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A model pseudopotential, depending on an effective core radius but otherwise pa-
rameter free, is proposed to study the equation of state by incorporating the s-d
hybridization effects. A new criterion for the selection of the exchange and corre-
lation effects is also put forward. The equations of state for Cu, Ta, Mo, W and
Pt have been studied up to the pressure of 1000 GPa. The binding energy, pres-
sure, bulk modulus and frequency-independent Grüneisen constant as functions of
volume for transition metals are calculated. The theoretical results are compared
with available experimental results. The successful application to 27 metals has
confirmed our formalism.
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1. Introduction

Equation of state (EOS) namely, the relationship between pressure, volume and
temperature, i.e. the (P, V, T ) relation, are of immense importance to theoreticians
as well as experimentalists. In theoretical physics, they provide a test to the the-
oretical models of cohesion and predict the onset of phase transition (insulator to
metal, valence transition, solid to liquid, stable crystal structure, etc.). They are
also used as pressure calibration in high-pressure experiments and are needed to
relate the measured pressure variation of some physical quantity (e.g. elastic con-
stants, transport properties, specific heat, etc.) to the calculated volume variation.
It has been discovered that d-electrons play a crucial role in determining the stable
structure of not only the transition metals but also of the lanthanides, alkaline-
earth and group II-B metals. For the transition metals from left to right across the
periodic table, the trend seems to be hcp → bcc → hcp → fcc sequence of structures
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[1,2], and for lanthanides it is hcp → Sm-type → dhcp → fcc [3,4]. In the case of
alkaline earth metals, the trend explained by the presence of d-electrons includes
the hcp → fcc → bcc sequence observed with increasing atomic numbers [5,6] that
can be studied using energy–volume relation and equation of state. In astrophysics
the, EOS is used to unravel the mysteries of evolution of stellar bodies like white
dwarfs, neutron stars and black holes while in geophysics it helps to understand
the structure of the Earth. The range of the pressure interior of the Earth is ≤ 350
GPa.

Various experimental techniques were used to study the EOS under high pres-
sure. The data by Bridgman [7] using the piston cylinder method were the first to
be reported and the pressure range was about 5–10 GPa (static). In a similar way
Vaidya and Kennedy [8] made careful measurement up to about 4.5 GPa. Drickmer
[9] extended the pressure range up to 20–30 GPa using a supported anvil device.
In the early seventies, the range of static pressure EOS has been extended to over
100 GPa using diamond anvil devices [10,11]. The development of dynamic shock
wave techniques using chemical explosives increased the pressure range to 50 GPa
[12,13]. Since then a number of techniques (e.g. lasers [14], electron guns [15], un-
derground nuclear explosions [16]) have been developed for generating controlled
dynamic high pressures, whose limit is 10 TPa.

While studying EOS theoretically, the major difficulty arises from the question
how to incorporate correctly the structurally complicated inter-particle interac-
tions of the many-body problem. Previously, many authors [17–25] have studied
the EOS using different techniques such as the tight-binding total-energy classical
cell model [21], the generalized pseudopotential theory [22], Debye-Grüneisen the-
ory [23], recent classical mean-field model [24], linearised augmented plane-wave
method with both the local density and generalized gradient approximation [25]
and model pseudopotential methods [17–20].

In the present work, we have studied the EOS for all d-band metals using our
newly proposed pseudopotential. The EOS of Cu, Ta, Mo, W and Pt have been
studied up to a pressure of 1000 GPa, for Rh, Ni, Co and Pd the pressure range is up
to 55 GPa and for Au, Ag, Fe, V, Y, Zr, Nb and Ti up to a pressure 5 GPa. We have
also calculated the binding energy, bulk modulus and the frequency-independent
Grüneisen constants of all 3d, 4d and 5d elements.

2. Model potential and its form factor

In the last four decades, effective local pseudopotentials have been frequently
used in the calculation of metallic properties of simple metals [26–38], noble metals
[39–44] and transition metals [45–49]. The model potential of Kulshrestha et al.
[41] for noble metals depends on two radii, rc, the core radius and rm, the ionic
radius, where the rc is calculated by making use of an empirical relation [41].
This effective potential is repulsive in the region 0 < r < rc and attractive for
rc < r < rm. They applied it to calculate the phonon dispersion of Cu, Ag and Au,
which led to satisfactory results. The agreement for other properties, like binding
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energy, liquid metal resistivity, is rather poor and shows variations of 23–67% from
experimental values. Nand et al. [42] proposed a model pseudopotential for Ni,
which is local and contains one parameter. They applied it to the phonon dispersion
of Ni, which is reasonably well represented. However, we have checked that with
the same parameter it could not produce other properties of the metals, such as
binding energies, elastic constants and bulk moduli (it deviates about 11–49% from
the experimental values). Idrees et al. [44] proposed a phenomenological but single
parameter model potential for the noble metals Cu, Ag and Au. This potential is
repulsive from zero to rm (core radius), attractive and constant in the region r = rm

to r = rw (Wigner-Seitz radius), and purely Coulombic beyond rw. They used
it to calculate the binding energy, liquid metal resistivity, thermoelectric power,
elastic constants and band gap, which are in better agreement with experimental
results but have not reported lattice dynamical study and related properties of
these metals.

The above studies indicate that for a successful application, proper cancellation
within the core is required. In the present article, we propose a local form of a
pseudopotential, which includes in a simple parametric way all features dictated by
the physics of the situation. Particularly in noble, transition and actinide metals,
the filled d- and f-bands tend to push the outer states up in energy. This effect, called
“hybridization”, would require a repulsive term in the model potential. Hence, in
r-space, inside the core radius the model potential is a combination of repulsive
and attractive terms (i.e. the corresponding cancellation within the core region).
Beyond the core radius, the model potential is Coulombic in nature. In real space,
the potential is of the form,

W (r) = −
2Zr

r2
c

[2 − e1−r/rc ], r < rc,

= −
2Z

r
, r > rc. (1)

In the wave-number space (q-space) the potential (in Rydberg) takes the form,
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where Z is the valency, Ω0 the volume per ion, q the wave vector and e the base of
natural logarithms. It is evident that the potential contains only one parameter, rc,
and exhibits a varying cancellation within the core region. This cancellation effect
is crucial for transition metals. In addition, the potential is continuous at rc and
decreases as r → 0 for r < rc which is essential for any pseudopotential.
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In the pseudopotential formalism, it is necessary that the potential parameter
can be determined properly. In the present work, we have calculated the potential
parameter from the zero pressure condition. The advantage of this method is that
the potential does not bear any constraint due to a fitting procedure with the
experimentally observed physical property. Hence, this potential could be visualized
as a parameter-free potential in the sense that the parameter is not determined by
fitting it with any experimentally observed physical property of the system.

Fig. 1 (upper left). Form factors of
Sc, Ti, V, Cr, Mn, Fe, Co, Ni and
Cu.

Fig. 2 (upper right). Form factors of
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd and
Ag.

Fig. 3 (left). Form factors of Lu, Hf,
Ta, W, Re, Os, Ir, Pt and Au.
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A number of dielectric functions [50–59] has been tried to obtain the screened
form factor of the pseudopotential, but there is no unique way of selecting a proper
screening function. It is well known that Taylor’s [57] screening function is best
justified at high densities while Vashishta and Singwi’s [56] screening function at
low densities. The Ichimaru and Utsumi [58] screening function accurately repro-
duces the Monte Carlo results as well as those of microscopic calculations. The
latter also satisfies the self-consistency conditions in the compressibility sum rule
and short-range correlations. A notable feature in this function is its logarithmic
singularity at q = 2kF and the accompanying peak at q = 1.94kF. The screening
function of Sarkar et al. [59] is also derived in the same fashion as that of Ichimaru
and Utsumi [58] and it is latest one. In the present study, a new criterion on the
selection of a proper screening function is investigated. The energy-volume rela-
tion has been studied for all transition metals using different screening functions.
Finally, the screening function which gives the lowest energy, namely the Taylor’s
[57], is adopted for further calculations. We then used this particular combination
of rc and this screening function to calculate the EOS, binding energy, bulk modu-
lus and Grüneisen constants of all transition metals. The screened model potentials
for all transition metals in q-space are shown in Figs. 1–3. The curves have been
drawn using Hartree’s [55] static dielectric function along with the exchange and
correlation effects of Taylor’s [57] screening function. It is seen that all pseudopo-
tential curves lie below the horizontal axis for small q-values and give the required
limiting value of the pseudopotential, i.e., W (q) → −2/3EF as q → 0. The typical
range of q0/(2kF) for all transition metals by present formfactor is found between
0.5807 ≤ q0/(2kF) ≤ 1.7021, and the formfactors are free from unnecessary oscilla-
tions at high q-values, which is highly desirable for any pseudopotential formalism.

3. Theory

As a first approximation to the electronic structure of transition metals with
Z valence electrons per ion, we consider Zd of these to be fixed in localized, non-
overlapping d-states centred on each ion site with the relation

Z = Zs + Zd , (3)

where Zs is the number of free s-electrons per ion. For the transition metals, the
total energy per ion is calculated using [46]

Etot = Ei + E0 + E1 + E2 + Eb + Ec, (4)

where Ei = αZ2/ra, α is the Madelung constant having the value 1.79175 for all
transition metals, and ra is the atomic radius.

E0 = Z

[

2.21

r2
s

−
0.916

rs
− 0.115 + 0.031 ln rs

]

(5)
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is the energy of a free electron gas, including the kinetic, exchange and correlation
energies expressed with the standard parameter rs.

E1 = lim
q→0

[

8πZ2

Ω0q2
+ ZWB(q)

]

(6)

is the average energy of the electron–ion interaction which with our model potential
becomes

E1 =
8Z2r2

ck3
F

3π
[6e+1 − 16]. (7)

The band structure energy

E2 =
Ω0

16π

∑′

q2|WB(q)|2
εH(q)

1 + [εH(q) − 1][1 − f(q)]
. (8)

The prime on the summation sign excludes the q = 0 term. Summation over nearest
neighbors in reciprocal space is taken to achieve proper convergence in the fcc
phase. εH(q) is the Hartree static dielectric function and f(q) is the exchange and
correlation term due to Taylor [57].

Eb = −30.9
Zd(10 − Zd)

10
n1/2 r3

d

d5
. (9)

The above equation is due to the coupling that broadens the d-states into bands
due to Wills and Harrison [46].

Ec = 11.40Zdn
r6
d

K8

(

4π

3

)8/3

Ω
−8/3

0 . (10)

Here Ec describes the shift of the d-band center [46]. The volume Ω0 and the Fermi
radius are given by the following relation

Ω0 =
4πr3

a

3
and kF =

(

3π2Zs

Ω0

)1/3

. (11)

Here, n is the coordination number, d the nearest neighbor separation, rd is the
d-state radius applicable to the free atom and ra is the Wigner-Seitz radius. Then
the pressure P is given by

P = −
dE

dΩ0

. (12)

From the pressure P , the bulk modulus is obtained as [46,47]

B = −Ω0

dP

dΩ0

. (13)
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The following relation determines the frequency-independent Grüneisen constant
[46]

γ = −
1

2

Ω0

B

dB

dΩ0

. (14)

4. Results and discussion

The input data such as coordination number, nearest neighbor distance, d-state
radius, Wigner-Seitz radius and atomic valence are taken from Refs. [46], [47] and
[60]. We have calculated the potential parameter rc using the zero pressure con-
dition which is tabulated in the Table 1. With these values of rc and the Taylor’s
screening function, we have calculated the value of the binding energies of the transi-

TABLE 1(a). Various contributions to the binding energy at zero pressure.

rc (a.u.)
Various contributions to the total energy in Ry

Ei E0 E1 E2 Eb Ec

Sc 2.278138 -1.17827 -0.21022 0.54172 -0.11331 -0.20082 0.03354
Ti 2.182266 -1.32465 -0.17485 0.70625 -0.14704 -0.35092 0.06241
V 2.086584 -1.43131 -0.14150 0.81455 -0.16128 -0.42418 0.07127
Cr 1.967013 -1.50186 -0.11595 0.83634 -0.15636 -0.45190 0.08001
Mn 1.870366 -1.49136 -0.11993 0.74035 -0.13017 -0.68272 0.17918
Fe 1.702500 -1.51251 -0.11185 0.63995 -0.09411 -0.30365 0.06077
Co 1.485970 -1.53432 -0.10327 0.50886 -0.04980 -0.25245 0.07251
Ni 1.269247 -1.54544 -0.9879 0.37943 -0.02232 -0.14280 0.05641
Cu 1.081773 -1.51251 -0.11185 0.26737 -0.02604 -0.03892 0.03566
Y 2.613985 -1.07168 -0.22832 0.53660 -0.13356 -0.26717 0.07083
Zr 2.543297 -1.20489 -0.20469 0.72191 -0.17286 -0.49185 0.14751
Nb 2.423815 -1.31644 -0.17715 0.85523 -0.18734 -0.60978 0.17550
Mo 2.382264 -1.37592 -0.15961 0.86260 -0.18097 -0.70259 0.22893
Tc 2.014131 -1.42177 -0.14474 0.74396 -0.14248 -0.69363 0.27071
Ru 1.726644 -1.44098 -0.13816 0.56920 -0.08004 -0.60360 0.27419
Rh 1.485504 -1.43131 -0.14150 0.41289 -0.03317 -0.38690 0.19717
Pd 1.204740 -1.40307 -0.15095 0.25580 -0.02448 -0.20170 0.13726
Ag 1.075202 -1.34131 -0.17066 0.17801 -0.05021 -0.04975 0.07429
Lu 2.542542 -1.11077 -0.22244 0.56532 -0.13715 -0.31729 0.09325
Hf 2.519295 -1.21866 -0.20167 0.73291 -0.17356 -0.55825 0.18526
Ta 2.538271 -1.31647 -0.17714 0.87130 -0.19044 -0.69960 0.23101
W 2.371332 -1.36710 -0.16234 0.82814 -0.17444 -0.80288 0.30336
Re 1.894193 -1.40307 -0.15095 0.63230 -0.10816 -0.82955 0.39582
Os 1.580087 -1.43131 -0.14150 0.46708 -0.04762 -0.71126 0.38938
Ir 1.221598 -1.42177 -0.14474 0.27363 -0.02223 -0.48402 0.31319
Pt 0.787344 -1.39390 -0.15392 0.10713 -0.12110 -0.26343 0.23756
Au 0.954561 -2.38455 -0.16737 0.24938 -0.17841 -0.14081 0.15452
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TABLE 1(b). The values of the binding energy at zero pressure. The values in
parenthesis are the deviation (in %) from the experimental results.

Element rc (a.u.)
Total energy in Ry

Present work Exp. [60] Others [47] Others [48]
Sc 2.278138 -1.12736(0.07) -1.1265 -0.8907(20)
Ti 2.182266 -1.22879(0.49) -1.2349 -0.9524(23)
V 2.086584 -1.27245(0.51) -1.2790 -0.9780(30)
Cr 1.967013 -1.30937(6.82) -1.2257 -1.0183(16)
Mn 1.870366 -1.50464(26.97) -1.1850 -1.2393(4)
Fe 1.702500 -1.32140(1.24) -1.3381 -1.0919(18)
Co 1.485970 -1.35847(0.00) -1.3585 -1.1725(13)
Ni 1.269247 -1.37351(0.90) -1.3612 -1.2147(10) -1.074(21)
Cu 1.081773 -1.38629(3.64) -1.3376 -1.2249(8.4) -1.102(17)
Y 2.613985 -1.09331(4.64) -1.1466 -0.8408(26)
Zr 2.543297 -1.20487(11.51) -1.3561 -0.9077(33)
Nb 2.423815 -1.26007(12.75) -1.4443 -0.9443(34)
Mo 2.382264 -1.32757(8.85) -1.4566 -1.0149(30)
Tc 2.014131 -1.38795(4.48) -1.4531 - 1.1125(23)
Ru 1.726644 -1.41940(4.08) -1.4799 -1.2066(18)
Rh 1.485504 -1.38281(3.11) -1.4273 -1.2169(15)
Pd 1.204740 -1.38713(7.49) -1.4995 -1.2138(19) -1.0250 (31)
Ag 1.075202 -1.35903(3.94) -1.3075 -1.1793(10) -1.0992 (15)
Lu 2.542542 -1.12908(-) - -0.8715
Hf 2.519295 -1.23396(11.39) -1.3926 -0.9356(32)
Ta 2.538271 -1.28134(9.05) -1.1749 -0.9616(18)
W 2.371332 -1.37526(10.80) -1.2411 -1.0693(14)
Re 1.894193 -1.46362(9.61) -1.6193 -1.2234(24)
Os 1.580087 -1.47522(14.14) -1.7183 -1.2938(24)
Ir 1.221598 -1.48593(-)- -1.3318
Pt 0.787344 -1.58766(0.40) -1.5940 -1.3357(16) -1.017(36)
Au 0.954561 -2.46660(20.30) -2.0498 -2.1087(3) -1.985(3)

tion metals (3d, 4d and 5d elements). For comparison, the experimental values are
taken from Ref. [60] as given in Ref. [45]. We have found significant contributions
of band-structure part in the total energy of 1.49% for Ir and 14.87% for Nb and
for other metals it varies in-between. The effect of the free-electron part also plays
important role in the total energy calculation. The deviations of the present results
for the binding energies of Sc, Ti, V, Fe, Co, Ni, Cu, Y, Tc, Ru, Rh, Ag and
Pt are less than 5% from the experimental values. For Mn and Au we find large
discrepancies, while the deviations for rest of the transition metals are below 15%.
No experimental data are available for Lu and Ir. The reason for the discrepancy
between the calculated and experimental values of the binding energy of Y, Zr and
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Hf may be due to the hcp equilibrium structure [6]. Note that in the investigation
of Singh [48], the maximum discrepancy is of the order of 36%.

The EOS of all transition metals is shown in Figs. 4–9. Our results of pressure-
volume relation for Cu and Ta (Fig. 4) are extremely good and deviate little from

Fig. 4. Pressure–volume relations of Cu, Pt, Ta, Mo and W up to 1000 GPa.
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experimental findings above 1000 GPa. For Mo and W (Fig. 4) the values deviate
at intermediate pressure and agree well above 700 GPa for Mo and above 800 GPa
for W. We have also compared the theoretical 300 K isotherm [61] for platinum
(Fig. 4) and found excellent agreement up to 500 GPa and small deviation at high

Fig. 5. Pressure–volume relations of Rh, Ni, Co and Pd up to 55 GPa.
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pressure. The results of Rh and Pd (Fig. 5) deviate a little while for Ni and Co
(Fig. 5) excellent agreement with the experimental results is found. The results
of Au, Ag, Fe, V, Y, Zr, Nb and Ti (Figs. 6 and 7) are found in extremely good
agreement with the experimental findings.

Fig. 6. Pressure–volume relations of Au, Ag, Fe and V up to 4.5 GPa.
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Soma et al. [18,19] have calculated the total crystal energy with the overlap
potential energy given by Moriarty [5,22,45] and with the model potential of Kul-
shreshtha et al. [41]. Their pressure-volume relations of Cu and Ag are in good
agreement with the experimental data while for Au disagreement is found above

Fig. 7. Pressure–volume relations of Y, Zr, Nb and Ti up to 4.5 GPa.
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3.3 GPa. Antonov et al. [20] have successfully studied phonon dispersion curves,
phonon density of states, mode Grüneisen parameter and thermodynamic proper-
ties of Cu, Ag, Au, Ni, Pd, Pt, Co, Fe, Rh and Ir. They have also calculated the
pressure-volume relation of Ni, Pd, Rh, Ir and Pt with great success but the rest
of metals might give disagreement from experimental findings. Walzer [47] has also
successfully calculated the bulk moduli of all 3d, 4d and 5d transition metals with
two fitting parameters and the pressure-volume relation of nine transition metals,
from which the PV relation of Mo, Nb and V deviate strongly from the experimen-
tal results. However, with the same parameters, his total energies deviate much
from the experimental findings. Wang et al. [24] have also calculated Hugoniots
and 293 K isotherms at pressures up to 1000 GPa for Al, Cu, Ta, Mo and W using
the classical mean-field approach, and their results are excellent. But their method
is intricate and time consuming. In the absence of experimental information on the
pressure-volume relation for Sc, Cr, Mn, Tc, Ru, Lu, Hf, Re, Os and Ir (Figs. 8–9),
our present results will serve as a very good reference for further comparisons either
with theoretical or experimental data.

Fig. 8 (left). Pressure–volume relations of Sc, Cr, Mn, Tc and Ru up to 2500 GPa.

Fig. 9. Pressure–volume relations of Lu, Hf, Re, Os and Ir up to 2500 GPa.

In Table 2, we report the calculated values of the bulk moduli for all transition
metals. The presently obtained theoretical values of the bulk moduli for all metals
are in excellent agreement with the experimental values. Alhough the bulk modulus
obtained by Wojciechowski [49] was calculated with the novel idea of a stabilized
uniform metallic valence, we note here that our results are better than his [49].
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TABLE 2. The values of the bulk moduli in GPa.

Element
Bulk modulus (GPa)

Present work Exp. [47] Others [46] Others [49]
Sc 43.3 43.5 18.1 42.1
Ti 104.7 105.1 23.5 92.5
V 161.4 161.9 26.2 148.9
Cr 189.5 190.1 33.6 170.8
Mn 59.2 59.6 48.5 60.1
Fe 167.7 168.3 49.6 148.5
Co 190.7 191.4 73.0 198.0
Ni 185.4 186.0 85.7 178.6
Cu 136.4 137.0 83.3 111.8
Y 36.4 36.6 17.7 37.8
Zr 83.0 83.3 34.7 79.8
Nb 169.6 170.2 49.6 181.8
Mo 271.9 272.5 77.7 293.3
Tc 296.3 297.0 112.0 295.6
Ru 319.9 320.8 133.0 316.8
Rh 269.7 270.4 122.0 263.8
Pd 182.0 180.8 104.0 182.3
Ag 100.3 100.7 77.0 72.3
Lu 40.9 41.1 23.4 -
Hf 108.7 109.0 45.0 94.7
Ta 199.5 200.0 68.0 198.8
W 322.6 323.2 106.0 316.7
Re 371.2 372.0 166.0 388.1
Os 417.3 418.0 183.0 435.2
Ir 354.0 355.0 180.0 355.0
Pt 277.5 278.3 155.0 293.9
Au 172.5 173.2 166.0 153.0

The bulk moduli calculated by Wills and Harrison [46] are very poor. The
present results of bulk moduli shown in Figs. 10–12 confirm the inverted parabolic
trend as mentioned by Soderlind [62].

In Table 3, the theoretical values of the frequency-independent Grüneisen con-
stants are compared with the experimental values reported by Wills and Harrison
[46] and by Gschneidner Jr. [63]. Though Wills and Harrison [46] have estimated the
Grüneisen constants using a fitting procedure, they failed to reproduce experiments.
In this context, our results of the frequency-independent Grüneisen constants are
better than the theoretical results by Wills and Harrison [46].

Comparison of the theoretical and experimental equation of state indicates that
the present model is applicable for the statical calculations up to nearly 1000 GPa
without renormalization of the parameters. The overall superiority in explaining
binding energy, bulk modulus and frequency-independent Grüneisen constant also
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confirms the successful application of the present formulation. We believe that our
simple pseudopotential model correctly reproduces the main features of the inter-
atomic interactions in the transition metals. Investigations of surface properties,
transport properties, magnetic properties, molecular dynamics and lattice dynam-
ics, etc., are now in progress in order to establish the full range of applicability of
this approach.

Fig. 10 (upper left). Bulk moduli of
Sc, Ti, V, Cr, Mn, Fe, Co, Ni and
Cu (in GPa).

Fig. 11 (upper right). Bulk moduli
of Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd
and Ag (in GPa).

Fig. 12 (left). Bulk moduli of Lu,
Hf, Ta, W, Re, Os, Ir, Pt and Au
(in GPa).
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TABLE 3. The values of frequency-independent Grüneisen constants.

Element
Frequency-independent Grüneisen constants

Present work Exp. [46] Exp. [63] Others [63] Others [46]
Sc 2.04 - - 1.17, 1.03 1.69
Ti 2.29 1.10 1.18 1.33, 1.28 1.84
V 2.36 1.27 1.05 1.55, 1.38 1.87
Cr 2.36 1.24 1.30 1.53, 1.51 1.98
Mn 1.89 1.95 2.07±0.86 1.28, 1.16 2.13
Fe 2.24 1.67 1.66±0.06 1.81, 1.70 1.93
Co 2.20 1.92 1.93±0.06 2.07, 1.95 2.09
Ni 2.12 1.84 1.88±0.08 2.00, 1.83 2.04
Cu 1.95 1.99 2.00±0.08 1.97, 1.96 1.97
Y 2.14 - 0.89 1.13, 1.00 2.16
Zr 2.34 0.83 0.83±0.06 0.82, 0.71 2.59
Nb 2.43 1.57 1.58±0.11 1.74, 1.58 2.76
Mo 2.46 1.59 1.60±0.08 1.65, 1.61 2.84
Tc 2.42 - - 2.75, 2.61 2.81
Ru 2.39 2.60 - 3.25, 3.12 2.74
Rh 2.32 2.26 2.23±0.03 2.43, 2.29 2.60
Pd 2.19 2.24 2.28±0.10 2.47, 2.18 2.44
Ag 1.96 2.23 2.36±0.12 2.46, 2.44 2.24
Lu 2.15 - - 0.75 , 0.6 2.32
Hf 2.38 - 1.15 1.07, 1.04 2.71
Ta 2.45 1.69 1.70±0.06 1.82, 1.69 2.87
W 2.46 1.71 1.68±0.06 1.78, 1.76 2.92
Re 2.43 2.61 - 2.66, 2.59 2.89
Os 2.41 1.78 - 2.02, 2.02 2.82
Ir 2.35 2.36 - 2.49, 2.39 2.72
Pt 2.28 2.71 2.56±0.12 2.92, 2.69 2.61
Au 1.94 2.91 3.04±0.04 3.09, 3.06 2.40

The main interest of the present investigation was to study the properties in the
static limit and it is difficult to have certain parameters at desired temperature or
continuous variation of such parameters (say lattice parameter) with temperature.
However, incorporation of such effects (wherever possible) might throw additional
light on the present study.
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JEDNADŽBE STANJA, ENERGIJE VEZANJA, VOLUMNI MODULI I
GRÜNEISENOVE KONSTANTE 3d, 4d I 5d PRIJELAZNIH METALA

Uvodimo model potencijala koji ovisi o polumjeru efektivne sredice a ne o drugim
parametrima radi proučavanja jednadžbe stanja s uključenim s-d efektima hi-
bridizacije. Postavljamo takod–er nov kriterij za odabir efekata izmjena i ko-
relacija. Proučavamo jednadžbu stanja Cu, Ta, Mo, W i Pt za tlakove do 1000
GPa. Izračunavamo energije vezanja, tlak, volumne module i frekventno-neovisne
Grüneisenove konstante. Ishodi računa uspored–uju se s eksperimentalnima za sve
poznate podatke. Uspješna primjena našeg formalizma za 27 metala ga potvrd–uje.
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