve is between the first and the second deck 

immersion/bottom emersion angles with hyperbola part and here it will be determined using 

above set of basic quadratic functions. 

2.3 Usage of basic quadratic functions for general immersed cross sections 

After three heel angle ranges are set in the Fig. 1, the basic quadratic functions for the 

triangle and the rectangle can be applied for belonging immersed shapes generators defined for 

general rectangular trapezoid in I) and III) heel angle range and for general rectangular triangle 

for heel angle range II). But they cannot be applied for rectangular pentagon directly, for which 

different method should be found. Therefore, the methods for usage of quadratic functions for 

B-curve and metacentric M-curve description in general cases of rectangle immersion shapes 

are: 

1. Direct method, 

2. Rotated basic quadratic functions geometry shapes, 

3. Scaling method using hydrostatic area complement. 

Between above mentioned methods, the direct method is already implemented in theory 

for the Range I) as explained before, and represents the basics for the implementation for other 

two methods with rotated basic shapes and complementary ones. The second method is already 

applied for the Range III), also, where 90° rotated rectangle is applied, with breadth b3 = D and 

draught d3, in order to determine hydrostatic characteristics in that heel angle range. 

Detailed formulas for centre of buoyancy B-curve and metacentric M-curve can be then 

examined also, for all three heel angle ranges using above methods. 

2.4 Rotated basic geometric shapes as quadratic functions generators 

The basic set of conditions for some basic shape and its belonging quadratic function to 

be applicable for calculation of centre of buoyancy B-curve in general is: 
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Condition 2: The applicability of rotated basic geometry shape for quadratic function 

generation 

1. Geometrical applicability, 

2. Horizontal Symmetry (even functions), 

3. Cross section area A' equal to initial one A0:  

0AA   (10) 

If the set of the conditions above are satisfied, it is possible to find new basic shape 

dimensions breadth b' and draught d' on observed waterline WL, i.e. quadratic function semi-

axes b' and a', necessary for their definition, as shown in Fig. 4 for general rectangular triangle 

for the case where A  AT /2, below.  

 

Fig. 4  Rotated isosceles triangle for hyperbola function definition 

For that purpose, the new coordinate system y' – z' should be set using affine 

transformations of the initial coordinate system y – z. Therefore, global coordinate system y – 

z must be translated in one of the geometry vertices v with translation T and then rotated for the 

suitable angle ' using rotation R, first, to obtain new coordinate system y' – z' for which basic 

geometrical shape can be built with the main, initial hydrostatic condition of having unit 

buoyancy or area A' equal to initial one A0, as set in equation (10) in the Condition 2. 

Then, the quadratic function z' = f (y') for the basic cross section shape can be built using 

equations from the Table 1, above, with semi-axes determined from the immersed shape 

dimensions like shown in the Fig. 4. 

Mathematically written, this method consists of affine transformations of coordinate 

system y – z with rotation R for angle ' and translation T to the vertex v(yv, zv) of the observed 

geometry, with equation 
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 Obtained equation z' = f (y') must be then rotated back to initial coordinate system with 

the rotation for opposite angle –'and reverse translation –T. I.e., it is necessary to rotate 

obtained equations for –' angle and translate them to the origin by translation T(–yv, –zv) to 

obtain results in the initial coordinate system y – z, with: 
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Now, the equation for the centre of buoyancy B-curve can be given for observed 

rectangular cross section for the heel angle Range IIa) in the Subchapter 3.2., with example of 

calculation given in the Subchapter 4.1. 

Except the B-curve, the equation for metacentric locus M-curve can be given also, 

according to the theoretical examination in the Subchapter 2.2, above, as will be shown for 

hyperbola, below. This procedure is already used in theory for determination of rotated parabola 

for Range III) of the heel angles, as shown in the works of Robb, [13], and textbook from Uršić, 

[26]. 

2.4.1 Hyperbola 

In the Range IIa), for heel angles between the first and the second deck immersion/bottom 

emersion heel angles 1 and 2, where Condition 1 A  AT/2 case is valid, the basic shape that 

has horizontal symmetry is isosceles triangular shape, with symmetry line in the middle of 

vertex angle  = 90° at ’ = 45°, as shown in Fig. 4, above. Therefore, new rotated coordinate 

system y' – z' is set to lower right rectangle vertex v1, with rotation angle '. The equation for 

the centre of buoyancy B-curve in this heel angle region, Range IIa), is then hyperbola, as it is 

defined in theory. 

In order to give hyperbola equation here, it is needed to determine its belonging semi-axis 

b' and a' that can be determined from an isosceles triangle breadth b' and height d' as shown in 

the Fig. 4, above. From the last, the third item of the basic shape applicability in the Condition 

2, the dimensions of the isosceles triangle can be determined using triangle area equation with 

A = A0 = Bd0 = b'd' and vertex angle ' = /2 as 

2tantan

0



BdA
d 




 
(13) 

2tan2tantan 0  Bdddb   (14) 

The horizontal hyperbola semi-axis b' is then already determined, while the vertical semi-

axis a' can be calculated from the fact that it equals two thirds of triangle height with 

2tan/3/23/2 0 Bdda   (15) 

By knowing hyperbola semi-axes, the centre of buoyancy B-curve equation can be 

determined for general rectangular triangle case of immersed shape with  

9
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4 22
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(16) 

The direct hyperbola equation for Range IIa) will be given after in the Subchapter 3.2.  

Its belonging metacentric M-curve is cuspidal Lamé curve that has extreme E cusp 

discontinuity in this Range IIa) at E1 = 45°, with properties that will be investigated further in 

the paper in order to prove the Definition 2 from the Part 1 of the paper for extreme E cusp 

discontinuity position on the line z = y, from Zeeman, [16]. But it is obvious from Fig. 4 that 

hyperbola extremes can occur on somewhat different line, i.e. the line does not go through the 

coordinate system origin. Therefore, the correction can be set for a new coordinate system 

position y' – z' as shown in the Fig. 4, above.  
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The correction of the definition for the discontinuity position is then: 

Definition 1:  The extremes of hyperbola segments for rectangular cross section occur on the 

lines  

 DByz  2/
 

(17) 

It is still needed to give exact B-curve and M-curve equations, and that will be done in 

the Chapter 3 of this paper. And, it is needed to check the Definition 1 correction in the Range 

IIb), also, with examination in the following subchapter. 

2.5 Hydrostatic cross section area complement 

In the case of pentagonal immersed cross section area geometry, Fig. 3, detected for 

Range IIb) where Condition 1 A > AT/2 case is valid, there is no direct basic geometry to be 

applicable for centre of buoyancy B-curve and metacentric locus M-curve quadratic function 

determination. In order to find them, novel hydrostatic cross section area complement method 

is applied here based on scaling of emerged part of total cross section area, where 

complementary area belongs to basic ones for quadratic function determination from Table 1, 

with explanation of the method below.  

The hydrostatic area complement method uses basic property of scaled geometry shape 

preservation and performs its transformation by scaling all components of observed geometry 

around point XT, by some ratio k that is equal to the ratio of an initial and complement area, A 

and A . That means that the length and the areal particulars of observed complementary 

geometry can be scaled around point XT for above mentioned scale ratio k, directly. 

This hydrostatic complement method mathematically represents geometrical shape 

scaling or mapping around a point, i.e. homothety with scale coefficient k < 0. Homothety in 

the mathematical terms is a transformation of an affine space determined by a point XT called 

its centre and a nonzero number k called its ratio, with the main characteristic of preserving 

mapped geometry shape during transformation. 

The ratio k can be easily determined in the hydrostatic complement method using the ratio 

of initial, immersed and complementary, emerged cross section area as: 

AAAAk //   (18) 

I.e.: 

  AAAk T   (19) 

where A is initial cross section area and A (AT – A) is its complementary area. 

Since, the main goal of this method is determining the centre of buoyancy B-curve and 

metacentric M-curve of initial, immersed geometry using quadratic functions, the semi-axes b 

and a for their definition has to be calculated, and here it is done by knowing semi-axes b and 

a of centre of buoyancy B -curve of the complementary cross section and their scaling for scale 

ratio k, determined above in the equation (19). The theorem about above can be given here with: 

Theorem 1: Scaling using hydrostatic cross section area complement 

For defined cross section geometry, the area A immersed in some fluid has locally 

horizontally symmetric hydrostatic area complement A such that its belonging 

centre of buoyancy B-curve and metacentric locus M-curve, as well as hydrostatic 

complement area geometry, can be scaled for the ratio k = –A/ A , around scaling 

point XT representing the centroid of the defined cross section geometry. 

 



Re-examination of centre of buoyancy curve and its evolute for Dario Ban 

rectangular cross section, Part 2: Using quadratic functions  

27 

 

The theorem above can be written for some general geometry feature G as 

GG  k  (20) 

where geometry G features are length and areal particulars, length l, centroid C, area A, and so 

on, and G' is a scaled shape. 

For the situation of complementary geometry above, the ratio k is negative, and it is called 

reverse mapping with  

0k  (21) 

If equation (20) is written in vector form one gets 

 TT XkX  PP  (22) 

where P is initial point and P' is a point after scaling. 

In the naval architecture practice, usual stability calculations are done for transversal or 

longitudinal inclination angles, and therefore required hyperbola equations will be given in 

parametric form for heel angles, and heel angle  will be the main input variable for centre of 

buoyancy B-curve and metacentric M-curve calculation, as will be shown further in the paper. 

2.5.1 Geometric settings 

Since general immersion shapes for rectangle, shown in the Fig. 3, contain rectangular 

pentagon also, there is no direct usage of quadratic formula and their basic shapes for 

description of belonging B-curve and M-curve. But, there is a yet another possibility of their 

usage by building horizontally symmetric isosceles triangle as hydrostatic cross section area 

complement to initial general rectangular pentagon, as shown in the Fig. 5, below.  

 

Fig. 5 Isosceles triangle as hydrostatic cross section area complement of rectangular pentagon, with its scaling  

The basic set of conditions for some basic shape and its belonging quadratic function to 

be applicable as complementary to some general cross section is: 

Condition 3: The applicability of hydrostatic area complement 

1. Geometrical applicability, 

2. Horizontal Symmetry (even functions), 

3. Complementary cross section area AC to initial A0 one, i.e.:  

0AAA TC   (23) 

where AT is total cross sectional area of observed geometry. 



Dario Ban  Re-examination of centre of buoyancy curve and its evolute for  

rectangular cross section, Part 2: Using quadratic functions 

28 

 

In hydrostatic based terminology above can be set as 

ITE AAA   (24) 

where: AT is total cross section area of observed pontoon shape, AE is emerged part of observed 

pontoon shape representing complementary area AC = AE, and AI is immersed part of total cross 

section area AT, that creates hydrostatic buoyancy force B opposite to the weight force W.  

Since, initial cross section area AI is always constant in hydrostatic field, i.e. holonomic 

constraint exists there, therefore it is AI = A0 = A = const., as set in (10). 

But, the hyperbola B-curve equation for the isosceles triangle is known for the coordinate 

system y' – z' set to rectangle’s vertex v3 angle  symmetry, as shown on Fig. 5, above, and 

therefore above equation (23) could be written as 

AAA T
  (25) 

where CAA  and A'  = A0 for coordinate system rotated for angles  and ', respectively. 

If above basic three parts of Condition 3 are satisfied, it is possible to find new basic 

shape dimensions breadth b  and draught d  on observed waterline WL, i.e. quadratic function 

semi-axes b  and a , as shown in Fig. 5, above, for the isosceles triangle that is the complement 

of initial pentagonal immersion shape of rectangle, necessary for the definition of hyperbola.  

The basic property of geometric area complement regarding its relation between rotations 

of their coordinate systems y' – z' and y  – z for reverse mapping with k < 0 is then 

 180
 

(26) 

By knowing hyperbola equation H  for the complementary triangle, it is possible to 

determine required centre of buoyancy B-curve equation H, by using direct scaling around a 

centroid point method, with equations explained in the text below.  

The only input data needed for above Hydrostatic cross section complement scaling 

method are initial geometry data about its area AT and its centroid XT, initial cross section 

draught d0 and immersed area A0, and belonging centre of buoyancy B-curve equation, 

preferably being basic quadratic function. The homothetic ratio k can be then determined by 

ratio –A/ A , and scaling of all complement geometry particulars done around scaling centre 

point XT, as will be shown in the next subchapter and in the Fig. 8, below. 

Since semi-axes are needed for the description of the centre of buoyancy B-curve of 

immersed area using quadratic functions, only, they can be calculated easily using equation (20) 

and the equation for ratio k from (19) as 

bkb   (27) 

aka   (28) 

It is still needed to scale the original rectangle vertex v1 to the point v'1, as shown in the 

Fig. 5, above, by green projection line, together with scaling of two rectangle intersection points 

with WL, P1(y1, z1) and P2(y2, z2), as shown in the Fig. 8 by using scaling equation in the vector 

form from (22).  

The example of the calculation using this method will be shown in the Subchapter 4.1, below. 

2.5.2 Hyperbola 

In the Range IIb), for heel angles between the first and the second deck immersion/bottom 

emersion heel angles 1 and 2, where Condition 1 is valid with A > AT/2, there is no basic shape 
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that can be built for general rectangular pentagon case of immersed initial triangular shape. But, 

complementary isosceles triangle shape can be built in the opposite rectangle vertex v3, with 

symmetry line in the middle of vertex angle  = 90° at  /2 = 45°, as shown in the Fig. 5, 

above. Therefore, the new rotated coordinate system y  – z with its complementary y' – z' 

coordinate system is obtained in the lower right rectangle vertex v1 with rotation angle '.  The 

equation for the centre of buoyancy B-curve in this heel angle region, Range IIb) is then 

complementary hyperbola as mentioned in theory. In order to determine its equation, the semi-

axes of complementary isosceles triangle b  and a should be determined first similar to rotated 

basic immersion shape in the Subchapter 2.4.1, using equations (13) to (15) one gets 

     
2tan2tantantan

000



dDBBdBDAAA
d T 













 
(29) 

    2tan2tan2tan 00  dDBBdBDdb   (30) 

  2tan/3/23/2 0 dDBda   (31) 

By knowing complementary hyperbola semi-axesb and a , required semi-axes b' and a' 

can be the calculated too, using direct Hydrostatic complementary cross section area scaling 

method as shown above. Thus, for the horizontal hyperbola semi-axis b' and the vertical semi-

axis a' calculated for scaled isosceles triangle with origin in the point v'1(
1vy ,

1vz ), the exact 

formulas of B and M-curve equations can be given as shown in the following Chapter 3.  

Similar to Range IIa), the extremes of hyperbola segments for rectangular cross section 

in Range IIb) can occur on the lines  DByz  2/  as in equation (17), or z' = y', thus 

proving the Definition 2 from the Part 1 of the paper, [26]. 

3 Centre of buoyancy and metacentric curve characteristics 

In this chapter, the centre of buoyancy and metacentric curve equations are given for all 

three heel angle ranges from I) to III) using quadratic functions and methods defined in the 

Chapter 2. Beside above basic situations for heel angle values until the first deck 

immersion/bottom emersion angle 1 and trapezoid cross sections, in Range I), there are other 

geometrical cases, as explained in Chapter 1 and Fig. 3, for other heel angle ranges that should 

be solved, too. For that purpose, the usage of the basic quadratic functions are then showed in 

the following subchapters, bellow.  

3.1 Parabola segment, Range I) 

According to the hydrostatic theory of ships in the works of Von den Steinen, [12], Robb, 

[13], and shown in the textbook of Uršić, [26], the type of curve that one obtains for the centre 

of buoyancy B-curve for a rectangular cross section of the pontoon, with breadth b1 = B and 

draught d1 = d0 = d, is a quadratic parabola in general form from Table 1. For the Range I), the 

parabola formula in coordinate system set in initial centre of buoyancy point B0 is then 

zpy 1

2 2  (32) 

where p1 is the parameter of parabola, equalling equation for metacentric radius BM0 .  

I.e.: 

   dBLBdLBIrp 1212BM 23

0011   (33) 

where I0 is initial waterline WL moment of inertia, and  is volume displacement of the ship. 
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In required parametric form, the parabola equation of centre of buoyancy B-curve is then 

known from [26] with 

  tan122

B dBy   (34) 

  0B

22

B tan24 zdBz    (35) 

3.1.1 Metacentric curve 

After rewriting the cubic terms in Table 2 for the rectangular cross section metacentric 

M-curve part for heel angle  range between 0° and the first deck immersion/bottom emersion 

heel angle 1, one gets semi-cubical parabola equation from [30], for coordinate system set in 

initial centre of buoyancy point B0, with parameter p1 as 

 31

2

1 278 pzyp    (36) 

Rewritten for y one gets  

 2

11

2

1

2 33/278 pzpzpzy   (37) 

By introducing the parabola parameter p1 equation from (33), the equation of the semi-cubical 

parabola becomes 

    2422232 12123312278 dBdBzzBzdy    (38) 

Rewriting the above, finally, the equation for metacentric curve of rectangular pontoon cross 

section until the first deck immersion/bottom emersion heel angle 1 can be obtained as 

     24

M

22

M

3

M

22

M 224327298932 dBzdBzzBdy    (39) 

Above formulas are valid for perpendicular sides of the rectangle cross section for heel 

angles until the first deck immersion/bottom emersion heel angle 1, i.e. immersion or emersion 

angle of the rectangular pontoon sides, where waterline length is influenced by cross section 

boundary. 

3.2 Hyperbola segment, Range IIa) 

In the range between the first and the second deck immersion/bottom emersion heel 

angles 1 and 2, triangular cross section shapes occur for rectangle intersection with waterline 

for A0  AT /2 condition, as shown in the Fig. 4. The procedure for determination of hydrostatic 

curves for this cross section case is described before in the Subchapter 2.4.1 with explanation 

for hyperbolas. It can be seen in the Fig. 4, that for arbitrary waterline position WL1-2, the 

isosceles triangle satisfying three parts of the Condition 2 can be set in the lower right vertex 

of the rectangle v1. I.e., the triangle is geometrically applicable, symmetric and therefore 

isosceles, and has the same area A' as initial A0, as defined in (10). 

For semi-axes b' and a' calculated in the equations (14) and (15), the hyperbola equation 

from Table 1 in rotated coordinate system y' – z' can be written as: 

9

2tan/2tan9/4
'

2tan9

4
'

9

2tan 22 



 AA
y

A
z

A
  

9

2tan/2tan9/4
'

2tan9

4
'

9

2tan 002020 



 BdBd
y

Bd
z

Bd
    

 



Re-examination of centre of buoyancy curve and its evolute for Dario Ban 

rectangular cross section, Part 2: Using quadratic functions  

31 

 

  2tan
9

4
'4'2tan 2

0

22

0

22

0  dByBdzBd 
 

(40) 

where all values are known and therefore, hyperbola equation is determined. 

Belonging parametric form of above hyperbola equation for heel angles  in (40) is 

  cosaz  (41) 

  tan32 by  (42) 

where parameter ' is shifted /2 for symmetry of vertex angle , i.e. c.s. y’ – z’. 

After introducing semi-axes b’ and a’ above parametric equations can be written as 

  cos2tan/3/2 0B Bdz  (43) 

  tan2tan32 0B Bdy  (44) 

And hyperbola equation for heel angles Range IIa) is given in this way. 

It can be observed here that hyperbola equation can be obtained by knowing just two 

other parameters, isosceles triangle area A and the vertex angle , instead of semi-axes. And 

that is another way of defining those equations. 

3.3 Hyperbola segment, Range IIb) 

In the Range IIb), it can be seen in the Fig. 5 that for arbitrary waterline position WL1-2, 

the complementary isosceles triangle satisfying three parts of the Condition 3 can be set in the 

upper left vertex of the rectangle v3. I.e., the triangle is geometrically applicable, symmetric 

and therefore isosceles, and has the same area A’ as initial A0, as defined in (10).  

By knowing complementary hyperbola semi-axes b and a , the centre of buoyancy curve 

equation for the complementary triangle can be written as  

9

4

9

4
22

222
2

ab
yaz

b


 
(45) 

The easiest way for determining initial, required centre of buoyancy B-curve for the 

Range IIb) can be then done by using of Hydrostatic complement cross section area scaling 

method, described in the Chapter 3, by using scaling about centre point XT by ratio k. By using 

the equations for b’ and a’ from (27) and (28), for the Condition 1 where A/AT > 1/2, in (1), the 

final equation for the initial centre of buoyancy B-curve then becomes 

9

4

9

4
224

2222

22 abk
yakz

bk


 
(46) 

Written for b’ and a’ above equation becomes 

9

4
''

9

4 22
22

2 ab
yz

b 




 

and it is the same equation as the equation (16) for hyperbola in the Range IIa). 

The difference for those equations is in the coordinate system origins, where the origin of 

the equation (16) is in the rectangle vertex v1 and for above the origin is translated in the point 

v'1 around the centre point XT.  

Belonging parametric form of above hyperbola equation for heel angles ' in (40) is the 

same as for Range IIa) with equations (41) and (42) from previous subchapter. 
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After introducing semi-axes b' and a', above parametric equations can be written as 

  cos2tan/3/2 0Bdkz ,
 

  tan2tan32 0Bdy  




  cos/2tan/
3

2
0Bd

A

AA
z T 





cos/

2tan3

2 0

0

0 Bd

Bd

BdBD
 (47) 




  tan2tan
3

2
0Bd

A

AA
y T  'tan2tan

3

2
0

0

0 Bd
Bd

BdBD 
 (48) 

and hyperbola equation for heel angles Range IIb) is given in this way, also. 

In order to obtain formulas for global y – z coordinate system, above hyperbola formulas 

should be translated and rotated to y – z coordinate system origin using equation (12). In this 

way, all equations for Range II) are given for respective hyperbolas. 

3.4 Parabola segment, Range III) 

3.4.1 Centre of buoyancy curve 

As explained in the Subchapter 2.1, the formula (39) is valid for the Range III) too, for 

rotated rectangle with breadth b3 = D and draught d3, where y and z change places for angles 

from 2 to 3 = 90°, as shown in the Fig. 1 and Fig. 2 for y' – z' coordinate system, with 

corresponding parabola equation 

ypz 
3

2 2  (49) 

with parameter p3 of corresponding parabola for Range III) equal to 

   3

2

3

3

33 1212MB dDLDdLDIrp   (50) 

For rectangular pontoon of volume  and length of the pontoon L set to 1, the value of 

the pontoon draught d3, for heel angles between 2 and 90°, is equal d3 = Bd/D, d = d0. 

The parameter p3 of parabola (50) is then  

 BdDp 123

3   (51) 

The parabola equations in required parametric form with parameter p3 from [26] are then: 

y'B = D2/(12d3)tan(90 – ) 

z'B = D2/(24d3)tan2(90 – ) 

    90tan123

B BdDy   (52) 

    90tan24 23

B BdDz  (53) 

Finally, the parametric parabola equations for the Range III), according to [26], in global, 

rectangular coordinate system, with corrected formulas are 

  90tan
2422

2
3

B
Bd

D

D

BdB
y  (54) 

  90tan
122

3

B
Bd

DD
z  (55) 

and thus, all the centre of buoyancy curve equations are obtained. 
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3.4.2 Metacentric curve 

The equation of metacentric curve for Range III) according to semi-cubic parabola 

equation in y' – z' coordinate system is  

 2

33

2

3

32 33278 pypypyz    (56) 

After introducing parabola parameter p3 one finally gets  

     26

M

32

M

3

M

32

M 224327298932 BdDyBdDyyDdBz   (57) 

and thus, all the metacentric curve equations are obtained. 

With above, all centre of buoyancy B-curve segment equations with their belonging 

metacentric locus M-curve equations are given directly. Thus, one of the main goals of the 

paper is fulfilled, and all equations will be given together in the next subchapter. 

3.5 Overall equations for the first coordinate system quadrant 

In this subchapter, all equations determined before for three heel angle ranges, in the first 

coordinate system quadrant, will be summarized in the tables below, for centre of buoyancy 

and metacentric curve equations. 

First, the Table 3, below, shows parametric centre of buoyancy curve equations for all 

three heel angle ranges in the first coordinate system quadrant. 

Table 3  Parametric centre of buoyancy curve equations for rectangle 

Range Heel Angles Centre of Buoyancy Curve 

I) 0°   < 1   tan122

B dBy     0B

22

B tan24 zdBz    

IIa) 
1   < 2 

A  AT/2 
  tan2tan32 0B Bdy    cos2tan/3/2 0B Bdz  

IIb) 
1   < 2 

A > AT/2 






 tan

2
tan

3

2
0

0

0
B Bd

Bd

BdBD
y  

 




cos

1

2tan3

2 0

0

0
B

Bd

Bd

BdBD
z  

III) 2    90°   90tan
2422

2

0

3

0
B

Bd

D

D

BdB
y    90tan

122 0

3

B
Bd

DD
z  

Note: The equation for calculation of hyperbola parameter ' used in above tables is given in 

equation (61) 

After giving the equations for the centre of buoyancy curve above, the metacentric curve 

equations for all three heel angle ranges in the first coordinate system quadrant are shown in 

the Table 4, below. The equations are given in the explicit form because their function argument 

is obtained using equations (8) and (9) for metacentre calculation, using formulas from the 

Table 2. 
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Table 4  Explicit metacentric curve equations for rectangle 

Range Heel Angles Metacentric curve 

I) 0°   < 1      24

M

22

M

3

M

22

M 224327298932 dBzdBzzBdy   

IIa) 
1   < 2 

A  AT/2  

3

2

3

2

M
3

2

M
2/tan3

2
2


















Bd
yz  

IIb) 
1   < 2 

A > AT/2 

 
 

3

2

3

2

M
3

2

M
2/tan3

2
2













 




dDB

D

dD
yz  

III) 2    90°      26

M

32

M

3

M

32

M 224327298932 BdDyBdDyyDBdz   

Finally, it can be seen from the tables above that all equations are obtained for arbitrary 

heel angles  with input data about geometrical rectangular cross section dimensions: breadth 

B, height D, and initial hydrostatic immersion position defined by initial draught d = d0, only. 

In that way, the goal of the paper is fulfilled completely. 

3.6 Relation between global and rotated coordinate systems rotation heel angles 

It is still left to define to relation between heel angles ' in coordinate system y' – z' 

initially rotated for angle ', used for hyperbola quadratic functions determination, and global 

coordinate system y – z for which heel angles  and centre of buoyancy and metacentric curves 

are defined. For that purpose, the new theorem is set here with an assumption that the tangent 

of observed centre of buoyancy curve is parallel to observed inclined waterline WL, i.e. they 

have the same heel angle , as shown in the Fig. 6, below. 

Theorem 2:  Parallelism of centre of buoyancy curve tangents and inclined waterlines 

The tangent of some centre of buoyancy curve of general immersed geometry is 

parallel with its generating inclined waterline. 

 

Fig. 6 Centre of buoyancy B-curve tangents parallel to inclined waterline 

The assumption in the Theorem 2 above is coming from the fact that the tangents T0 and 

T90 to the centre of buoyancy B-curve for  = 0° and  = 90° are known to be parallel to their 
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waterlines WL0 and WL90. Thus, the same is assumed for general heel angle  of observed 

waterline WL with tangent T, as shown in the Fig. 6.  

In this way, using Theorem 2, the hyperbola function, H, has minimum in rotated 

coordinate system y – z for some arbitrary heel angle  with 

  0min   ddzddz
 

(58) 

Therefore, the parametric form of hyperbola must be used here, since the rotation for 

general heel angle  has to be done in order to determine its corresponding ' value with 

  cosaz
  

  tan32 by   

And here, it will be done for hyperbola cases, for Range II), since the parabola case for 

Range III) is already solved in literature, with following procedure starting with rotation of 

hyperbola for general heel angle , below. 

             sintan32coscossincos bayzz  

             costan32sincoscossin bayzy  

Then  

           coscossin32sincos baddz  

After rearranging above and using the extreme condition in (58) one gets  

    0sin32tan   ba  

By substitution sin(') = x the form of above is 

   xba 32tan   

     tan23 bax  (59) 

Finally, the relation between heel angles  and ' is 

 












  tan

2

3
arcsin

b

a
 (60) 

For b' and a' shown for d', above equation in (60) becomes the simplest with 

    tanarcsin  (61) 

And thus the relation between  and ' is obtained. 

Since the heel angle  and rotation angle ' are defined, its belonging hyperbola H 

parameter angle ' can be determined using equations (60) and (61). 

Above relation is then used for determination of the centre of buoyancy B-curve and 

metacentric M-curve points for arbitrary heel angles  in the Range II) of global coordinate 

system y – z, in the Chapter 3, with examples given in the Chapter 4 of this paper. 

4 Example - metacentric curves equations calculation 

The example of the hydrostatic curves in this chapter are calculated for the rectangular 

cross section test pontoon from [26], with breadth B = 2.2 (m), height D = 1.54 (m), length  

L = 1 (m), as in the Part 1 of the paper, [26], in order to show metacentric curve cusp 

discontinuity existence in the hyperbola segment. There are two initial draughts  
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d = d0 = 0.3 (m) and 1.2 (m) chosen for this purpose showing the situations for the Range IIa) 

with Condition 1: A  AT /2 and Range IIb) with Condition 1: A > AT /2, from (1).   

In order to validate the calculation methods, the results of the calculations are checked 

for the angles on the joints of the heel angle segments, i.e. deck immersion/bottom emersions 

heel angles

 

1 and 2, and heel angle in the middle of the hyperbola segment, i.e.  = 45°, where 

the quadratic function B-curve values and metacentric locus M-curve can be checked for 

accuracy. 

4.1 Rotated basic geometric shapes example 

In this example, the calculation draught is d = 0.3 (m), with direct rotation of basic 

geometric shape with quadratic function as the equation of its centre of buoyancy B-curve. 

The swallowtail discontinuity is shown in the Fig. 7, below, as expected for the case 

where A/AT  1/2.  

 

Fig. 7  Rotated basic triangle with hyperbola and its evolute for A  AT 

The marks “H” and “L” designate hyperbola and cuspidal Lamé curve, respectively. The 

exact formulas for deck immersion/bottom emersion heel angles 1 and 2 from Uršić, [26], are: 

    25512.152tan 0

1

1 Bd  

     90029.602tan 0

21

2 BdD  

The equations for belonging centre of buoyancy B-curves for those heel angles 1 and 2, 

also from Uršić, [26], with corrected formulas for z are 

Range II) tan/2
3

1

2
0Bd

B
y  , tan2

3

1
0Bdz   

Range III) 2

0

3

0 tan
242

/

Bd

DDBdB
y 


 , tan

122 0

3

Bd

DD
z   

The parametric equation for hyperbola H in the Range IIa) using equations (41) and (42) 

is  

     cos541603.0cos zaz  

     tan541603.0tan32 by  
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The exact equation for hyperbola H in the Range IIa) using equation (16) is then: 

2222

222222

40860.0541603.0541603.0

541603.0812404.09/4541603.0812404.09/4





yz

yz

 
2329.0 yz    

And equation for belonging cuspidal Lamé curve L for Range IIb) is: 
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541603.0812404.09/4812404.03/2541603.0  yz  

     3
2

2
3

2

3

2

541603.02541603.0541603.0  yz

 

 3

2
3

2

3

2

541603.02  yz  

After all above equations and parameters are obtained, the results regarding centre of 
buoyancy and metacentric curve can be checked for three angles, deck immersion/bottom 

emersions heel angles

 

1 and 2 and  = 45°, as shown in the Table 5, below.

 
Table 5  The results of centre of buoyancy and metacentric curves for chosen heel angles 

Heel angle 1 = 15.25512° 2 = 60.90029°  = 45° 

Hyperbola parameter '1 = -34.8499046° '2 = 16.5506556° ' = 0° 

Hyperbola (y' – z') y' (m) z' (m) y' (m) z' (m) y' (m) z' (m) 

X'B -0.377123 0.659966 0.160951 0.565012 0 1.10111 

B-curve y (m) z (m) y (m) z (m) y (m) z (m) 

Parabola Range I) 0.36674 0.200014 - - - - 

Hyperbola 0.3667 0.200019 0.814286 0.513333 0.717029 0.382971 

Parabola Range III) - - 0.814286 0.513333 - - 

XB 63.0   0.2 0.814286 351.0   0.717029 0.382971 

M-curve y (m) z (m) y (m) z (m) y (m) z (m) 

Semi-cubical parabola 

Range I) 
-0.02727 46.1   - - - - 

Cuspidal Lamé curve -0.02727 1.6444 0.210284 0.849512 0.333994 0.766005 

Semi-cubical parabola 

Range III) 
- - 0.210284 0.849512 - - 

XM 720.0   46.1   0.210284 0.849512 0.334058 0.765942 

Note: The relation for calculation of hyperbola angles ', for known heel angles , is determined 

in the equations (60) and (61). 

 

In order to obtain equations in global y – z coordinate system, the formulas in hyperbola 

section of the centre of buoyancy curve should be set to origin, (13). Of course, for the 
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calculation to be correct, the values obtained for parabolas and hyperbola must be the same at 

the angles 1 and 2 and with the values for  = 45°, as confirmed in above in the Table 5.  

And now the example of scaling using hydrostatic area complement method will be 

examined in the next subchapter. 

4.2 Scaling using hydrostatic cross section area complement method 

In order to show the application of scaling using direct hydrostatic cross section area 

complement method, the figure showing calculation for above example is shown in the Fig. 8, 

below, for initial draught d = 1.2 (m). 

 

Fig. 8  Scaling method using Hydrostatic cross section area complement  

The description of the Fig. 8 above is following: The marks “H” and “L”, and “ H ” and 

“ L ” designate hyperbola and cuspidal Lamé curve equations for initial B and M-curves and 

complementary B and M -curves, respectively. The green lines represent the scaling of 

complementary cross section area defined by triangle (P1, P2, v3) to triangle (P'1, P'2, v'1) about 

scaling point centre XT, thus obtaining generator shape for construction of initial B and M-

curves of hyperbola H and cuspidal Lamé curve L. Blue curve represents B-curve with bold 

hyperbolic part H, and magenta colour designates M-curve with bold cuspidal Lamé curve part 

L. 

From the equations for triangular complementary cross section area semi-axes in (30) and 

(31) their values can be calculated as 

     290tan2.154.12.2b 0.86487  

     290tan/2.154.12.23/2a 0.57658 

The parametric equation for hyperbola H using equations (47) and (48) is then: 

    cos/57658.0cos/  zaz  

      tan57658.0tan86487.03/2tan3/2  yyay  

And the explicit equation for belonging cuspidal Lamé curve L is: 
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The semi-axes b’ and a’ then can be determined using equation (19) for k ratio with 

          328.02.12.154.1  ddDBdBdBDAAAk T  

245046.086487.0328.0  bbkb   

16336.057658.0328.0  baka   

The parametric equation for hyperbola H in the Range IIb) using equations (47) and (48) 

is  
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The explicit equation for hyperbola H in the Range IIb) using equation (16) is then: 
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And belonging equation for cuspidal Lamé curve L for Range IIb) is: 

2

3

3

2

2

2
3

2

3

2

3

21






































 














 a

b
y

b

a
z  

3

2

2
2

3

2

3

2

9

4

3

2























 a

b
y

b
za  

 
3

2

2
2

3

2

3

2

16336.0
9

245046.04

3

245046.02
16336.0 























 yz  

     3
2

2
3

2

3

2

16336.0216336.016336.0  yz

 

 3

2
3

2

3

2

16336.02  yz  



Dario Ban  Re-examination of centre of buoyancy curve and its evolute for  

rectangular cross section, Part 2: Using quadratic functions 

40 

 

Finally, the position of isosceles triangle, determined using scaling of complementary 

triangle with points P1(y1, z1), P2(y2, z2) and v3(-B/2, D), has to be determined for its points P'1(y'1, 

z'1), P'2(y'2, z'2) and v'1(y'v1, z'v1), using vector form of scaling method from equation (22) for 

centre point XT = (0, D/2). The results are shown in the Table 6, below. 

Table 6  The position of scaled isosceles triangle 

P'1(P1) P'2(P2) v'1(v3) 

y1 = -B/2 z1  = 0.316889 y2 = 0.12311 z2 = 1.54 yv3 = -B/2 zv3 = 1.54 

yT – k(y1–yT) zT – k(z1–zT) yT – k(y2–yT) zT – k(z1–zT) yT – k(yv3–yT) zT – k(zv3–zT) 

0-0.283(-1.1-0) 0.77-0.283(0.316889-

0.77) 

0-0.283(0.12311-0) 0.77-0.2830.77 0-0.283(-1.1-0) 0.77-0.2830.77 

0.311666 0.89838145 -0.034881167 0.5518333 0.311666 0.5518333 

From the scaled isosceles triangle in the Table 6, their semi-axes values can be rechecked 

with the b' determination using the distance between points P'1(y'1, z'1) and P'2(y'2, z'2) with 

    2/
2

21

2

21 zzyyb   

    245046.02/5518333.089838145.003488117.0311666.0
22

b  

And it can be concluded that semi-axes results are accurate and equal to b’ value 

previously calculated using k ratio. 

It is still needed to check the accuracy of above calculation method and here it will be 

done for three centre of buoyancy and metacentric curve points for the first and the second deck 

immersion/bottom emersion heel angles 1 and 2, and  = 45° where hyperbola has minimum, 

in the Table 7, below. The exact formulas for heel angles 1 and 2 from Uršić, [26], are: 

     1759.172tan 0

1

1 BdD  

      7564.572tan 0

21

2 dDBD  

The equations for belonging centre of buoyancy B-curves for those heel angles 1 and 2 

also from Uršić, [26], with corrected formula for z in Range III) are 

2

0

3

0 tan
242

/

Bd

DDBdB
y 


 , tan

122 0

3

Bd

DD
z   

The equations in the Range II) can be obtained from the parametric hyperbola equations 

(41) and (42), translated in origin of y – z coordinate system and rotated for heel angles 1, 2, 

and  = 45°, using affine transformation equation in (12) and an equation for relation between 

initial heel angles  and hyperbola parameter angle ' in (61). 

With this final check of the results from the Table 7, and the results from the Table 6, the 

equations for Range II) segment of centre of buoyancy B-curve are given in this paper, with 

hyperbola and cuspidal Lamé curve equations for both situations regarding the Condition 1 

cases A/AT  1/2 and A/AT > ½, in (1).  
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Table 7  The results for centre of buoyancy and metacentric curves for chosen heel angles 

Heel angle 1 = 17.1759° 2 = 57.7564°  = 45° 

Hyperbola parameter '1 = -31.85544° '2 = 13.08488° ' = 0° 

Hyperbola (y' – z') y' (m) z' (m) y' (m) z' (m) y' (m) z' (m) 

X'B -0.10139 0.192297 0.037926 0.167687 0 0.163333 

B-curve y (m) z (m) y (m) z (m) y (m) z (m) 

Parabola Range I) 0.103890 0.616056 - - - - 

Hyperbola 0.103893 0.616057 0.21992 0.697278 0.196151 0.667349 

Parabola Range III) - - 0.21992 0.697278 - - 

XB 0.103889 0.616056 0.21992 0.697278 0.196151 0.667349 

M-curve y (m) z (m) y (m) z (m) y (m) z (m) 

Semi-cubical parab. Range I) -0.009925 0.984278 - - - - 

Cuspidal Lamé curve -0.009925 0.984278 0.0587614 0.798936 0.080635 0.782865 

Semi-cubical parab. Range III) - - 0.0587615 0.798937 - - 

XM -0.009925 0.984278 0.0587615 0.798937 0.080634 0.782865 

Except hyperbola part, all other equations for centre of buoyancy and metacentric curves 

are given for hell angle ranges I) and III), thus proving Definition 1 from the Part 1 of the paper, 

[26], also. Moreover, the part of Definition 2 , from the Part 1 of the paper, [26], regarding the 

position of the extreme of hyperbola part of centre of buoyancy B-curve on the line y = x or 

45° is proved here also using above described scaling using hydrostatic complementary area 

and rotated basic geometry shapes methods. 

Thus, the Theorem 2 is approved, also, confirming parallelism of inclined waterlines and 

centre of buoyancy B-curve tangents. 

4.3 Overall equations for the examples 

Finally, the exact equations for centre of buoyancy and metacentric curve can be given 

for the examples of immersed rectangle from this chapter, i.e. draughts d = 0.3 (m) and 1.2 (m), 

are shown in the Tables 8 and 9, below, using formulas from the Tables 3 and 4. 

Table 8  Centre of buoyancy and metacentric curve equations for draught d = 0.3 (m) 

Range Heel Angles Centre of Buoyancy Curve 

I) 0°   < 1 tan43.1B
y  15.0tan267.0 2

B  z  

IIa) 1   < 2  tan541603.0By   cos/541603.0Bz  

III) 2    90°  2

B tan230572.0885714.0y   tan046144.077.0Bz  

Range Heel Angles Metacentric Curve 

I) 0°   < 1 001102.0195062.18.0220386.0 M

2

M

3

M

2

M  zzzy 
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2

3

2

M
3

2

M 541603.02  yz

 
III) 2    90° 0001296.0409906.08.0642524.0 M

2

M

3

M

2

M  yyyz 

 

The hydrostatic properties values for d = 0.3 (m) are checked using Ban’s L1 norm 

polynomial radial basis functions, PRBFs, [31], as shown in the Fig. 9, below, with graphical 

representation, where the calculations prove above results. 
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Fig. 9 Hydrostatic properties for rectangular cross section pontoon, for d = 0.3 (m) 

Finally, the calculation results for draught d = 1.2 (m), are given in the Table 9, below, 

with graphical results shown in the Part 1 of the paper, [26], thus proving obtained results. 

Table 9  Centre of buoyancy and metacentric curve equations for draught d = 1.2 (m) 

Range Heel Angles Centre of Buoyancy Curve 

I) 0°   < 1 tan1336.0B
y  6.0tan51680.0 2

B  z  

IIb) 1   < 2  tan306908.0By   cos/306908.0Bz  

III) 2    90°  2

B tan05764.0242857.0y   tan115268.077.0Bz  

Range Heel Angles Metacentric Curve 

I) 0°   < 1 
5

M

2

M

3

M

2

M 10887.6298765.08.0881543.0  zzzy 

 
IIb) 1   < 2  3

2

3

2

M
3

2

M 16336.02  yz

 
III) 2    90° 

6

M

2

M

3

M

2

M 10103.8102476.08.0570095.2  yyyz 

 

In this way, all centre of buoyancy B-curve and metacentric locus M-curve segment 

equations are given, with explicit and parametric quadratic functions for parabolas and 

hyperbolas, and explicit semi-cubical and cuspidal Lamé curves equations. 

5 Conclusion 

The centre of buoyancy and metacentric curve equations for rectangular cross section 

shape are given using quadratic functions, in this Part 2 of the paper, after upper and lower non-

dimensional bounds for swallowtail discontinuity existence are given in the first Part 1 of it. 

That is, the parabola and hyperbola equations for the centre of buoyancy curve segments are 

given in the explicit and parametric form, not defined so far, thus proving hyperbola segment 

existence of centre of buoyancy curve for rectangular cross section, also. Except that, the 

explicit equations for all metacentric curve segments in the first coordinate system quadrant are 

given, for semi-cubical parabolas and Lamé curves with 2/3 exponent and negative sign. In 

order to obtain belonging quadratic functions for description of above curves, two new methods 

are given: rotated basic geometrical shapes and scaling method using hydrostatic cross section 

area complement. Both methods use basic geometrical shapes as generators for quadratic 
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functions to be applicable for the centre of buoyancy curve description, thus enabling giving 

their direct equation. They show also, that additional extreme cusp discontinuities of 

metacentric curve for rectangular cross section floating body exists for heel angles equal 45 

degrees, i.e. in the symmetry of the rectangle vertex angles, thus proving the conclusions from 

the Part 1 and Part 2 of the paper, for swallowtail type cusp discontinuities existence. 

Additionally, in order to obtain above general equations for rotated basic shapes, two new 

theorems are given in the paper, with one of them showing that the centre of buoyancy B-curve 

tangent is parallel with observed waterline, therefore representing important hydrostatic 

property that should be further examined. The other theorem is related to the hydrostatic cross 

section area complement scaling method that uses mathematical homothety to determine the 

generating isosceles triangle shape for hyperbola quadratic function when pentagonal shape 

occurs, with simple scale ratio determination using ratio of initial, immersed and 

complementary, emerged cross section area of rectangle. 

Since all the equations of the centre of buoyancy and metacentric curve segments for the 

rectangular cross section are known now, its hydrostatic kinematics can be re-examined in 

detail, and that will be the future research topic of the author of this paper. 

After above is examined for the regular rectangular shape of a floating body, in the future 

author’s work it will be investigated for other regular shapes, as well as for the cross-sectional 

shapes of actual ship hull forms. Except two-dimensional problems, there are three-dimensional 

regular bodies to be examined using quadratic functions, and that will be done in the future 

author’s work, also, with rectangular prismatic pontoon to be examined first. 

Nomenclature 

  – rectangle vertex angle, (°), 

  – quadratic function parameter, 

1  – heel angle, (°), 

i  – cusp discontinuity heel angle, (°), 

1, 2  – deck immersion/bottom emersion heel angles, (°), 

  – geometrical shape rotation angle, (°), 

  – volume displacement of the floating body, (m3), 

b, a  – quadratic function horizontal and vertical semi-axes, (m), 

b’, a’ – quadratic function horizontal and vertical semi-axes in rotated coordinate system, (m), 

b , a  – quadratic function horizontal and vertical semi-axes for hydrostatic complement, (m), 

bi  – breadth in i-th heel angles range, (m), 

d  – draught, (m), 

d0  – initial draught, (m), 

di  – draught in i-th heel angles range, (m), 

k  – scaling ratio, 

p  – parabola parameter, 

v  – rectangle vertex, (m), 

y, z  – general rectangle coordinates, 

yB, zB  – centre of buoyancy curve coordinates, (m), 

yM, zM  – metacentric curve coordinates, (m),  

A  – cross section area, (m2), 
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A’  – cross section area of rotated basic geometrical shape, (m2), 

A     – cross section area of rotated basic geometrical shape for hydrostatic complement, (m2), 

A0  – initial immersed cross section area, (m2), 

AC  – complementary cross section area, (m2),  

AE  – emerged cross section area of rectangle above WL, (m2), 

AI  – immersed cross section area of rectangle below WL, (m2), 

AT  – total cross section area of rectangle, (m), 

B  – centre of buoyancy designation, 

B  – breadth of rectangle, (m), 

D  – draught of rectangle, (m), 

E  – extreme cusp discontinuity angle, (°), 

F  – centre of waterline designation, 

G  – geometrical feature, 

H  – hyperbola curve, 

I()  – moment of inertia of actual waterline depending on angle of heel , (m4), 

L  – Lamé curve with 2/3 exponent and negative sign (cuspidal Lamé curve), 

M  – metacentre designation, 

MB  – transversal metacentric radius, (m),  

P  – point vector of geometry, 

R
  

– rotation of geometrical shape for angle , 

T  – tangent, 

Tv  – translation of geometrical shape to rectangle vertex v, 

WL  – waterline, 

WLi-i+1 – waterline between two cusp discontinuity heel angles i and i+1, 

XT  – centroid of geometrical shape; scaling centre point. 
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