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PROBABILISTIC PREFERENCE THEORY AND APPLICATIONS
IN FINANCE, ECONOMIC AND MANAGEMENT
RESEARCH

Investment decision making based on the probabilistic
hesitant financial data: model and empirical study

Wei Zhoua,b , Man Liua, Zeshui Xub and Marinko �Skarec

aBusiness School, Yunnan University of Finance and Economics, Kunming, P.R. China; bBusiness
School, Sichuan University, Chengdu, P.R. China; cFaculty of Economics & Tourism, Juraj Dobrila
University of Pula, Pula, Croatia

ABSTRACT
This paper proposes a portfolio selection model from the perspective
of probabilistic hesitant financial data (PHFD). PHFD can be inter-
preted as the new form of information presentation that is obtained
by transforming real financial data into probabilistic hesitant fuzzy ele-
ments. Based on the above data and model, we can derive the opti-
mal investment ratios and give suggestions for investors. Specifically,
this paper first develops a transformation algorithm to transform the
general share returns into PHFD. The transformed data can directly
show all the returns and their occurrence probabilities. Then, the
portfolio selection and risk portfolio selection models based on
PHFD, namely the probabilistic hesitant portfolio selection (PHPS)
model and the risk probabilistic hesitant portfolio selection (RPHPS)
model, are proposed. Furthermore, the investment decision-making
methods are provided to show their practical application in financial
markets. It is pointed out that the PHPS model for general investors
is constructed based on the maximum-score or minimum-deviation
principles to get the optimal investment ratios, and the RPHPS
model provides the optimal investment ratios for three types of risk
investors with the aim of obtaining the maximum return or taking
the minimum risk. Finally, an empirical study based on the real data
of China’s stock markets is shown in detail. The results verify the
effectiveness and practicability of the proposed methods.
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1. Introduction

In this paper, we propose a portfolio selection model from the perspective of prob-
abilistic hesitant financial data (PHFD). It is a new form of information presentation
that is obtained by transforming real financial data into probabilistic hesitant fuzzy
elements (PHFE). Note that PHFD are presented by returns and their occurrence
probabilities based on real financial data. As we know, the traditional model
(Markowitz, 1952) is calculated based on the mean and variance of returns.
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Obviously, these two portfolio selection models and their optimal results are different.
How to choose the better one from these two models? This depends on the investors’
subjective evaluation. If an investor prefers to the return and risk of share represented
by the mean and variance values, then the traditional Markowitz model is better. If
an investor focuses on the returns and their occurrence probability, then the new
model is better. Therefore, PHFD, the new portfolio selection model and their empir-
ical study are the main contributions of this paper.

In this paper, the empirical study focuses on China’s stock markets because of
the price restriction policy. Thus, the share returns can clearly show the desired
characters of PHFD. For example, according to the price restriction policy, the
share returns in China’s stock markets are restricted to the interval ½�10%, 10%�:
Thus, investors focus on the return results with two decimal places, namely
f�0:10, �0:09, � � � , 0:09, 0:10g because many data shown by the financial marks
remain two decimal places. Based on this, for a time series of share returns, we can
transform them into PHFD with corresponding occurrence probabilities. Obviously,
the transformed data with corresponding occurrence probabilities are consistent
with PHFE, and we can name it as PHFD. This provides a feasible theoretical foun-
dation to express the real share returns of financial products in the form of prob-
abilistic hesitant fuzzy set (PHFS). Then, this paper further researches the portfolio
selection models under the PHFD environment to obtain the optimal investment
ratios and make an investment decision. Based on the obtained optimal results,
which are different from those calculated by the traditional methods, we can pro-
vide some investment suggestions for investors. It is pointed out that the original
data used to construct models are the same in the traditional methods and the pro-
posed ones. To achieve these aims, we review the related methods as follows:

The portfolio model was proposed by Markowitz (1952) which is well-known in
the investment decision-making field. This model has been extended and applied in
many ways, especially on the following three aspects. First, to develop the portfolio
selection approach, some new models have been proposed such as the insurance and
investment portfolio model (Li, 1995), the quadratic portfolio model (Castellacci &
Siclari, 2003), the robust multi-period portfolio model (Liu et al., 2015), the scenario-
based portfolio model (Vilkkumaa et al., 2018), and the sparse chance constrained
portfolio selection model (Chen et al., 2020). The extended forms and models can
deal with different types of portfolio selection issues according to the different aims.
Second, to optimize the existing portfolio selection methods, some improved models
have been presented, such as the mean absolute deviation portfolio model (Simaan,
1997), the Bayesian framework portfolio model (P�astor, 2000), the mean-VaR port-
folio model (Alexander & Baptista, 2002), the chance constrained portfolio model
(Abdelaziz et al., 2007), the constrained fuzzy analytic hierarchy portfolio model
(Nguyen & Gordon-Brown, 2012), the risk-return portfolio model (Brandtner et al.,
2018), and the mean-risk portfolio model (Mehralizade et al., 2020). Third, to deal
with different real problems, some new models have been designed. These problems
include the institutional procedures for short selling (Kwan, 1997), the independent
possibilistic information (Inuiguchi & Tanino, 2000), the robust estimation (Demiguel
& Nogales, 2009), the concave price impact (Ma et al., 2013), the uncertain
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environment impact (Li et al., 2018), and the limited market liquidity (Ha & Zhang,
2020). Obviously, the traditional portfolio models have been further developed in the
above literature. In this paper, we further develop the traditional models from the
environmental perspective, namely, the PHFD environment. Considering this special
environment, the proposed models are innovative and can be used to deal with differ-
ent investment-decision issues.

We can find that the above portfolio selection models tend to use accurate num-
bers but overlook the uncertainty of data. Therefore, many uncertain portfolio selec-
tion models based on fuzzy environments have been proposed, such as the fuzzy
dynamic portfolio selection model (€Ostermark, 1996), the fuzzy chance-constrained
portfolio selection model (Huang, 2006), the cardinality constrained fuzzy portfolio
selection model (Berm�udez et al., 2012), the new bi-objective fuzzy portfolio selection
model (Kar et al., 2019), and the fuzzy multi-objective portfolio selection model
(Chen et al., 2020). In these models, the uncertainty of data is addressed by different
fuzzy sets (Zadeh, 1965). Moreover, by applying them to practical portfolio selection
issues, a series of fuzzy portfolio models have been successfully used in various fields
such as strategic management (Pap et al., 2000), the stock market analysis (Teresa
et al., 2004), the security risk calculation (Huang, 2011), the large-scale rooftop PV
project investment (Wu et al., 2018), and the efficiency evaluation (Gupta et al.,
2020). Compared with the portfolio selection models constructed based on accurate
data, these fuzzy portfolio selection models are mainly used in uncertain and fuzzy
environments. Therefore, they are introduced as the theoretical foundation of this
paper due to their significant contributions to the portfolio selection theory.

Also, we can find that the above fuzzy portfolio models are mainly constructed
based on fuzzy sets. Then, a direct method to further develop these methods is to
introduce new and different fuzzy sets such as the intuitionistic fuzzy set (Atanassov,
1986), the convex fuzzy set (Sarkar, 1996), the type-2 fuzzy set (Karnik & Mendel,
2001), the interval type-2 fuzzy set (Mendel & Wu, 2007), the interval-valued fuzzy
set (Yang et al., 2009), the hesitant fuzzy set (HFS) (Torra & Narukawa, 2009), the
probabilistic rough fuzzy set (Sun et al., 2014), the interval-valued intuitionistic fuzzy
set (Li, 2018), and the probabilistic linguistic q-rung orthopair fuzzy set (Liu &
Huang, 2020). Then, many developed fuzzy portfolio selecition models have been
proposed, such as the fuzzy portfolio model (Watada, 2001), the trapezoidal LR-fuzzy
portfolio selection (Vercher et al., 2007), the intuitionistic fuzzy optimal portfolio
selection (Chen et al., 2011), the interactive fuzzy efficient portfolio selection
(Rebiasz, 2013), the interval type-2 fuzzy portfolio optimization (Pai, 2017), the hesi-
tant fuzzy portfolio selection (Zhou & Xu, 2018), and the dual hesitant fuzzy portfolio
selection (Li & Deng, 2020). Thus, the traditional portfolio selection model has been
extensively studied in diverse fuzzy environments. Similar to the above fuzzy portfolio
selection models, we develop a new model by introducing the PHFD environment.
Unlike the above fuzzy portfolio selection models, PHFD come from the real financial
data which is also its prominent advantage.

As aforementioned, we mainly focus on two types of portfolio selection models
under the PHFD environment to help investors make investment decisions from dif-
ferent perspectives. As a result, this paper has three main contributions to the
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literature in economics and finance as well as practical implications: (1) This paper
designs a transformation algorithm to obtain PHFD based on real financial data. The
desired advantage of PHFD is to show the returns and their occurrence probabilities
simultaneously. (2) This paper proposes the probabilistic hesitant portfolio selection
(PHPS) model and the risk probabilistic hesitant portfolio (RPHP) model for general
investors and risk investors under the PHFD environment, respectively. (3) This
paper gives an empirical study in detail and applies the proposed models to four
stocks in the biological vaccine concept sector of China’s stock markets. It illustrates
an investment decision-making process that is different from which using traditional
methods and they can be practically used by investors.

To achieve the above aims, the rest of this paper is constructed as follows: we introduce
the basic definitions and operations of HFS and PHFS, then develop the transformation
algorithm and give the definition of PHFD in Section 2. In Section 3, we propose the
PHPS models to get the optimal investment ratios for general investors. Based on which,
Section 4 further develops the RPHPS models to obtain the optimal investment ratios for
three types of risk investors. Furthermore, an empirical study is given to fully show the
proposed methods in Section 5. Finally, the conclusion can be seen in Section 6.

2. Probabilistic hesitant financial data and its acquisition

In this section, we introduce the basic definitions of HFS (Torra & Narukawa, 2009)
and PHFS (Xu & Zhou, 2017), which are the theoretical foundations for further
methods. Then, we demonstrate the transformation algorithm and definition of
PHFD to change the share returns of financial products into PHFD. After that, the
real acquisition of PHFD is realized.

2.1. HFS and PHFS

It can be found that PHFS is an extended form of HFS. Both of them use a set of
possible values to express the subjective evaluation information given by decision
makers. However, they are obviously unlike in the description of occurrence probabil-
ities using different possible values. For more details, we present them as follows:

Definition 1. (Torra & Narukawa, 2009). Let X be an invariant set, we define HFS on X
according to the function h, so that when it is applied to X, it returns a subset of [0,1].

Xia and Xu (2011) described HFS with a mathematical symbol E ¼
f<x, hEðxÞ> x 2 Xj g, where hEðxÞ is a set of values in [0,1], representing the possible
membership degrees of element x 2 X to the set E, and they called h ¼ hEðxÞ a hesi-
tant fuzzy element (HFE).

We can find that the occurrence probabilities of all possible values in HFE are
equal. Then, Xu and Zhou (2017) developed PHFS and PHFE, in which the occur-
rence probabilities of all possible values are unequal. The basic definitions and opera-
tions are presented below:

Definition 2. (Xu & Zhou, 2017). Let R be an invariant set, then a PHFS on R is
described with a mathematical symbol:
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HP ¼ f�hðct<pt>Þ ct , ptgj (1)

where �hðct<pt>Þ is a set of some elements ct
<pt> and denotes the probabilistic hesi-

tant fuzzy information of HP, ct 2 R, 0 � ct � 1, t ¼ 1, 2, . . . , �h, where �h is the
number of possible elements in �hðct<pt>Þ, pt 2 ½0, 1� is the occurrence probability of
ct, and

P�h
t¼1 pt ¼ 1:

Further, the score function Sð�hÞ and the deviation function Dð�hÞ are given to compare

the different PHFEs. We have Sð�hÞ ¼ P�h
t¼1 ctpt and Dð�hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�h
t¼1 ðct�Sð�hÞÞ2pt

q
:

Let two PHFEs be �hðct<pt>Þ and �h
0ðct0<pt0>Þ, the basic operations can be pre-

sented as
�h��h

0 ¼ [t¼1, 2, ..., �h, t0¼1, 2, ..., �h 0 fðct þ ct0�ctct0 Þ<ptpt0>g, and

k�h ¼ [
t¼1, 2, ..., �h

fð1�ð1�ctÞkÞ<pt>g:

where t ¼ 1, 2, . . . , �h, t0 ¼ 1, 2, . . . , �h
0
,
P�h

t¼1 pt ¼ 1,
P�h

t0¼1 pt0 ¼ 1, and k>0:
It can be found that PHFS is more comprehensive than HFS. Therefore, we mainly

study the share return under the probabilistic hesitant fuzzy environment then pro-
pose the transformation algorithm and the definition of PHFD in the next section.

2.2. Transformation algorithm and definition of PHFD

It is pointed out that the following algorithm is given based on the real situations in
China’s stock markets and the price restriction policy. For different financial markets
and price policies, we can similarly derive the models and conclusions.

Algorithm 1 is given to transform real financial data, namely share returns, into PHFD.

Algorithm 1. Transform the share returns into PHFD.

Step 1: Obtain the share prices Sk ðk ¼ 1, 2, . . . , nÞ and calculate their returns, which
can be presented as Hk ¼ Sk�Sk�1

Sk�1
: Here, we have Hk 2 ½�0:1, 0:1� according to the

price restriction policy in China’s stock market.
Step 2: Calculate _Hk according to _Hk ¼ 0:5ðHk þ 0:1Þ where Hk 2 ½�0:1, 0:1�: Thus,
we can change the negative values in Hk into the positive values and make sure
that _Hk 2 ½0, 0:1�:

Step 3: Transform _Hk into €Hk based on €Hk ¼ ½100 _Hk� � 10�2 ðk ¼ 1, 2, . . . , nÞ,
where ½�� is the integer operation. Thus, the €Hk only keep two decimal places.

Step 4: Collect the same values in €H ¼ [k¼1, 2, ..., nf€Hkg and present
as ĥ ¼ [t¼1, 2, ..., hfctg:

Step 5: Compute the occurrence probability #t of ct in ĥ ¼ [t¼1, 2, ..., hfctg based on
€H ¼ [k¼1, 2, ..., nf€Hkg, and then we can get the corresponding PHFD h ¼
[t¼1, 2, ..., hfc<#t>

t g, where ct ðt ¼ 1, 2, . . . , hÞ are the different elements in h, #t is
the occurrence probability of ct , and

Ph
t¼1 #t ¼ 1:

End
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To show the specific transformation process by using the above transformation
algorithm, a simple example is illustrated as follows:

Example 1. For a stock S, we obtain its share prices for 11 consecutive trading
days shown in Step 1. To transform these share prices to PHFD, Algorithm 1 is
used below:

Step 1: Obtain 11 share prices S0 ¼ 26:07, S1 ¼ 26:32, S2 ¼ 28:25, S3 ¼
28:58, � � � , S8 ¼ 31:00, S9 ¼ 30:32, and S10 ¼ 29:30, then get their share returns
H1 ¼ 0:0096, H2 ¼ 0:0733, H3 ¼ 0:0117, � � � , H8 ¼ 0:0794, H9 ¼ �0:0219,
and H10 ¼ �0:0336:

Step 2: Calculate _Hk according to _Hk ¼ 0:5ðHk þ 0:1Þ: Then, we have _H1 ¼ 0:0548,
_H2 ¼ 0:0867, _H3 ¼ 0:0558, � � � , _H8 ¼ 0:0897, _H9 ¼ 0:0390, and _H10 ¼ 0:0332:

Step 3: Transform _Hk into €Hk based on €Hk ¼ ½100 _Hk� � 10�2 ðk ¼ 1, 2, . . . , nÞ,
then we can get €H1 ¼ 0:05, €H2 ¼ 0:08, €H3 ¼ 0:05, � � � , €H8 ¼ 0:08, €H9 ¼
0:03, €H10 ¼ 0:03:

Step 4: Collect the same values in €H ¼ f0:05, 0:08, 0:05, � � � , 0:08, 0:03, 0:03g
and show them in a HFE ĥ ¼ f0:03, 0:05, 0:08g:

Step 5: Derive the occurrence probability #t of ct in ĥ ¼ f0:03, 0:05, 0:08g, then we
can obtain the corresponding PHFD h ¼ f0:03<0:3>, 0:05<0:5>, 0:08<0:2>g:
After the above steps, we can change the share prices into PHFD.
This calculation process also reflects the feasibility of the proposed transform-

ation algorithm. Based on the above calculations and analysis, we define PHFD
as follows:

Definition 3. Let Sk ðk ¼ 1, 2, . . . , nÞ be the share prices of a financial product in n
consecutive trading days, then the corresponding PHFD are defined as h ¼
[t¼1, 2, ..., hfc<#t>

t g, where c<#t>
t is the tth share return with the occurrence probability

#t , h ¼ [t¼1, 2, ..., hfc<#t>
t g is obtained based on Algorithm 1, ct 2 ½0, 0:1�, #t 2 ½0, 1�,Ph

t¼1 #t ¼ 1 , h is the number of possible elements in h, Sk>0, and i ¼ 1, 2, . . . ,m:

From Definition 3, we can find that PHFD are similar to PHFE; however,
they are different in the obtaining process. PHFD are got based on the real
finance data and PHFE is given by the decision makers based on the subject-
ive evaluation.

In this section, we first introduce HFS and PHFS. Then, the transformation algo-
rithm, namely Algorithm 1, is proposed to change the real financial data into PHFD.
After that, we formally provide Definition 3 to describe PHFD in detail. Therefore,
we can derive the two following conclusions:

1. PHFD can show the share returns and their occurrence probabilities. Meanwhile,
it also owns certain and uncertain characters as it is similar to PHFE which is an
emerging fuzzy number.

2. The given Algorithm 1 can transform share returns into PHFD directly. In the
next section, we further develop the portfolio selection models and their invest-
ment decision-making process based on the proposed PHFD.
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3. Probability hesitant portfolio selection models in the PHFD environmnet

In this section, we focus on the portfolio selection models in the PHFD environment
to obtain the optimal results. Thus, investment suggestions can be given to investors
accordingly. Similar to the hesitant fuzzy portfolio selection models proposed by
Zhou and Xu (2018), we first develop two basic PHPS models based on the max-
imum-score objective and the minimum-deviation objective. Then, they are further
developed by introducing the investors’ risk appetite.

To construct the PHPS models, the general application scenario is set up as follows:
An investor plans to invest a sum of money in m financial products fx1, x2, . . . , xmg: To
do this, he/she gets their share prices in nþ 1 consecutive trading days which are pre-
sented as Si0, Si1, Si2, � � � , Sin ði ¼ 1, 2, . . . ,mÞ: To derive the optimal investment
ratios of m financial products based on the objective of the maximize return or the min-
imize risk, two basic PHPS models are proposed as follows:

Model 1:

U1ðWÞ ¼ maxS [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 ð0:1�c

<#iti>
iti Þwi

n o( )

s:t:

�m
i¼1wihiðc<#iti>

iti Þ ¼ [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 ð0:1�c

<#iti>
iti Þwi

n o
#iti ¼

citiPhi
ti¼1 citiPm

i¼1 wi ¼ 1,wi � 0, i ¼ 1, 2, . . . ,m:

,

8>>>>><
>>>>>:

(2)

where Sf�g is the score function of PHFD, hi ¼ [ti¼1, 2, ..., hifc<#iti>
iti g is PHFD of ith

financial product xi, c
<#iti>
iti is the ti

th return of xi with an occurrence probability of
#iti , citi 2 ½0, 0:1�, #iti 2 ½0, 1�, Phi

ti¼1 #iti ¼ 1 , hi is the number of the same value of
hi, wi is the investment ratio for the ith financial product, and i ¼ 1, 2, . . . ,m:

Model 2:

U2ðWÞ ¼ minD [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n o( )

s:t:

�m
i¼1wihiðc<#iti>

iti Þ ¼ [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

f1�Qm
i¼1 ð0:1�c

<#iti>
iti Þwig

#iti ¼
citiPhi
ti¼1 citiPm

i¼1 wi ¼ 1,wi � 0, i ¼ 1, 2, . . . ,m:

,

8>>>>><
>>>>>:

(3)

where Df�g is the deviation function of PHFD, hi ¼ [ti¼1, 2, ..., hifc<#iti>
iti g is PHFD of

ith financial product xi and calculated based on Algorithm 1, c
<#iti>
iti is the ti

th return
of xi with an occurrence probability of #iti , citi 2 ½0, 0:1�, #iti 2 ½0, 1�, Phi

ti¼1 #iti ¼ 1 ,
hi is the number of the same value of hi, wi is the investment ratio for the ith finan-
cial product, and i ¼ 1, 2, . . . ,m:

2818 W. ZHOU ET AL.



Then, we can obtain the optimal investment ratios of a set of financial products
according to the above Models 1 and 2. Investors can select either of them according
to different needs and risk appetites. Model 1 presents the maximum returns while
Model 2 shows the minimum risks. In the following content, we give an example to
illustrate the feasibility of the above models.

Example 2. An investor plans to invest a sum of money in three stocks fx1, x2, x3g,
and he/she obtain their share prices in the past 23 trading days. The specific share
prices of three stocks fx1, x2, x3g are shown in Table 1.

Based on the above data, we can apply Models 1 and 2 to calculate the optimal
investment ratios below:

By using Algorithm 1, we can transform all the financial data in Table 1 into three
corresponding PHFD, namely h1, h2, and h3:

h1 ¼ f0:02<0:4545>, 0:08<0:5455>g, h2 ¼ f0:04<0:2727>, 0:05<0:7273>g,
and h3 ¼ f0:03<0:4091>, 0:06<0:5909>g:

It is found that there are 2� 2� 2 ¼ 8 possible elements in the operation results
of �3

i¼1wihiðc<#iti>

iti Þ: Then, we can get further calculation as:

�3
i¼1wihiðc<#iti>

iti Þ ¼ [
t1¼1, 2, t2¼1, 2, t3¼1, 2

1�
Y3

i¼1
ð0:1�c

<#iti>

iti Þwi

n o

¼

1�ð0:1�0:02<0:4545>Þw1 � ð0:1�0:04<0:2727>Þw2 � ð0:1�0:03<0:4091>Þw3 ,
1�ð0:1�0:02<0:4545>Þw1 � ð0:1�0:04<0:2727>Þw2 � ð0:1�0:06<0:5909>Þw3 ,
1�ð0:1�0:02<0:4545>Þw1 � ð0:1�0:05<0:7273>Þw2 � ð0:1�0:03<0:4091>Þw3 ,
1�ð0:1�0:02<0:4545>Þw1 � ð0:1�0:05<0:7273>Þw2 � ð0:1�0:06<0:5909>Þw3 ,
1�ð0:1�0:08<0:5455>Þw1 � ð0:1�0:04<0:2727>Þw2 � ð0:1�0:03<0:4091>Þw3 ,
1�ð0:1�0:08<0:5455>Þw1 � ð0:1�0:04<0:2727>Þw2 � ð0:1�0:06<0:5909>Þw3 ,
1�ð0:1�0:08<0:5455>Þw1 � ð0:1�0:05<0:7273>Þw2 � ð0:1�0:03<0:4091>Þw3 ,
1�ð0:1�0:08<0:5455>Þw1 � ð0:1�0:05<0:7273>Þw2 � ð0:1�0:06<0:5909>Þw3

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼
ð1�0:08w1 � 0:06w2 � 0:07w3Þ<0:0507>, ð1�0:08w1 � 0:06w2 � 0:04w3Þ<0:0732>,
ð1�0:08w1 � 0:05w2 � 0:07w3Þ<0:1352>, ð1�0:08w1 � 0:05w2 � 0:04w3Þ<0:1953>,
ð1�0:02w1 � 0:06w2 � 0:07w3Þ<0:0609>, ð1�0:02w1 � 0:06w2 � 0:04w3Þ<0:0879>,
ð1�0:02w1 � 0:05w2 � 0:07w3Þ<0:1623>, ð1�0:02w1 � 0:05w2 � 0:04w3Þ<0:2344>

8>>><
>>>:

9>>>=
>>>;

,

(4)

In consideration of the results and the objective function in Model 1, we have

S [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n o( )
¼

1�0:0507 � 0:08w1 � 0:06w2 � 0:07w3�0:0732 � 0:08w1 �
0:06w2 � 0:04w3�0:1352 � 0:08w1 � 0:05w2 � 0:07w3�0:1953 � 0:08w1 � 0:05w2 � 0:04w3

�0:0609 � 0:02w1 � 0:06w2 �
0:07w3�0:0879 � 0:02w1 � 0:06w2 � 0:04w3�0:1623 � 0:02w1 � 0:05w2 � 0:07w3

�0:2344 � 0:02w1 � 0:05w2 � 0:04w3

(5)

Moreover, to know the optimal investment ratios for the investor who wants to
get the maximum return, Model 1 is used to derive the optimal results w1 ¼ 0:6843,
w2 ¼ 0, and w3 ¼ 0:3157: Therefore, if an investor is ready to invest $10,000 in these
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three stocks fx1, x2, x3g and get the maximum return, the distribution of his/her
investment would be $6843, $0 and $3157 respectively.

Similarly, to get the optimal investment ratios for the investor who wants to take the
minimum risk, Model 2 and Eq. (4) are applied in the above example. Therefore, the opti-
mal investment ratios are w1 ¼ 0:0181, w2 ¼ 0:8935, and w3 ¼ 0:0884: In other words,
if an investor is ready to invest $10,000 in these three stocks fx1, x2, x3g and take the min-
imum risk, the investment distribution could be $181, $8953 and $884 respectively.

In sum, we propose two portfolio selection models in the PHFD environment,
namely Models 1 and 2. It is easily found that PHFD come from the real financial
returns. Example 2 illustrates the feasibility and effectiveness of the proposed models
in the real financial markets. Note that the given two models are different and invest-
ors should select them based on their needs and investment principles.

In the real investment field, an obvious issue is that different investors have vari-
ous appetites for returns and risks. Therefore, we further introduce investors’ risk
appetites into the above PHPS models and propose two RPHPS models. Therefore,
general investors make investment decisions based on the PHPS models, while the
RPHPS models are specifically for risk investors.

4. Risk probability hesitant portfolio models in the PHFD environment

To construct the RPHPS model, an application scenario is first set up as follows: An
investor plans to invest a sum of money in m financial products fx1, x2, . . . , xmg: To
do this, he/she gets their share prices in nþ 1 consecutive trading days which are
presented as Si0, Si1, Si2, � � � , Sin ði ¼ 1, 2, . . . ,mÞ:

To derive the optimal investment ratios of m financial products with the three
investors’ risk appetites, Models 3 and 4 are respectively given:

Model 3:

U3ðWÞ ¼ maxS [t1¼1, 2, ..., h1, t2¼1, 2, ..., h2, ..., tm¼1, 2, ..., hm 1�Qm
i¼1 ð0:1�c

<#iti>
iti Þwi

n on o

s:t:

D [t1¼1, 2, ..., h1, t2¼1, 2, ..., h2, ..., tm¼1, 2, ..., hm 1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n on o
� D

�m
i¼1wihiðc<#iti>

iti Þ ¼ [
t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,

� � � , tm ¼ 1, 2, . . . , hm

1�
Ym

i¼1
ð0:1�c

<#iti>

iti Þwi

n o

#iti ¼
citiPhi
ti¼1 citiPm

i¼1 wi ¼ 1,wi � 0, i ¼ 1, 2, . . . ,m:

,

8>>>>>>>>><
>>>>>>>>>:

(6)

Table 1. The share prices of three stocks in Example 2.
Stocks S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
x1 28.75 27.19 29.33 27.72 29.54 28.08 29.94 31.80 29.90 31.76 30.04 32.43
x2 5.38 5.41 5.43 5.47 5.50 5.58 5.63 5.72 5.61 5.63 5.66 5.65
x3 181.50 186.70 190.56 194.98 199.09 193.90 190.01 194.20 198.98 193.80 197.87 193.68
Stocks S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22
x1 30.99 29.59 28.21 29.93 28.28 29.99 28.23 29.98 32.19 34.30 36.90
x2 5.75 5.83 5.79 5.83 5.92 5.86 5.93 6.02 5.99 6.09 6.05
x3 197.99 193.87 197.90 193.16 198.97 194.04 198.68 194.50 198.80 193.00 197.17

Source: public data of China’s stock markets (www.wind.com.cn).
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where Sf�g and Df�g are the score and deviation functions of PHFD respectively,
D is the acceptable max-deviation degree and D 2 minDf�g, maxDf�g½ �, hi ¼
[ti¼1, 2, ..., hifc<#iti>

iti g is PHFD of the ith financial product xi and calculated based on
the above Algorithm 1, c

<#iti>

iti is the ti
th return of xi with an occurrence probabil-

ity of #iti , citi 2 ½0, 0:1�, #iti 2 ½0, 1�, Phi
ti¼1 #iti ¼ 1 , hi is the number of the same

value of hi, wi is the investment ratio for the ith financial product,
and i ¼ 1, 2, . . . ,m:

We can find that D is the acceptable max-deviation degree and D 2
minDf�g, maxDf�g½ �: To calculate the above acceptable max-deviation degree, we
introduce the deviation trisection approach which was proposed by Zhou and Xu
(2018). Thus, the acceptable max-deviation degrees of investors with different risk
appetites can be obtained, then Eq. (7) is proposed to calculate minDf�g and
maxDf�g:

D Wð Þ ¼ max ðor minÞD [t1¼1, 2, ..., h1, t2¼1, 2, ..., h2, ..., tm¼1, 2, ..., hm 1�Qm
i¼1 0:1�c

<#iti>

iti

� �wi
� �� �

s:t:

�m
i¼1wihi c

<#iti>

iti

� �
¼ [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,

� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 0:1�c

<#iti>

iti

� �wi
� �

[
t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,

� � � , tm ¼ 1, 2, . . . , hm

citig ¼ [
k¼1, 2, ..., n

50 Sik�0:9Sik�1ð Þ
Sik�1

� �
� 10�2

� �

#iti ¼
citiPhi
ti¼1 citiPm

i¼1 wi ¼ 1, wi � 0, i ¼ 1, 2, . . . ,m, k ¼ 1, 2, . . . , n

,

8>>>>>>>>>>><
>>>>>>>>>>>:

(7)

where Df�g is the deviation function of PHFD, D is the acceptable max-deviation
degree and D 2 minDf�g, maxDf�g½ �, hi ¼ [ti¼1, 2, ..., hifc<#iti>

iti g is PHFD of the ith

financial product xi and calculated based on Algorithm 1, c
<#iti>

iti is the ti
th return

of xi with an occurrence probability of #iti , citi 2 ½0, 0:1�, #iti 2 ½0, 1�, Phi
ti¼1 #iti ¼

1 , Sik ðk ¼ 1, 2, . . . , nÞ are the share prices for nþ 1 consecutive trading days of
the ith financial product xi, ½�� is the integer operation, hi is the number of the
same value of hi, wi is the investment ratio for the ith financial product,
and i ¼ 1, 2, . . . ,m:

Generally, investors can be classified into three types based on their risk appetites,
namely the risk seeker, the risk-neutral investor and the risk averter. Based on the
above considerations, we can calculate their acceptable max-deviation degrees
as follows:

DA ¼ minDf�g þ maxDf�g �minDf�g½ �=3	 

, DN ¼ minDf�g þ 2 maxDf�g½	

�minDf�g�=3g, and DS ¼ minDf�g þ 3 maxDf�g �minDf�g½ �=3	 
 ¼ maxDf�g:
We have DS � DN � DA: This conclusion is obviously reasonable. Thus, we can

provide quantitative presentations for the three kinds of investors.
Similar to Model 3, we further develop Model 4 as follows:
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Model 4:

U4ðWÞ ¼ minD [t1¼1, 2, ..., h1, t2¼1, 2, ..., h2, ..., tm¼1, 2, ..., hm 1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n on o

s:t:

S [t1¼1, 2, ..., h1, t2¼1, 2, ..., h2, ..., tm¼1, 2, ..., hm 1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n on o
� S

�m
i¼1wihiðc<#iti>

iti Þ ¼ [
t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,

� � � , tm ¼ 1, 2, . . . , hm

1�
Ym

i¼1
ð0:1�c

<#iti>

iti Þwi

n o

#iti ¼
citiPhi
ti¼1 citiPm

i¼1 wi ¼ 1,wi � 0, i ¼ 1, 2, . . . ,m:

,

8>>>>>>>>><
>>>>>>>>>:

(8)

where Sf�g and Df�g are the score and deviation functions of PHFD respectively, S is
the acceptable min-score degree and S 2 minSf�g, maxSf�g½ �, hi ¼
[ti¼1, 2, ..., hifc<#iti>

iti g is PHFD of the ith financial product xi and calculated based on
the above Algorithm 1, c

<#iti>
iti is the ti

th return of xi with an occurrence probability
of #iti , citi 2 ½0, 0:1�, #iti 2 ½0, 1�, Phi

ti¼1 #iti ¼ 1 , hi is the number of the same value
of hi, wi is the investment ratio for the ith financial product, and i ¼ 1, 2, . . . ,m:

In Model 4, S is the acceptable min-score value and S 2 minSf�g, maxSf�g½ �: To
calculate the acceptable min-score degree, we introduce the score trisection approach
that was proposed by Zhou and Xu (2018). Then, Eq. (9) is given to calculate
minSf�g and maxSf�g:

SðWÞ ¼ max ðor minÞS [t1¼1, 2, ..., h1, t2¼1, 2, ..., h2, ..., tm¼1, 2, ..., hm 1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n on o

s:t:

�m
i¼1wihiðc<#iti>

iti Þ ¼ [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n o
[

t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,

� � � , tm ¼ 1, 2, . . . , hm
citig ¼ [

k¼1, 2, ..., n
50ðSik�0:9Sik�1Þ

Sik�1

� �
� 10�2

� �

#iti ¼
citiPhi
ti¼1 citiPm

i¼1 wi ¼ 1, wi � 0, i ¼ 1, 2, . . . ,m, k ¼ 1, 2, . . . , n

,

8>>>>>>>>>><
>>>>>>>>>>:

(9)

where Sf�g is the score function of PHFD, S is the acceptable min-score degree and
S 2 minSf�g, maxSf�g½ �, hi ¼ [ti¼1, 2, ..., hifc<#iti>

iti g is PHFD of the ith financial prod-
uct xi and calculated based on the above Algorithm 1, c

<#iti>

iti is the ti
th return of xi

with an occurrence probability of #iti , citi 2 ½0, 0:1�, #iti 2 ½0, 1�, Phi
ti¼1 #iti ¼ 1 , Sik

ðk ¼ 1, 2, . . . , nÞ are the share prices for nþ 1 consecutive trading days of the ith

financial product xi, ½�� is the integer operation,hi is the number of the same value of
hi, wi is the investment ratio for the ith financial product, and i ¼ 1, 2, . . . ,m:

Based on this method, the min-score values of investors with different risk appe-
tites can be obtained. According to the investors’ risk appetites, we can further calcu-
late the acceptable min-score degrees of the three types of risk investors as follows:
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SA ¼ minSf�g þ 0 maxSf�g �minSf�g½ �=3	 
 ¼ minSf�g,

SN ¼ minSf�g þ 1 maxSf�g �minSf�g½ �=3	 

,

and

SS ¼ minSf�g þ 2 maxSf�g �minSf�g½ �=3	 

:

Then, we have SS � SN � SA: This is obviously reasonable. Therefore, we can also
provide quantitative presentations for the three types of risk investors based on the
above calculations.

It can be found that Model 3 is proposed to obtain the maximum returns under
the condition of taking acceptable risks; however, Model 4 is further developed to
take the minimum risks under the condition of obtaining acceptable returns. Thus,
we propose two different RPHPS models to calculate the optimal investment ratios
for risk investors. In the next section, we provide an empirical study based on the
real financial background that demonstrates the applicability and feasibility of the
proposed portfolio selection models.

5. Empirical study

5.1. Example and calculations

Example 3. An investor wants to invest $1,000,000 in some stocks of the Shenzhen
Stock Exchange and Shanghai Stock Exchange in China. Four stocks fx1, x2, x3, x4g
are taken into consideration, namely Guangji Pharm. x1 (GJP, code: 000952),
Zhongheng Group x2 (ZHG, code: 600252), Jiaoda Onlly Co. x3 (JOC, code: 600530),
and Qianjiang Biological x4 (QJB, code: 600796). To make a reasonable and effective
investment decision, the investor collects the share prices of the four stocks GJP x1,
ZHG x2, JOC x3, and QJB x4 from June 15th to June 30th, which are shown in
Table 2. The investor thinks both the share returns and their occurrence probabilities
are important and should be considered in his/her investment selection process.
Therefore, the proposed models in this paper could be more suitable than the trad-
itional portfolio selection models and the corresponding calculation methods are
as follows:

First, we use Algorithm 1 to transform the share prices in Table 2 into PHFD.
Then, we can get four PHFD below:

Table 2. The share prices of four stocks in Example 3.
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

GJP x1 8.47 8.45 8.83 9.46 9.12 8.91 8.84 8.83 8.70 8.53 8.50
ZHG x2 3.19 3.25 3.26 3.34 3.30 3.26 3.24 3.25 3.22 3.18 3.22
JOC x3 2.79 2.76 2.80 2.83 2.86 2.84 2.80 2.80 2.79 2.78 2.81
QJB x4 5.31 5.30 5.35 5.43 5.36 5.37 5.37 5.35 5.23 5.21 5.24

Source: public data of China’s stock markets (www.wind.com.cn).
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h1 ¼ f0:03<0:2>, 0:04<0:6>, 0:07<0:1>, 0:08<0:1>g, h2 ¼ f0:04<0:5>, 0:05<0:4>, 0:06<0:1>g,

h3 ¼ f0:04<0:5>, 0:05<0:5>g, and h4 ¼ f0:03<0:1>, 0:04<0:4>, 0:05<0:5>g:
We can find that there are 4� 3� 2� 3 ¼ 72 possible elements in the operation

results �4
i¼1wihiðc<#iti>

iti Þ: Furthermore, we can calculate and obtain its presentation as

�4
i¼1wihiðc<#iti>

iti Þ ¼ [
t1¼1, 2, 3, 4, t2¼1, 2, 3, t3¼1, 2, t4¼1, 2, 3

1�
Y4

i¼1
ð0:1�c

<#iti>

iti Þwi

n o

¼

1�ð0:1�0:03<0:2>Þw1 � ð0:1�0:04<0:5>Þw2 � ð0:1�0:04<0:5>Þw3 � ð0:1�0:03<0:1>Þw4 ,
1�ð0:1�0:03<0:2>Þw1 � ð0:1�0:04<0:5>Þw2 � ð0:1�0:04<0:5>Þw3 � ð0:1�0:04<0:4>Þw4 ,
1�ð0:1�0:03<0:2>Þw1 � ð0:1�0:04<0:5>Þw2 � ð0:1�0:04<0:5>Þw3 � ð0:1�0:05<0:5>Þw4 ,

� � � � � �
1�ð0:1�0:08<0:1>Þw1 � ð0:1�0:06<0:1>Þw2 � ð0:1�0:05<0:5>Þw3 � ð0:1�0:03<0:1>Þw4 ,
1�ð0:1�0:08<0:1>Þw1 � ð0:1�0:06<0:1>Þw2 � ð0:1�0:05<0:5>Þw3 � ð0:1�0:04<0:4>Þw4 ,
1�ð0:1�0:08<0:1>Þw1 � ð0:1�0:06<0:1>Þw2 � ð0:1�0:05<0:5>Þw3 � ð0:1�0:05<0:5>Þw4

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(10)

Based on the above results and the objective function in Model 1, we have

S [ t1 ¼ 1, 2, . . . , h1, t2 ¼ 1, 2, . . . , h2,
� � � , tm ¼ 1, 2, . . . , hm

1�Qm
i¼1 ð0:1�c

<#iti>

iti Þwi

n o( )

¼ 1�0:0050 � 0:07w1 � 0:06w2 � 0:06w3 � 0:07w4�

0:0200 � 0:07w1 � 0:06w2 � 0:06w3 � 0:06w4�0:0250 � 0:07w1 � 0:06w2 � 0:06w3 � 0:05w4�

� � � � � � �0:0005 � 0:02w1 � 0:04w2 � 0:05w3 � 0:07w4�

0:0020 � 0:02w1 � 0:04w2 � 0:05w3 � 0:06w4�0:0025 � 0:02w1 � 0:04w2 � 0:05w3 � 0:05w4 (11)

To derive the optimal investment ratios for the investor who wants to get the max-
imum return, Model 1 can be selected to calculate the optimal investment ratios as
w1 ¼ 0:3353, w2 ¼ 0:6647, w3 ¼ 0, and w4 ¼ 0: Therefore, if an investor wants to
invest $1,000,000 in these four stocks fx1, x2, x3, x4g, the corresponding investment
distributions are $335,300 $664,700 $0, and $0 respectively. Thus, this investor can
get the maximum return under the PHFD environment. The results also prove the
feasibility of the proposed model.

Similarly, to obtain the optimal investment ratios for the investor who wants to
take the minimum risk, Model 2 can be selected to calculate the optimal investment
ratios as w1 ¼ 0:0289, w2 ¼ 0:2480, w3 ¼ 0:4478, and w4 ¼ 0:2753: Thus, if an
investor wants to invest $1,000,000 in these four stocks fx1, x2, x3, x4g, the corre-
sponding investment distributions are $28,900 $248,000 $447,800 and $275,300
respectively. Thus, this investor can take the minimum risk under the PHFD
environment.
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The above calculations are suitable for general investors. Considering risk appe-
tites, the RPHPS models are further used to make investment decisions for the three
types of risk investors. The calculation processes are given as follows:

First, the RPHPS model, namely Model 3, is used.
Based on Example 3 and Eq. (7), we can get minDf�g ¼ 0:0043 when w1 ¼

0:0289, w2 ¼ 0:2480, w3 ¼ 0:4478, and w4 ¼ 0:2753, and maxDf�g ¼ 0:0073 when
w1 ¼ 0, w2 ¼ 0, w3 ¼ 0 and w4 ¼ 1:

According to the deviation trisection approach (Zhou & Xu, 2018), we can obtain
the acceptable max-deviation degrees of the three risk investors: DS ¼ 0:0072, DN ¼
0:0063 and DA ¼ 0:0053:

1. For a risk seeker, we have DS ¼ 0:0073: Then, U3ðWÞ ¼ maxSf�g ¼ 0:9497 when
w1 ¼ 0:2974, w2 ¼ 0:7026, w3 ¼ 0, and w4 ¼ 0: These weight values are also the
optimal investment ratios for the risk seeker. Therefore, this investor should
invest $949,700 $297,400 $0, and $0 in the four stocks fx1, x2, x3, x4g respectively.

2. For a risk-neutral investor, we have DN ¼ 0:0063: Then, U3ðWÞ ¼ maxSf�g ¼
0:9496 when w1 ¼ 0:1820, w2 ¼ 0:8069, w3 ¼ 0:0111, and w4 ¼ 0: Obviously,
these weight values are also the optimal investment ratios for the risk-neutral
investor. Therefore, this investor should invest $182,000 $806,900 $11,100 and $0
in the four stocks fx1, x2, x3, x4g respectively.

3. For a risk averter, we have DA ¼ 0:0053: Then, U3ðWÞ ¼ maxSf�g ¼ 0:9493
when w1 ¼ 0:1425, w2 ¼ 0:6731, w3 ¼ 0:1423, and w4 ¼ 0:0421: These weight
values are also the optimal investment ratios for the risk averter. Therefore, this
investor should invest $142,500 $673,100 $142,300 and $42,100 in the four stocks
fx1, x2, x3, x4g respectively.

The above calculation process illustrates the effectiveness and feasibility of Model 3
and Eq. (7). It is found that the optimal investment ratios for general investors and
the three types of risk investors are different. Then, it is necessary to introduce
investors’ risk appetites to the investment decision-making process.

Second, we further use another RPHPS model, namely Model 4, as follows:
Based on Example 3 and Eq. (9), we can get minSf�g ¼ 0:9472 and maxSf�g ¼

0:9496: Thus, we can conclude that the acceptable min-score degrees for the three
types of risk investors are SS ¼ 0:9488, SN ¼ 0:9472, and SA ¼ 0:9472:

1. For a risk seeker, we have SS ¼ 0:9488: Then, U4ðWÞ ¼ minDf�g ¼ 0:0050 when
w1 ¼ 0:0918, w2 ¼ 0:4876, w3 ¼ 0:2757, and w4 ¼ 0:1449: Therefore, this
investor should invest $91,800 $487,600 $275,700 and $144,900 in the four stocks
fx1, x2, x3, x4g respectively.

2. For a risk-neutral investor, we have SN ¼ 0:9480: Then, U4ðWÞ ¼ minDf�g ¼
0:0044 when w1 ¼ 0:0289, w2 ¼ 0:2480, w3 ¼ 0:4478, and w4 ¼ 0:2753: As a
result, this investor should invest $28,900 $248,000 $447,800 and $275,300 in the
four stocks fx1, x2, x3, x4g respectively.

3. For a risk averter, we have SA ¼ 0:9472: Then, U4ðWÞ ¼ minDf�g ¼ 0:0044
when w1 ¼ 0:0918, w2 ¼ 0:4876, w3 ¼ 0:2757, and w4 ¼ 0:1449: Then, this
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investor should invest $91,800 $487,600 $275,700 and $144,900 in the four stocks
fx1, x2, x3, x4g respectively.

As a result, different investment suggestions are provided for general investors and
the three types of risk investors based on their risk appetites. This conclusion also
shows the necessity of developing the RPHPS models based on the PHPS models.

5.2. Further analysis and comparison

Figure 1 shows the calculation results of Models 1 and 3. Figures 2–5 fully present
the share prices of the four stocks including the studied data. From Figures 2–5, we
can find that each Part I provides the share price trend of the four stocks from June
15th to June 30th and each Part II illustrates the share price trend of the four stocks
from July 1st to August 14th. Based on these figures, further comparisons are derived
as below:

1. Figure 1 clarifies that the optimal investment ratios for general investors and the
three types of risk investors based on the Model 1 are different.

2. According to Figure 1, it is reasonable for general investors to invest more
money in ZHG x2 and put the remaining investment in GJP x1: In this way, gen-
eral investors can obtain the maximum returns. Meanwhile, the share prices of
ZHG x2 and GJP x1 from June 15th to June 30th further prove this conclusion.
Therefore, it is suitable for general investors to select these two stocks to obtain
the maximum return.

3. Compared with the three types of risk investors in Figure 1, a risk seeker invests
all of the money on GJP x1 and ZHG x2: A risk-neutral investor puts the most

Figure 1. The comparison of optimal investment ratios of investors in Example 3. Source: public
data of China’s stock markets (www.wind.com.cn)
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Figure 2. The share prices of GJP. Source: public data of China’s stock markets (www.wind.com.cn)

Figure 3. The share prices of ZHG. source: public data of China’s stock markets (www.wind.com.cn)

Figure 4. The share prices of JOC. Source: public data of China’s stock markets (www.wind.com.cn)
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funds in ZHG x2 and diversifies other funds into GJP x1 and JOC x3: A risk
averter gives more than half of the money to ZHG x2 and puts the rest to the GJP
x1, JOC x3, and QJB x4: From Part I of Figures 2–5, we can find that the returns
of GJP x1 and ZHG x2 are larger than those of JOC x3 and QJB x4, indicating
that they have greater risks and higher returns. Therefore, GJP x1 and ZHG x2
would be preferred by risk seekers. For a risk averter, Part I of Figure 3 shows an
upward trend in the early and later stages. Therefore, the risk of ZHG x2 is small
and it could be the priority for risk averters. Additionally, a risk averter invests
remaining funds in GJP x1, JOC x3, and QJB x4 at different investment ratios.
Obviously, these conclusions are consistent with investors’ risk appetites.

4. Each Part II of Figures 2–5 demonstrates the feasibility of the models proposed
so that investors’ decisions can be made based on the optimal investment ratios.
The explanations are given as follows: for a general investor, the share prices of
GJP x1 and ZHG x2 are on the rise, which can bring greater returns. It is wise to
invest all the money in stock GJP x1 and ZHG x2 in the early stage. For a risk
seeker, although the share prices of GJP x1 and ZHG x2 fluctuate, the overall
trends are still rising. They have greater risks and higher returns which is consist-
ent with the investor’s risk appetite. For a risk averter, the share prices of GJP
x1, ZHG x2, JOC x3, and QJB x4 have different upward trends. Therefore, it is
reasonable to invest different ratios of money in the four stocks. Therefore, the
investor can diversify risks, which is also in line with their investment appetites.

The calculation results of the PHPS and RPHPS models in Models 1 and 3 are fur-
ther analyzed and presented by Figures 1–5, which proves that the conclusions and
models are reasonable.

6. Conclusions

In practical investment decision makings, investors generally pay attention to three
aspects of financial products, namely mean, variance and return. However, the return
frequency is significant but they are not taken into account. To address this issue,

Figure 5. The share prices of QJB. Source: public data of China’s stock markets (www.wind.com.cn)
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this paper has developed the transformation algorithm and defined PHFD. PHFD can
consider returns and their occurrence probabilities simultaneously. Besides, to model
PHFD and calculate the optimal investment ratios, we have proposed the PHPS and
RPHPS models. Based on the maximum-score function or the minimum-deviation
function, two PHPS models have been developed to help general investors get the
optimal investment ratios. Furthermore, we have proposed the RPHPS models to
obtain the optimal investment ratios for the three types of risk investors. Finally, we
have provided an empirical study that focuses on four real stocks in China’s stock
markets. Under this real background, the feasibility of the proposed models in invest-
ment decision makings has been verified.

There are three main contributions in this paper in terms of economics and finance
theoretical development as well as practical implications: (1) This paper has developed
the transformation algorithm and defined the PHFD, which can simultaneously present
the returns of financial products and their occurrence probabilities. (2) This paper has
further proposed the PHPS and RPHPS models based on PHFD to obtain the optimal
investment ratios for general investors and investors with different risk appetites
respectively. (3) This paper has applied the proposed models to an empirical study and
proved the models’ feasibility and effectiveness in practical applications.

However, it should be pointed out that there are still some limitations in the pro-
posed portfolio selection models and their application process. For example, although
the proposed models can make investment decisions more effectively in the PHFD
environment, they are possibly ineffective in the big data environment. Therefore,
how to improve these new models to deal with the financial big data is our future
research direction.
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