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Propagation of transverse waves is studied in a Vlasov plasma consisting of a mix-
ture of free electrons, weakly bound electrons, free static ions and static ions asso-
ciated with the bound electrons, maintaining macroscopic charge neutrality. The
dependence on temperature of the phase velocity, group velocity and Thomson
scattering cross-section have been investigated. Lagrangian and the Hamiltonian of
a compressible plasma having bound electrons in the fluid mixture approximation
have been discussed.
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1. Introduction

To find the linear polarization of a medium, in the classical study, electrons are
regarded as charged particles harmonically bound to their nuclei [1]. The valence
electrons of an atom are bound by the Coulomb field of ionic cores. For large devia-
tion from equilibrium the anharmonicity of the electron oscillators had been used by
Rayleigh [2] to explain nonlinearities in acoustic resonators. The classical study of
nonlinear distortions in the path of an electron, caused by strong electromagnetic
(EM) radiation, was used by Bloembergen [3,4] for analysing the electrons har-
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monically bound to their respective nuclei and to determine the nonlinear optical
properties of atoms in the dielectric medium. The existing fluid and kinetic models
for dynamics of plasmas are based on the collective effects of free electrons and
bound electrons are not taken into consideration. However, the particle dynamics
exists both for free electrons and bound electrons in the presence of an electro-
magnetic wave. The polarization concepts are important in the classical physics of
bound electrons. When the presence of a population of bound electrons in a popula-
tion of free electrons is taken into account, a different, more realistic response of the
plasma to different kinds of perturbations is obtained, than if plasma is regarded
as free from the bound electrons [5].

The manuscript is organized in the following way. In Sect. 2, the basic equations
of the Vlasov-plasma kinetic theory, including the evolution equations for the bound
electrons and free electrons in the phase space of position coordinates, velocity coor-
dinates and time are briefly discussed. The dispersion relation of a plane polarized
wave, having frequency ω and wave number ~k, in such a plasma, is determined
in Sect. 3. The phase velocity (vp) and the group velocity vg (energy transport
velocity), have been derived in Sect. 4 for the plane EM wave propagation as a
function of kinetic temperature and other parameters specifying the plasma and
the applied wave field. The temperature dependence of Thomson’s total scattering
cross-section has been considered in Sect. 5. In Sect. 6, the Lagrangian density
and the Hamiltonian density, in the presence of bound electrons and acoustic fields
of compressibility of all the plasma species, have been obtained. These yield the
equations of momentum transfer with the help of the Euler Lagrangian equations,
which follow from the application of the action principle on the Lagrangian density.

2. Basic equations of Vlasov plasmas including bound
electrons

In the small amplitude approximation, the field-induced average displacement
of a species of particles, per unit volume, at time t, from the pre-field position ~r is
denoted ~ξ. The displacement ~ξ(~r, t) should be finite and small. So, approximately,

~̇ξ(~r, t) = ~u(~r, t) , (1)

where the dot denotes the partial time derivative and ~u is the field-induced average
velocity. The displacement vector ~ξ(~r, t) is considered at par with the other field
vectors as a field variable, depending on time and the coordinates of the point of
application of the wave in the field-free plasma. The relation is valid separately for
each of the four components, so

~ξ = ~ξeb + ~ξef + ~ξib + ~ξif , (2)

~u = ~ueb + ~uef + ~uib + ~uif , (3)
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where the subscript ‘eb’ stands for the bound electrons, ‘ef’ for the free electrons,
‘ib’ for ions of bound electrons and ‘if’ for ions which have released all the free
electrons.

The plasma is taken to be unmagnetised, homogeneous and collision-free, in
which electrons are mobile and ions provide a static neutralizing charge background.
The self-consistent system of Vlasov equations for the plasma, including the distri-
bution function for the bound electrons, is

∂fl/∂t + (~v · ~∇r)fl +
{

(~Fl/ml) · ~∇v

}
fl = 0 , (4)

~∇× ~H =
1
c
(∂ ~D/∂t) +

4πe

c

∫∫∫
v

~v[fif + fib − fef − feb]d~v , (5)

~∇× ~E = −1
c
(∂ ~H/∂t) , (6)

~∇ · ~E = 4πe

∫∫∫
v

[fif + fib − fef − feb]dv , (7)

~∇ · ~B = 0 , (8)

where ~Fl is the force per unit mass acting on the different species, fl is the distri-
bution function of the l-th charged species and l = eb, ef, if or ib. ~E, ~B( ~H), ~D and
e are the electric field, the magnetic field, the electric displacement vector and the
charge of the electron, respectively.

This closed system of nonlinear integro-differential equations permits a variety of
solutions, which are linear, nonlinear, non-singular as well as singular. Longitudinal-
wave solutions would be Landau damped due to singularity at resonances. Here, for
simplicity, we consider the propagation in unmagnetised plasmas of a high frequency
and transverse wave of very small amplitude.

The distribution function of the charged species, fl, is the sum of the normal-
ized isotropic Maxwell velocity distribution function, f0

l (v2), and the space-time
dependent perturbed infinitesimally small distribution f

′
l [6],

fl(r, v, t) = N0
l (f0

l (v2) + f
′
l (z, v, t)) , (9)

where
f0
l (v2) = (ml/2πKBTl) exp(−mlv

2/2KBTl) , (10)

|fl(r, v, t)| >> |f ′
l (z, v, t)|, and Tl, ml, N0

l and KB are the kinetic temperature,
mass, equilibrium number density of the l-th species and the Boltzmann constant,
respectively.
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The Lorentz force for the bound electrons and free electrons and the binding
force of the bound electrons [7,8] are given by

~Feb = −e ~E − e(~̇ξeb × ~H)/c − mω2
0
~ξeb , (11)

~Fef = −e ~E − e(~̇ξef × ~H)/c , (12)

where ω0 is the classical or orbital frequency. In the absence of the magnetic field
~H, we have

~Feb = −e ~E − mω2
0
~ξeb , (11a)

~Fef = −e ~E , (12a)

and
~D = 4π~ε ~E . (13)

In the linear approximation, the polarization vector is

~ε = −eN0
eb

~ξeb . (14)

Equation (5) is replaced by the Ampère-Maxwell equation

~∇× ~H =
1
c
(∂ ~E/∂t) − 4πe

c

[∫∫∫
~vfebd~v +

∫∫∫
~vfefd~v

]
, (15)

where ~jb(= −e
∫∫∫

~vfebd~v) is the induced current of the bound electrons due to po-
larized atoms present in the plasma and ~jf (= −e

∫∫∫
~vfefd~v) is the induced current

of free electrons. The vectors ~ε (polarization) and ~D (electric displacement) are
the fields of the displacement of the bound charges in the classical concept of the
quantum mechanics of nonlinear polarization. The incident plane-polarized wave,
propagating along the z-direction (purely transverse), is

~E = (E0 exp(iθ), 0, 0) , (16)

where
θ = (k z − ωt) , (17)

and ω and k are the wave frequency and the wave number, respectively. The per-
turbed distribution function is

f
′
l = gl(v) exp(iθ) , (18)

where g(v) is its velocity-dependent amplitude factor. The displacement of bound
electrons, induced by the external incident field, is

~ξl = (ξ0 exp(iθ), 0, 0) . (19)
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3. Dispersion relation for a transverse wave

Taking curl of Eq. (6) and then using Eqs. (5) and (15), we obtained the relation

(
1
c2

Ë − E
′′
) =

4πe

c2

∂

∂t

[∫∫∫
vfebdv +

∫∫∫
vfefdv

]
, (20)

where the dot and the prime denote the partial time and the space derivative,
respectively. From the Vlasov Eq. (9), with the help of Eqs. (11a) to (12b) and
Eqs. (16) to (18), we get

geb(v) =
1

i(kvz − ω)

[
ω2

0ξ0 +
eE0

m

]
∂ f0

eb

∂vx
, (21)

gef(v) =
1

i(kvz − ω)

[
eE0

m

]
∂ f0

ef

∂vx
, (22)

where ω2
0ξ0 = χE0 and χ is the electrical susceptibility of this medium. On using

Eq. (18) and Eqs. (21) and (22) in Eq. (20), one obtains

(k2c2 − ω2) =
[{

ωω2
pb(1 +

mχ

e
)
∫∫∫

∂ F 0
eb

∂vx
vx

1
(kvz − ω)

dv

}

+
{

ωω2
pf

∫∫∫
∂ F 0

ef

∂vx
vx

1
(kvz − ω)

dv

}]
, (23)

where ωps [ = (4πN0
pse

2/m)1/2, s = b, f] is the plasma frequency and F 0
l = N0

l f0
l ,

l = eb, ef. Here, for simplicity, we consider the propagation of a high frequency,
transverse wave of infinitesimally small amplitude in unmagnetised plasma. Then
the wave phase velocity ω/k is large enough to make physically ineffective the
singularity at ω/k = vz for wave propagation parallel to the z-axis. The definite
integrals are determined by ignoring the resonance ω/k = vz for relativistic reasons.
In this case, expansion in positive integral powers of (kvz/ω) is permissible. By
expanding the factor (1/(kvz − ω) in the integral in powers of (kvz/ω), we obtain

1
kvz − ω

=
(
− 1

ω

)(
1 +

kvz

ω
+

k2v2
z

ω2

)
. (24)

Since the terms containing kinetic temperature T are less than 1 for the high-
frequency transverse wave, we keep only the terms up to the first power of T .
Therefore, we find from Eq. (23) by using Eqs.(10) and (24) that

∫∫∫
∂ F 0

eb

∂vx
vx

1
(kvz − ω)

dv =
(
− 1

ω

) (
1 +

k2KBTeb

ω2m

)
, (25)
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∫∫∫
∂ F 0

ef

∂vx
vx

1
(kvz − ω)

dv =
(
− 1

ω

) (
1 +

k2KBTef

ω2m

)
. (26)

From Eq. (23), by using Eqs. (24) to (26), we get the dispersion relation

ω2 − k2c2 − (ω2
pb + ω2

pf ) = [(k2/ω2)(Tebω2
pb + Tefω

2
pf )(KB/m)

+(mχω2
pb/e)

{
1 + (k2/ω2)(KBTeb/m)

}
] . (27)

The cut-off frequency is determined by putting k = 0 in Eq. (27). The expression
in Eq. (27) give the results obtained in the fluid approximation for each of these
species if we keep the terms of the first power and ignore completely those of higher
powers of the kinetic temperatures.

4. Phase velocity and group velocity

Rayleigh [2] defined the group velocity as the velocity of the envelope of a
beat constructed by two wave patterns; for two waves having a small difference
of frequencies it reduces to vg = ∂ω/∂k [9]. From the dispersion relation (27)
for transverse waves, we determine the phase velocity, vp = ω/k, and the group
velocity, vg. In an unmagnetised plasma in presence of bound electrons, including
the kinetic temperature effects and the radiation damping effect of charged species,
we find that

vp =
[ω2c2 + (Kb/m)(Tebω2

pb + Tefω
2
pf) + ω2

pbKbTeb(χ/e)]1/2

[ω2 − (ω2
pb + ω2

pf) − mω2
pbχ/e]1/2

, (28)

vg =
[ω2c2 + (Kb/m)(Tebω2

pb + Tefω
2
pf) + ω2

pbKbTeb(χ/e)]
[ω2vp + (Kb/mvp)(Tebω2

pb + Tefω2
pf + Tebω2

pbmχ/e)]
. (29)

The phase velocity for only free electrons is

vf
p =

[ω2c2 + (KbTef/m)ω2
pf ]

1/2

[ω2 − ω2
pf ]1/2

. (30)

The ratio of the two phase velocities is

(vp/vf
p) =

[ω2c2 + (Kb/m)(Tebω2
pb + Tefω

2
pf) + ω2

pbKbTeb(χ/e)]1/2

[ω2 − (ω2
pb + ω2

pf) − mω2
pbχ/e]1/2

× [ω2 − ω2
pf ]

1/2

[ω2c2 + (KbTef/m)ω2
pf ]1/2

. (31)
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When ωpb = ωpf and Teb = Tef , and the number density of bound electrons is
comparable to that of the free electrons, Eq. (31) gives

(vp/vf
p) =

[{
ω2c2 + (Kb/m)2Tefω

2
pf + ω2

pfKbTeb(χ/e)
} {

ω2 − ω2
pf

}]1/2

[{
ω2 − 2ω2

pf − mω2
pfχ/e

} {
ω2c2 + (KbTeb/m)ω2

pf

}]1/2
. (32)

If also mχ/e is small, Eq. (32) can be written as

(vp/vf
p) =

1 + 2g1

1 − 2g2
× 1 − g2

1 + g1
, (33)

where
g1 = KbTebω2

pf/mω2c2 and g2 = ω2
pf/ω2 . (34)

This shows that
vp >> vf

p , (35)

i.e., the presence of bound electron increases the phase velocity of the transverse
wave.

But if ωpf À ωpb, then from Eq. (32) we obtain

vp = vf
p , (36)

meaning that when the number density of free electrons is greater than the number
density of bound electrons, the phase velocity of the transverse wave due to bound
electrons is equal to the phase velocity of free electrons.

5. Temperature dependence of Thomson scattering

The Thomson scattering by free electrons in plasmas is obviously an energy loss
for waves. We derive the temperature dependence of the scattering formula in the
presence of the bound species. At a high frequency, the atoms emit radiation as
free particles [8], but in a low frequency limit, the incident frequency is not large
compared to the frequency of the binding. So, including the binding effect, we find
the total scattering cross-section. In a laser-irradiated plasma, from an over-dense
layer, this type of radiation cannot be neglected. For pulses of a finite duration,
they behave like quasi-free particles. The total radiated power from the Larmor
formula for non-relativistic charges, is

P =
2e2

3c3
< v̇eb >2 , (37)
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where < veb > is the average velocity of bound electrons in distorted atoms in a
very small, but finite time, induced by the applied field. From Eq. (21), the average
induced velocity, neglecting the small wave damping term, is

< veb >=
1

N0
eb

∫∫∫
vgebdv

= [iE0 exp(iθ) {χ + e/m}{
1 + (k2/ω2)(KBTeb/m)

}
] . (38)

By taking the time derivative of Eq. (38) and using Eq. (37), we get the real part
of the total power radiated by bound electrons in distorted atoms in the plasma,

< P >= (2e2ωE2
0/3c3)[{χ + e/m}{

1 + (k2/ω2)(KbTeb/m)
}
]2 . (39)

The total scattering cross-section, σt, is defined as the ratio of the total radiated
power and the total incident flux, which is obtained from the Poynting vector
averaged over the time period 2π/ω. Since < S >= c/8πnE2

0 ,

σt = (< P > / < S >)

= (16πe2ω/3nc4)[{(χ + e/m)}{
1 + (k2/ω2)(KbTeb/m)

}
]2 , (40)

where n(= kc/ω) is the refractive index of the medium.

6. Lagrangian and Hamiltonian of the system

In a plasma, the Lagrangian density provides information on the parameters of
the medium, the fields and their behaviour in terms of the mechanical energy, and
on the conserved properties of the system. The Hamiltonian density singles out the
time variables, in contrast to the Lagrangian function for which the independent
variables (time and space coordinates) are involved symmetrically. The Lagrangian
density for a mixture of compressible fluids of bound electrons and free electrons
in the presence of applied wave fields, both electro-magnetic and acoustic [10], is

L =

[∑
l

1
2

ml N
0
l ξ̈2

l +
1
c

∑
l

~A ·~jl − eφ − 1
2
N0

ebω2
0ξ2

eb +
1
8π

(E2 − H2)

−(C2
s /τ)

∑
l

Nl

]
, l = eb, ef . (41)

The usual field equations may be recovered by using this Lagrangian in the
Euler-Lagrangian equation of motion

∂

∂t
(
∂L

∂ξ̇
) − ∂L

∂ξ
= 0 (42)

128 FIZIKA A 11 (2002) 3, 121–130



chakraborty et al.: effects of bound electrons on the transverse waves . . .

The Hamiltonian density is then

H =

[∑
l

1
2

mi N0
l ξ̇2

l + eφ +
1
2
N0

ebω2
0ξ2

eb − 1
8π

(E2 − H2) − (C2
s /τ)

∑
l

Nl

]
, (43)

where A and φ are, respectively, the vector and scalar potentials of the EM field,
N is the perturbed number density, τ = cp/cv is the ratio of the specific heat
capacities and the other symbols have already been defined.

7. Discussion

The plasma models, including the bound electrons considered in our paper,
are more realistic and useful for laboratory and space plasmas than those of plas-
mas consisting of only free electrons. The cut-off frequency of the wave from the
dispersion relation Eq. (27) is found to increase due to the presence of bound elec-
trons, thermal effects and radiation damping. The existence of this cut-off frequency
should be experimentally verified for laboratory plasmas and also for ionospheric
plasmas. Equation (27) becomes the dispersion equation for transverse waves in a
cold, free-electron plasma if we put Teb, Tef , χ and ωpb equal to zero. The phase
velocity, vp, of both species depends on their number density. If these two species
have the same number density, the phase velocity of free electrons, vf

p, is less than
the phase velocity of the transverse wave, vp. But for a small number density of
bound electrons, compared to that of free electrons, the phase velocity of free elec-
trons is equal to the phase velocity of the transverse wave. The presence of bound
electrons enhances the phase velocity of the wave.

The total scattering cross-section, σt, for Thomson scattering has been obtained
from the kinetic theory of the plasma. Equation (40) shows that σt depends on the
characteristics of the binding force for Rayleigh-scattering susceptibility (dielectric
constant) and the temperature of the species. It varies parabolically with the tem-
perature. The rotational-energy term of the bound electrons and the acoustic-effect
terms of compressibility have been included in our Lagrangian and Hamiltonian
densities. The relativistic generalization of mathematical models of plasma con-
taining a population of bound electrons has not been considered, because of the
lack of knowledge on how to proceed after such an ad hoc inclusion of effects of
bound electrons.

8. Summary and concluding remarks

In the present paper, we have investigated the effects of bound electrons on the
propagations of transverse waves in a Vlasov plasma consisting of free electrons, free
ions, weakly bound electrons and ions. The dispersion relation of a plane polarized
wave has been derived and then the phase velocity and group velocity have been
obtained in terms of kinetic temperature. It is found that the cut-off frequency of
the wave is higher in presence of bound electrons. Moreover, the phase velocity
in the presence of only free electrons is less than the phase velocity of the wave
in the presence of bound electrons. From the expression of Thomson scattering, it
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is found that the scattering cross section is dependent on the Rayleigh scattering
susceptibility. Lagrangian and Hamiltonian density have also been obtained in the
plasma considering the effect of bound electrons.

However, in our present analysis, we have not considered the collisional effects
between free electrons and bound electrons, etc. Studies on the propagation of
transverse waves in a magnetized plasma taking the effect of bound electrons would
yield some interesting results. The magnetic moment field in such a plasma can be
found which will generalize the results of previous authors [4]. We like to study
in detail the propagation of transverse waves in the Vlasov plasma considering the
effects of the above plasma parameters from which interesting as well as important
results would be obtained.
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UTJECAJ VEZANIH ELEKTRONA NA POPREČNE VALOVE U
VLASOVLJEVOJ PLAZMI

Proučavamo poprečne valove u Vlasovljevoj plazmi koja se sastoji od smjese slo-
bodnih elektrona, slabo vezanih elektrona, slobodnih mirnih iona i mirnih iona
pridruženih vezanim elektronima, uz održavanje makroskopske neutralnosti. Is-
tražuju se temperaturna ovisnost fazne i grupne brzine, te Thomsonovog udarnog
presjeka. Raspravlja se Lagrangian i Hamiltonian stlačive plazme koja sadrži i
vezane elektrone.

130 FIZIKA A 11 (2002) 3, 121–130


