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It is shown that the coefficients Ak of angles θk, corresponding to the minima
of light intensity in the diffraction by a circular aperture, can successfully be de-
scribed by a function which appears in the electrostatic interaction energy between
two uniform surface-charged spheres. The coefficient Ak defines the angle θk by
sin θk = Akλ/d, k = 1, 2, 3, . . . , where λ is the wavelength of light and d is the
diameter of the aperture. These coefficients may be correlated with a dimensionless
function fb/R, encountered in the relation of the interaction energy terms of two
spheres of equal radii R, with uniformly-distributed surface charges q and q′ and at
a mutual distance b. The total interaction energy, i.e. the Coulomb potential energy,
is W = qq′/(4πε0b), where ε0 is the permitivity of vacuum. This energy contains
two terms, a positive one W (+) = Wfb/R and negative one W (−) = W (1 − fb/R).
The correlation between Ak and the function fb/R is given by Ak −k = u+vfb/R,k,
where u and v are constants. Coefficients Ak obtained by this correlation agree
with those defined by the diffraction method within an error of 10−3% at k = 1,
and gradually diminishing to 10−4% at k = 10.

PACS numbers: 42.25.Fx, 41.20.Cv UDC 535.42

Keywords: circular aperture, diffraction minima, two uniformly charged spheres, electro-

static interaction energy, positive and negative part of Coulomb potential energy, corre-

lation

1. Introduction
A correlation of the electrostatic interaction energy of various systems with

the intrinsic quantized redshift of quasars was found recently [1]. The electrostatic

FIZIKA A (Zagreb) 10 (2001) 4, 141–154 141



paar et al.: Correlation between diffraction of light by circular . . .

systems studied were two uniformly charged spheres of equal radii R at a mutual
distance b, a point charge and uniform infinite line charge, two parallel uniform
infinite line charges and two parallel infinite uniformly charged planes. Similar
exponential functions describe quite different phenomena, which, at the first sight,
appear unrelated. The functions have the form zn = K1F

n − 1 for redshift and
Nk = K2F

k for the characteristic coefficients of the interaction energy for the
electrostatic systems considered. K1 and K2 are constants and n and k are integer
numbers. Both functions have nearly the same value of factor F ≈ 1.23. These
results are an indication that these diverse systems are subjected to analogous
physical laws.

It was also shown that some other systems may be characterized by the same
factor F , which appears in the power law, as, for example, in gravitational systems
ms = K3M

F , where ms is the mass of all satellites which orbit around the central
mass M [2]. Similarly, the atomic A − Z correlation was found to be of the form
A = αZβ [2–5], where A is the atomic weight, Z atomic number, and α is constant,
while the parameter β is presumably

√
F [2].

In this work we extend the investigation to the relation of the interaction energy
between two charged spheres [1] with the diffraction of light by a circular aperture.

2. Diffraction by a circular aperture
The theory of diffraction of light by a circular aperture is well-known. Only a

brief outline is given here. The intensity of diffracted light at an angle θ to the
normal to the aperture, is given by [6],

I(θ) ∝ π2r4

(
J1(2m)

m

)2

, (1)

where J1(2m) is the Bessel function of the first kind of the order unity, r is the
radius of the aperture and m is a parameter defined by

m =
πr sin θ

λ
, (2)

where λ is the wavelength of light. The minimum of intensity at an angle θ is
determined by J1(2m)/m = 0, and the minima are given by the following values
of m: 1.916, 3.508, 5.087, 6.662,... Consequently, the dark fringes, or dark circles,
occur at the value of θ given by

sin θ = 1.220
λ

d
, 2.233

λ

d
, 3.238

λ

d
, 4.241

λ

d
, . . . (3)

If k is defined as an integer number corresponding to a dark circle, then Eqs. (3)
may be written in the form

sin θk = Ak
λ

d
(4)
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with k = 1, 2, 3, ...,∞. Thus, the associated coefficients Ak are:

(1 + 0.220), (2 + 0.233), (3 + 0.238), (4 + 0.241), ....

or generally

Ak = (k + Ck) , (5)

where Ck = (2mk/π) − k. The subscript k is added to the value of m.

The limiting value C∞ = 0.25 is obtained for k = ∞. Thus, according to Eqs.
(3–5), it follows that Ck + 1 = 1.220; 1.233; 1.238; 1.241; . . . 1.25.

A new dimensionless quantity may be introduced

∆Ck = Ck − C1 =
2(mk − m1)

π
− (k − 1) . (6)

The integer numbers k and numerical values of mk, Ak, Ck and ∆Ck are given in
Table 1. The ∆Ck dependence on k is also shown in Fig. 1. The required data for
m (now denoted by mk) are taken from Ref. [7].
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k

k   integer number

Fig. 1. Dimensionless quantity ∆Ck = Ck − C1, defined by Eq. (6), as a function
of integer number k (the order of dark circle).
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TABLE 1. Data for minima of diffraction by a circular aperture: k - order of dark
circle, m = mk - parameter defined by Eq. (2), Ak - coefficient in Eq. (4) for the
diffraction angle θk, Ck - quantity defined by Eq. (5), ∆Ck - quantity defined by
Eq. (6).

k mk Ak = 2mk/π Ck = 2mk/π − k ∆Ck = Ck − C1

1 1.91586 1.21967 0.21967 0.00000
2 3.50779 2.23313 0.23313 0.01346
3 5.08674 3.23832 0.23832 0.01865
4 6.66185 4.24106 0.24106 0.02139
5 8.23532 5.24276 0.24276 0.02309
6 9.80793 6.24392 0.24392 0.02425
7 11.38004 7.24476 0.24476 0.02509
8 12.95184 8.24539 0.24539 0.02572
9 14.52342 9.24589 0.24589 0.02622

10 16.09484 10.24629 0.24629 0.02662
11 17.66616 11.24662 0.24662 0.02695
12 19.23739 12.24690 0.24690 0.02723
13 20.80855 13.24713 0.24713 0.02746
14 22.37966 14.24733 0.24733 0.02766
15 23.95073 15.24751 0.24751 0.02784
16 25.52177 16.24766 0.24766 0.02799
17 27.09278 17.24780 0.24780 0.02813
18 28.66377 18.24792 0.24792 0.02825
19 30.23473 19.24803 0.24803 0.02836
20 31.80568 20.24812 0.24812 0.02845

∞ ∞ ∞ 0.25000 0.03033

3. Interaction energy between two uniformly charged
spheres

Consider now uniform charge distributions in vacuum, on surfaces of two spheres
of equal radii R, with charges q and q′ and a centre-to-centre distance b. The charges
are fixed in order to avoid polarization effects. It is well-known that the energy WV

of the electric field E in a volume V is given by [8]

WV =
ε0
2

∫
E2dV , (7)

where ε0 is the permitivity of vacuum. The resultant electric field Er of the two
charged spheres, at a given point of space, is given by

E2
r = E2 + E′2 + 2EE′ cos θ0 . (8)
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Fig. 2. Regions of positive (+) and negative (–) interaction energy between two
uniform spherical charge distributions of radii R and centre-to-centre distance b.
Positive charges q and q′ produce electric fields E and E′ at distances r and r′,
respectively. The negative energy is confined within the sphere of radius b/2, with
the central point midway between the centres of the spheres.

The symbols are indicated in Fig. 2. Energy of the electric field, from Eqs.(7) and
(8), is now

WV =
ε0
2

∫
E2dV +

ε0
2

∫
E′2dV + ε0

∫
EE′ cos θ0dV . (9)

The first two terms are the self-energies of charges q and q’ and the third term is
the interaction energy which may be written as

W =
1
2

qq′

4πε0

∫
sin θ dθ

∫
(r − b cos θ)dr

(b2 − 2rb cos θ + r2)3/2
. (10)

Integration of Eq. (10) over all space gives the well-known Coulomb potential en-
ergy W = qq′/(4πε0b). However, Eq. (10) contains two terms: a positive one, W (+)

and a negative one, W (−). It is due to the factor cos θ0 which is negative within the
sphere of radius b/2, with charges q and q′ located at the poles of that sphere, while
it is positive outside that sphere. Details of the calculation may be found in Ref.
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Fig. 3. Dimensionless function fb/R = W (+)/W , defined by Eq. (11), as a function
of b/R, where b is the distance between two charged spheres, both of radius R (see
Fig. 2).

[1]. Here we give the final expressions

W (+) =
qq′

4πε0b


1

2
+

b

R
− π

4
+ arcsin

√
1 −

(
R

b

)2

−
√(

b

R

)2

− 1


 = Wfb/R ,

(11)
W (−) = W (1 − fb/R) . (12)

The dependence of the function fb/R on b/R is shown in Fig. 3. For b/R = 2, the
spheres are in contact. For b/R → ∞, the charged spheres may be considered as
point charges; then, Eqs.(11) and (12) reduce to [1]

W
(+)
b/R,∞ =

(
1
2

+
π

4

)
W = (1.28539816 . . .)W , (13)

W
(−)
b/R,∞ =

(
1
2
− π

4

)
W = (−0.28539816 . . .)W . (14)

It is shown in Ref. [1] that the coefficient 0.28539816... may be expressed as F (F −
1), resulting explicitly in the factor F = 1

2 (1 +
√

π − 1) = 1.2317... ≈ 1.23.
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4. Normalization procedure
Although the properties of diffraction of light by an aperture, defined, e.g., by

Eq. (6), and those of the interaction energy between two charged spheres, given by
Eq. (11), have not evidently a formal mathematical analogy, an inspection of graphs
in Fig. 1 and Fig. 3, where b/R is analogous to k, and fb/R to ∆Ck, respectively,
indicate a probable similarity. It suggests that discrete points in Fig. 1, properly
normalized, could be fitted to the curve in Fig. 3.

For the comparison, one has to determine the step ∆(b/R) which will be com-
patible with the step ∆k = 1. This means that for the equidistant distribution
of points along the k-axis in Fig. 1, one should find also equidistant values of the
analogous quantity b/R in Fig. 3, within the interval where analogous functions
exist. It is evident that the boundary values are:

∆C1 = 0 at k = 1 and ∆C∞ = 0.03033 at k = ∞
fb/R,2 = 1.02975 at b/R = 2 and fb/R,∞ = 1.28540 at b/R = ∞ .

Thus, one should obtain the normalized quantity ∆C ′
k = fb/R,k, including the

boundary values, i.e.

∆C ′
∞ = fb/R,∞ = fb/R,2 + p∆C∞ , (15)

or
1.28540 = 1.02975 + p 0.03033 .

It determines the value of the normalization factor p = 8.42888, resulting in

∆C ′
k = 1.02975 + 8.42888∆Ck . (16)

The values of k and ∆C ′
k are listed in Table 2, columns 1 and 2.

Now, it is possible to find relationship between the quantities k and b/R. For
k = 1, an equivalent boundary value is (b/R)1 = 2. For k > 1, it is expected that

(b/R)k = (b/R)1 + (k − 1)∆(b/R) . (17)

For example, at k = 20, using Eqs. (16) and (11),

∆C ′
20 =1.26955 =


1

2
+

b

R
− π

4
+arcsin

√
1 −

(
R

b

)2

−
√(

b

R

)2

− 1


= fb/R,20.

This equation has to be solved numerically for b/R. It turns out to be (b/R)20 =
31.564, and it follows that (b/R)20 = (b/R)1 + (20 − 1)∆(b/R) = 2 + 19∆(b/R) =
31.564. This defines ∆(b/R) = 1.556 as an approximate value, and

(
b

R

)
k

= 2 + 1.556(k − 1) . (18)
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TABLE 2. Data for the normalized quantity ∆C ′
k and the associated value fb/R,k:

k - order of dark circle, ∆C ′
k - dimensionless quantity defined by Eq. (16), (b/R)k

defined by Eq. (18), fb/R,k - value defined by Eqs. (11) and (18), fb/R,k (last
column) - value defined by Eq. (11) at (b/R)k = mk (see Table 1).

k ∆C ′
k (b/R)k fb/R,k fb/R,k

((b/R)k = mk)
1 1.02975 2.000 1.02975 1.01794
2 1.14320 3.556 1.14384 1.14187
3 1.18695 5.112 1.18727 1.18678
4 1.21004 6.668 1.21027 1.21020
5 1.22437 8.224 1.22452 1.22461
6 1.23415 9.780 1.23423 1.23437
7 1.24123 11.336 1.24126 1.24143
8 1.24654 12.892 1.24659 1.24677
9 1.25076 14.448 1.25078 1.25096

10 1.25413 16.004 1.25414 1.25432
11 1.25691 17.560 1.25692 1.25709
12 1.25927 19.116 1.25923 1.25940
13 1.26121 20.672 1.26120 1.26136
14 1.26289 22.228 1.26290 1.26305
15 1.26441 23.784 1.26437 1.26452
16 1.26567 25.340 1.26566 1.26580
17 1.26685 26.896 1.26681 1.26694
18 1.26787 28.452 1.26782 1.26795
19 1.26879 30.008 1.26874 1.26886
20 1.26955 31.564 1.26955 1.26967

∞ 1.285398 ∞ 1.285398 1.285398

The values of (b/R)k and fb/R,k are given in Table 2, columns 3 and 4, respectively,
together with ∆C ′

k, column 2, calculated from Eq.(16). The dependence of the
function fb/R on b/R (solid curve) and of ∆C ′

k on k, for ∆k = 1 (open circles), is
shown in Fig. 4. Standard deviation of the points from the curve is 0.00015.

The values of (b/R)k in Table 2, column 3, are very close to the values of mk

in Table 1, column 2. Therefore, one may use mk as a very good approximation
of (b/R)k, and calculate the corresponding values of fb/R,k using Eq.(11). They
are listed in Table 2, column 5. However, the standard deviation increases now to
0.0013, because the first point in the graph deviates significantly. Without that
point the deviation is 0.00023.
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Fig. 4. Function fb/R versus b/R (solid curve, the same as in Fig. 3), with normal-
ized ∆C ′

k values (open circles) defined by Eq. (16). At the top of the diagram are
indicated the values of (b/R)k, corresponding to numbers k, according to Eq. (18).

5. Discussion and conclusion
We have shown that the coefficients Ak, defining the minima of intensity of

diffracted light by a circular aperture, may be expressed, according to Eqs. (3) and
(4), as in Eq. (5),

Ak = k + Ck, k = 1, 2, 3 . . . ,∞ .

The values of Ck = 2mk/π−k are limited to an interval (0.22, 0.25). The difference
∆Ck = Ck − C1 (Eq. (6)) depends on k (see Fig. 1) in a very similar way as the
function fb/R on b/R, appearing in the interaction energy between two charged
spheres (Eq. (11)) (see Figs. 2 and 3). ∆Ck has to be normalized to a new value
∆C ′

k, in order to achieve a numerical agreement with fb/R. Thus, one should have

∆C ′
k = fb/R,k , (19)

where fb/R,k is equal to fb/R at (b/R)k = 2+(k−1)∆(b/R), according to Eq. (17).
The above agreement is achieved by the following transformation

∆C ′
k = fb/R,2 + (fb/R,∞ − fb/R,2)

∆Ck

∆C∞
, (20)
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using Eq. (15). The final relationship of Ak, obtained from Eqs. (5) and (20), is

Ak = k + Ck = k + C1 +
fb/R,k − fb/R,2

fb/R,∞ − fb/R,2
∆C∞ , (21)

or
Ak − k = u + vfb/R,k , (22)

with

u = C1 −
fb/R,2

fb/R,∞ − fb/R,2
∆C∞ and v =

∆C∞
fb/R,∞ − fb/R,2

.

Equation (22) in numerical form reads

Ak = k + 0.09750 + 0.11864 fb/R,k . (23)

The correlation of calculated values of Ak, using Eq. (23), with those Ak determined
from the theory of diffraction is shown and listed in Fig. 5. The standard deviation
is only 0.00002.
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Fig. 5. Comparison of the values of coefficients Ak obtained by diffraction and those
calculated by Eq. (23). The table of numerical data is also shown.

However, if one prefers to use Eq. (22) in order to find the best fit to diffraction
data of the first 20 minima, then with Ak − k = Ck, the coefficients u and v may
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be determined regardless of the boundary values used above. Obviously, fb/R,k has
to be calculated at those values of (b/R)k which will ensure the lowest standard
deviation of coefficients u and v at the minimum of χ2 value. It means that the
optimum value of ∆(b/R) may be found by changing it around an approximate
value 1.556, used in Eq. (18). The minimum standard deviation of Ak, calculated
using Eq. (22), from the theoretical one, is obtained for ∆(b/R) = 1.5435, as can
be seen in Fig. 6. The new equation is

Ak = k + 0.097369 + 0.118762fb/R,k , (24)

reproducing the diffraction coefficient Ak with standard deviation of only 7×10−6.
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Fig. 6. Standard deviation (SD) of coefficients u and v in Eq. (22) and the χ2

values, as the results of the best fit of Ak for particular values of ∆(b/R). The
optimum value of ∆(b/R) = 1.5435 is determined from the minima of the curves.

From Eq. (24), with (Ak − k) = Ck (Eq. (5)), it follows that at k = ∞

fb/R,∞ = 8.420202C∞ − 0.819867 .

Due to C∞ = 0.25, it results in fb/R,∞ = 1.28540, equal to the coefficient of the
positive interaction energy term between two point charges defined by Eq. (13), as
it must be according to performed normalization procedure. Thus, 1 + F (F − 1) =
1.28540, i.e., F (F − 1) = 0.28540, leading again to F = 1.2317 ≈ 1.23, supports
the factor F also in the case of diffraction phenomena.
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It is instructive to consider a modified system of two uniformly charged spherical
distributions in which one of them is replaced by a point charge. The system is
treated in Ref. [1]. Here, it is sufficient to give the final results. The positive
interaction energy term is W (+) = (qq′/(4πε0b))fb/R, using the same symbols as
before. However, fb/R has now slightly different form when compared to that in
Eq. (11), i.e.,

fb/R =
1
2


1

2
+

b

R
+ arcsin

√
1 −

(
R

b

)2

−
√(

b

R

)2

− 1


 . (25)

Using again the boundary values:
∆C1 = 0 at k = 1 and ∆C∞ = 0.03033 at k = ∞

fb/R,1 = 1 at b/R = 1 and fb/R,∞ = 1.28540 at b/R = ∞
one obtains the normalization equation

∆C ′
k = 1 + 9.409759∆Ck . (26)

By using Eq. (26) at k = 20, one obtains ∆C ′
20 which has to be equal to fb/R,20 for

(b/R)20. Using Eq.(17), this value determines the step ∆(b/R) equal to 0.691.
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Fig. 7. The values fb/R versus b/R (solid curve) for the system of charged sphere
and a point charge, with normalized values ∆C ′

k (open circles). The optimum value
∆(b/R) = 0.645, corresponding to ∆k = 1, has been used.
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However, if Eq. (22) is used together with Ak − k = Ck, and all values Ck

are subjected to the fitting procedure, then the optimum value becomes ∆(b/R) =
0.6450. Using this optimum value, an agreement of ∆C′

k with fb/R,k is determined
at the same accuracy as that for the system of two uniformly charged spheres. The
associated points and the curve are presented in Fig. 7.

For two charged spheres, the corresponding optimum value is found to be
∆(b/R) = 1.5435. It is interesting to note that 1/1.5435=0.6479 is very close to
0.6450. Thus, the optimum values of ∆(b/R) are related by ∆(b/R)sphere−sphere ≈
1/∆(b/R)sphere−point, for the electrostatic systems of two charged spheres and a
charged sphere and a point charge. At present, there is no explanation for that
correlation, and it may be just a coincidence. Moreover, if the values of ∆(b/R)
are determined by the values associated to k = 20 for both systems, then 1.556 is
not close to 1/0.691=1.447. However, from the physical point of view, the optimum
values are more acceptable, because the intensity of bright circles of diffracted light
falls off very quickly with increasing order of diffraction. The central bright spot
contains 84% of the light flux incident on the aperture, the first bright circle only
1.74%, the second 0.41%, etc. In this way, 20 bright circles (or dark circles) are
sufficient to be included in the first approximation for the calculations presented
in this work. Of course, it should be pointed out that deeper physical reasons for a
correlation of diffraction of light by a circular aperture and the interaction energy
of electrostatic systems still remain to be revealed. Investigations in that direction
are in course.
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POVEZANOST OGIBA SVJETLOSTI KRUŽNIM OTVOROM I ENERGIJE
MED– UDJELOVANJA DVIJU BLIZIH NABIJENIH KUGLI

Pokazuje se da se koeficijenti Ak kutova θk, koji odgovaraju minimumima jakosti
svjetlosti u difrakciji na kružnom otvoru, mogu uspješno opisati funkcijom koja se
javlja u elektrostatskoj energiji med–udjelovanja izmed–u dviju jednoliko površinski
nabijenih kugli. Koeficijent Ak odred–uje kut θk relacijom sin θk = Akλ/d, k =
1, 2, 3, . . . , gdje je λ valna duljina svjetlosti a d promjer otvora. Ti se koeficijenti
mogu povezati s bezdimenzijskom funkcijom fb/R, koja se javlja u izrazu za energiju
med–udjelovanja dviju kugli jednakih polumjera R, naboja q i q′, a nalaze se na uda-
ljenosti b. Ukupna energija med–udjelovanja, tj. Coulombova potencijalna energija,
iznosi W = qq′/(4πε0b), gdje je ε0 permitivnost vakuuma. Ta energija sadrži dva
dijela, pozitivan W (+) = Wfb/R i negativan W (−) = W (1 − fb/R). Povezanost Ak

i funkcije fb/R dana je relacijom Ak − k = u + vfb/R,k, gdje su u i v konstante.
Koeficijenti Ak dobiveni tom relacijom slažu se s onima odred–enim difrakcijom uz
odstupanje od 10−3% za k = 1 koje se postupno smanjuje na 10−4% za k = 10.
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