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Under dielectric continuum approximation and by using determinant method,
the interface optical (IO) phonon modes, the orthogonal relation for polarization
vector and electron – IO phonon Fröhlich interaction Hamiltonian in a n-layer
coupling quantum well have been derived. Numerical calculations on seven-layer
AlxGa1−xAs/GaAs systems have been performed. The IO phonon dispersion re-
lation and the electron – IO phonon coupling function are discussed. Based on
the numerical results in this and previous work, general characteristics of the IO
phonon modes in a n-layer coupling quantum well system are deduced. The present
investigations can be regarded as a generalization of previous studies.
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1. Introduction

Since the pioneering works of Fuchs and Kliewer [1] and Licari and Evrard [2] on
the investigations of polar vibration modes in multi-layer quantum well (QW) struc-
tures, many authors [3–15] have shown a great interest in studying phonon modes
and electron–phonon interaction in various quantum systems of different geometri-

1Corresponding author

FIZIKA A 12 (2003) 1, 41–54 41



li zhang and hong-jing xie: polar interface optical oscillation and . . .

cal shapes and dimensionality. The reason for this interest lies in the importance of
the electron–phonon interactions in determining the properties related to physical
processes, such as transport processes or electron relaxation in confined systems.
The physical properties related to polarized phonons are useful for some device ap-
plications. For example, the scattering of electrons by optical phonons represents
a dominant mechanism of various properties. The electron–phonon interaction and
scattering govern a number of important properties of heterostructures, including
hot-electron relaxation rates, intersubband transition rates, room-temperature ex-
citon lifetimes, etc. The polaronic effects can also strongly affect the optical and
transport properties of the heterostructures.

In order to describe the polar optical oscillations in a semiconductor structure,
several theoretical models have been developed, and the dielectric continuum (DC)
approximation gives one of the simple and effective models under certain condi-
tions [3], especially for the description of polaronic effects [4,5]. Therefore, the DC
model has been widely used to deal with the electron–phonon interaction in various
confined quantum systems. Mori and Ando [6] investigated the phonon modes in
single and double heterostructures within the framework of DC, and discussed the
dispersion frequencies of interface optical (IO) phonon versus wave vector. Chen et
al. [7] studied optical phonon modes in a double heterostructure of polar crystals
by solving the equation of motion for the polarization vector, and found that there
exist four branches of IO phonon in the system. Before investigating the trans-
port properties in AlxGa1−xAs/GaAs single heterostructures, Bordone and Lugli
[8] obtained the IO phonon modes in the system, and the potential distributions
of IO phonons were discussed. In recent years, within the DC model, Shi et al.
[9–13] calculated the interface and surface optical (SO) phonon modes and the cor-
responding electron–phonon Hamiltonians in multi-layer QW systems having three
to five layers. Both the finite and infinite boundary width were investigated, and
they mainly discussed the dispersion relations and the electrostatic potential distri-
bution for the SO and IO phonon modes. By using the method of diagonalization of
the equations of motion for inertial polarization vectors in the finite basis, Klimin
et al. [14] calculated the phonon eigenmodes and electron–phonon interaction in
multilayer structures, but the group only did the numerical calculations on three-
layer symmetrical QW structures, and the general characteristics of the IO phonon
modes were not considered.

In the present paper, using the determinant method as in our recent work [15],
we have derived the IO phonon modes and electron–phonon interaction Hamiltonian
in a n-layer coupling QW system under DC approximation. The method of dealing
with the multilayer structures in the present study is somewhat different from that
of Ref. [14]. In Ref. [14], the authors adopted the method of diagonalization of
the equations of motion for inertial polarization vectors in the finite basis. The
determinant method described in the present paper is basically the method of
solving linear equations. The determinant method has the advantage of easy and
direct calculation, and it applies to investigations of electronic states or optical
phonon modes in multi-layer quantum systems [15]. The main advantage of this
study is the following. The orthonormal relation for the polarization vector of IO
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modes in a quantum system with an arbitrary number of layers has been derived.
The Fröhlich electron–phonon interaction Hamiltonian has been obtained from the
orthonormal relation and the dynamic equation of motion of the crystal lattice. For
the classic AlxGa1−xAs/GaAs materials, the IO phonon dispersion relation and the
phonon potential distributions for seven-layer coupling QW have been computed
and discussed. The general characteristics of IO phonon for a n-layer QW system
have been deduced from the results obtained in previous studies and the discussion
in this study.

The main reasons why the seven-layer coupling QW system was chosen to per-
form the numerical calculation are as follows: i) to our knowledge, the two- to
five-layer heterostructure systems have been investigated [6–13], but the seven-
layer heterostructure system has not been treated previously, ii) the features of
IO phonon modes in two- to five-layer heterostructure systems can be obtained by
simplifying the seven-layer coupling QW system [10–13], iii) the discussion of the
seven-layer system and of the results obtained in fixed layer-number heterostructure
systems [6–13] allows the deduction of the general characteristics of the IO phonon
modes in a n-layer coupling QW system, iv) in order to verify the validity of the
determinant method, we developed the treatment of phonon modes in multi-layer
coupling QWs, so the seven-layer coupling QW system was chosen. Moreover, the
results obtained in this paper should be very useful for further experimental and
theoretical studies of the electron–phonon interaction and scattering in multilayer
QW structures. For example, polaronic effects on the intersubband optical absorp-
tion for a mid-infrared field with z-component and the inelastic light scattering by
phonon excitations with the usual backscattering geometry.

2. Theory

Within the framework of DC approximation and taking the phonon potential
couplings between the IO phonon modes into account, the IO phonon potential in
the n-layer coupling QW system can be written as

φIO
q (r) =



































A0e
qzzeiQ·ρ −∞ < z ≤ z0

(A1e
qzz + B1e

−qzz)eiQ·ρ z0 < z ≤ z1

... ...
(Aie

qzz + Bie
−qzz)eiQ·ρ zi−1 < z ≤ zi

... ...
(An−1e

qzz + Bn−1e
−qzz)eiQ·ρ zn−2 < z ≤ zn−1

Bne−qzzeiQ·ρ zn−1 < z < ∞

, (1)

where

Q = q − qzk =qxi + qyj , (2)

ρ = xi + yj .
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Because the IO phonon potential functions should satisfy the Laplace equation
∇2φIO

q (r) ≡ 0, the following relation is obtained,

q2
z = q2

x + q2
y . (3)

The continuity of the phonon potential functions and the normal components of
the electric displacement at z = zi (i = 0, 1, ..., n − 1) imply



















φIO
iq |z=zi

= φIO
i+1,q|z=zi

εi(ω)
∂φIO

iq

∂z
|z=zi

= εi+1(ω)
∂φIO

i+1,q

∂z
|z=zi

, i = 0, 1, ... n − 1 (4)

with the dielectric function εi(ω) of the ith material given by

εi(ω) = εi∞

ω2 − ω2
LOi

ω2 − ω2
TOi

, i = 0, 1, ... n , (5)

where εi∞ is the high-frequency dielectric constant of ith layer material, ωTOi and
ωLOi are the corresponding frequencies of the transverse-optical and longitudinal-
optical vibrations, respectively. We define

εi exp(qzzi) = fi , εi+1 exp(qzzi) = f ′
i ,

εi exp(−qzzi) = gi , εi+1 exp(−qzzi) = g′i ,

exp(qzzi) = hi , exp(−qzzi) = h−1
i .

(6)

Then the dispersion relation of IO phonons is obtained via the 2n×2n determinant
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(7)
Substituting Eq. (5) into the above determinant, the frequencies of IO phonon
could be solved. After evaluationg ω, the dielectric functions εi(ω) follow from Eq.
(5). By using Eqs. (4), Ai and Bi (i = 1, 2 to n) can be expressed as











Ai =
M2i−1

M0

A0

Bi =
M2i

M0

A0

, i = 1, 2 , ... n − 1 , (8)
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Bn =
M2n−1

M0

A0 , (9)

B0 = An = 0 (10)

with

M0 =
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, (12)

where M0 and Mj are (2n − 1)×(2n − 1) determinants. It should be noticed that
the column matrix (−h0,−f0, 0, 0, ..., 0, 0, 0) is located at the jth column in Mj .
During the calculation procedure, the Cramer rule for solving the linear equations
was employed. Using Eqs. (8), (9) and (10), the phonon potential function (1) can
be rewritten as

φIO
q (r) =































































A0M0e
qzzeiQ·ρ −∞ < z ≤ z0

A0(M1e
qzz + M2e

−qzz)eiQ·ρ z0 < z ≤ z1

... ...

A0(M2i−1e
qzz + M2ie

−qzz)eiQ·ρ zi−1 < z ≤ zi

... ...

A0(M2n−3e
qzz + M2n−2e

−qzz)eiQ·ρ zn−2 < z ≤ zn−1

A0M2n−1e
−qzzeiQ·ρ zn−1 < z < ∞ .

(13)
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So, the polarization fields for the IO phonon modes of the system are given as

PIO
q =

1 − ε

4π
∇φIO

q (r) =
A0e

iQ·ρ

4π
× (14)







































































































(1 − ε0)M0e
qzz(iqxi + iqyj + qzk) −∞ < z ≤ z0

(1 − ε1)[iqx(M1e
qzz + M2e

−qzz)i+iqy(M1e
qzz

+M2e
−qzz)j + qz(M1e

qzz − M2e
−qzz)k]

z0 < z ≤ z1

... ...

(1 − εi)[iqx(M2i−1e
qzz + M2ie

−qzz)i+iqy(M2i−1e
qzz

+M2ie
−qzz)j + qz(M2i−1e

qzz − M2ie
−qzz)k]

zi−1 < z ≤ zi

... ...

(1 − εn−1)[iqx(M2n−3e
qzz + M2n−2e

−qzz)i+iqy(M2n−3e
qzz

+M2n−2e
−qzz)j + qz(M2n−3e

qzz − M2n−2e
−qzz)k]

zn−2 < z ≤ zn−1

(1 − εn)M2n−1e
−qzz(iqxi + iqyj − qzk) zn−1 < z < ∞ .

Then we obtain the orthogonal relation for PIO
q

∫

PIO ∗
q′ · PIO

q d3r

=
S |A0|

2
qz

16π2

{

n−1
∑

i=1

(1 − εi)
2[M2

2i−1(e
2qzzi−e2qzzi−1) − M2

2i(e
−2qzzi−e−2qzzi−1)]

+(1 − ε0)
2M2

0 + (1 − εn)2M2
2n−1e

−2qzzn−1

}

δq′

z
qz

δ(Q′ − Q) , (15)

where S is the area of the cross section parallel to the xy-plane.

The Hamiltonian for the IO phonon modes is given as [4,5]

HIO =
1

2

∫

[

n∗µ
( 1

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

)2

Ṗ∗ · P (16)

+n∗µω2
( 1

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

)2

P∗·P
]

d3r ,

where µ is the reduced mass of the ion pair, ω0 is the frequency associated with
the short-range force between ions, n∗ is the number of ion pairs per unit volume,
and α is the electronic polarizability per ion pair.
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Using the orthogonal relation of the polarization vector (15), we obtain

|A0|
−2

=
Sqz

2πω2

{( 1

ε0 − ε00

−
1

ε0 − ε0∞

)−1

M2
0 +

( 1

εn − εn0

−
1

εn − εn∞

)−1

×M2
2n−1e

−2qzzn−1 +

n−1
∑

i=1

[( 1

εi − εi0

−
1

εi − εi∞

)−1

(17)

×[M2
2i−1(e

2qzzi − e2qzzi−1) − M2
2i(e

−2qzzi − e−2qzzi−1)]
]}

.

Then PIO
q form orthonormal and complete sets, which can be used to express the

IO phonon field HIO and the electron–phonon interaction Hamiltonian He−IO. The
IO phonon field is given as

HIO =
∑

qz,Q

h̄ω
[

b†qz
(Q)bqz

(Q) +
1

2

]

, (18)

where b†qz
(Q) and bqz

(Q) are creation and annihilation operators for IO phonon of
the (qz, Q)th mode. They satisfy the commutative rules for bosons

[bqz
(Q) , b†q′

z

(Q′)] = δq′

z
qz

δ(Q′ − Q) , (19)

[bqz
(Q) , bq′

z
(Q′)] = [b†qz

(Q) , b†q′

z

(Q′)] = 0 .

The Fröhlich Hamiltonian describing the interaction between the electron and the
IO phonon is given by

He−IO = −
∑

qz,Q

ΓIO
qz

(z)[eiQ·ρbqz
(Q) + H.c.] , (20)

where the coupling function ΓIO
qz

(z) is defined as

ΓIO
qz

(z) = Nqz
×



































































M0e
qzz −∞ < z ≤ z0

(M1e
qzz + M2e

−qzz) z0 < z ≤ z1

... ...

(M2i−1e
qzz + M2ie

−qzz) zi−1 < z ≤ zi

... ...

(M2n−3e
qzz + M2n−2e

−qzz) zn−2 < z ≤ zn−1

M2n−1e
−qzz zn−1 < z < ∞ ,

(21)
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with

|Nqz
|
2

= |A0|
2 h̄e2

ω

=
2πh̄ωe2

Sqz

{( 1

ε0 − ε00

−
1

ε0 − ε0∞

)−1

M2
0 +

( 1

εn − εn0

−
1

εn − εn∞

)−1

×M2
2n−1e

−2qzzn−1 +
n−1
∑

i=1

[( 1

εi − εi0

−
1

εi − εi∞

)−1

×

[M2
2i−1(e

2qzzi − e2qzzi−1) − M2
2i(e

−2qzzi − e−2qzzi−1)]
]}−1

. (22)

3. Results and discussion

Numerical calculations were carried out on the seven-layer Al0.1Ga0.9As/-
Al0.25Ga0.75As/Al0.35Ga0.65As/ GaAs/Al0.15Ga0.85As/Al0.3Ga0.7As/Al0.4Ga0.6As
system with thicknesses ∞ / 8 nm / 6 nm / 3 nm / 4 nm / 5 nm /∞. The calcula-
tions were mainly focused on dispersion relations of IO phonon and the coupling
functions of electron – IO phonon interaction. The material parameters [16] are
listed in Table 1 and the scheme of our model is given in Fig. 1.

TABLE 1. The material parameters [16].

GaAs Ga1−xAlxAs AlAs

h̄ωLO (meV) 36.25 36.25 + 3.83x + 17.12x2 − 5.11x3 50.09

h̄ωTO (meV) 33.29 33.29 + 10.70x + 0.03x2 + 0.86x3 44.88

ǫ0 13.18 3.18 − 3.12x 10.06

ǫ∞ 10.89 10.89 − 2.73x 8.16

X
Z

Y

o

0z 1z 2z 1−nz

1ε0ε 2ε nε

Fig. 1. The schematic structure of the n-layer coupling quantum well system.
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Figure 2 shows the IO phonon dispersion frequencies versus the wave vectors
in the z-direction of the seven-layer coupling QW system. It can be seen that,
there exist twelve branches of IO phonon modes in the system, i.e., two branches
on each interface. The dispersions of the twelve modes are obvious only when
qz < 0.1 nm−1, but the dispersions are negligible when qz > 0.2 nm−1, namely,
each mode approaches a certain frequency value. Detailed calculation have shown,
when qz → 0, the frequencies of the twelve branches of IO phonon approach ωTO3,
ωTO4, ω−, ωTO1, ωLO3, ωTO5, ωTO2, ωLO4, ωLO1, ωLO5, ω+, and ωLO2 in terms of
the order of increasing frequency. We notice that ωLO0, ωTO0, ωTO6 and ωLO6 are
forbidden, but two new frequencies ω+ and ω− appear. Furthermore, it can be seen
that ωTO0 < ω− < ωLO0 and ωTO6 < ω+ < ωLO6. This result is completely due to
the asymmetry of the seven-layer system [10]. When the mole fractions of Al, x,
in the outermost materials (the 6th and 0th layers) are the same, this frequency-
forbidden behaviour disappears [6,10], namely, ω+ = ωLO6 (ωLO0) and ω− = ωTO6

(ωTO0).

 0.0  0.2  0.4  0.6  0.8  1.0
33

34
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39

40

Z-

Z+
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ZLO 2

ZLO 3

ZLO4

ZLO 5

ZTO 5

ZTO 4
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ZTO 3

�ω

6H

2H
3H
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1H

4H
6L

2L

5L

1L

3L
4L

q
z
  (1/ nm )

Fig. 2. Dispersion curves of the IO phonon modes for the seven-layer QW with
thicknesses ∞ / 8 nm / 6 nm / 3 nm / 4 nm / 5 nm /∞.

In order to distinguish and label the twelve branches of IO phonon modes, the
limit frequencies of IO phonon when qz → ∞ in the single planar heterostructure
[6,8] formed by the two materials on both sides of the six interfaces are listed in
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Table 2. According to Table 2, it is easy to label the twelve IO phonon modes
in Fig. 2. For example, 4H and 4L denote the two modes mainly localized in the
vicinity of the fourth interface, and they represent the higher-frequency branch and
lower-frequency branch at the fourth interface, respectively.

TABLE 2. The limit frequencies of the IO phonon modes in single heterostruc-
tures. The branch with lower frequency is labeled by h̄ωiL, the branch with higher
frequency is labeled by h̄ωiH, and the index i denotes the ith interface.

Interface materials h̄ωiL (meV) h̄ωiH (meV)

Al0.1Ga0.9As/Al0.25Ga0.75As (i = 1) 34.96 37.71

Al0.25Ga0.75As/Al0.35Ga0.65As (i = 2) 36.39 38.97

Al0.35Ga0.65As/GaAs (i = 3) 34.38 38.67

GaAs/Al0.15Ga0.85As (i = 4) 33.97 36.85

Al0.15Ga0.85As/Al0.3Ga0.7As (i = 5) 35.47 38.24

Al0.3Ga0.7As/Al0.4Ga0.6As (i = 6) 36.93 39.64
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Fig. 3. The coupling functions ΓIO
qz

(z) as functions of z for: A) and B) qz = 0.1 nm−1

and C) and D) qz = 0.4 nm−1.
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Figure 3 shows the electron – IO phonon coupling functions ΓIO
qz

(z) as functions

of z. In fact, Fig. 3A and Fig. 3B correspond to qz = 0.1 nm−1, and Fig. 3C and
Fig. 3D correspond to qz = 0.4 nm−1. One can see from the figure that, when qz is
small (such as 0.1 nm−1), the functions ΓIO

qz
(z) for each mode at the interfaces are

relatively evenly distributed [15], namely, the peaks in the curves at each interface
are not very sharp. But when qz is large (such as 0.4 nm−1), the functions ΓIO

qz
(z)

of modes iL and iH (i = 1, 2, ..., 6) tend to be localized more and more at the ith
interface, namely, the sharpest peak in each curve only appears at the ith interface
and the peaks at the other interfaces almost disappear, so that the two frequencies
approach the frequencies in single heterostructure. These characteristics just prove
the results in Table 2. Comparing Fig. 3A with Fig. 3B or Fig. 3C with Fig. 3D, we
can see that the couplings of six branches of IO phonon with higher frequencies (iH
branches) are stronger than those with lower frequencies (iL branches). Comparing
Fig. 3A with Fig. 3C or Fig. 3B with Fig. 3D, we found that, with the increasing
of qz, the coupling of each IO mode becomes weaker and weaker, which can be seen
clearly in Fig. 4.
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∣
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∣ as functions of qz for the eight branches of IO
phonon modes: the outer figure is for modes 1H, 2H, 3H and 6H, and the embedded
figure for modes 1L, 2L, 3L and 6L.
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The absolute values
∣

∣ΓIO
qz

(z)
∣

∣ as functions of qz for the eight branches of IO
phonon modes are plotted in Fig. 4. In fact, the outer figure is for 1H, 2H, 3H and
6H, and the embedded figure is for 1L, 2L, 3L and 6L. According to the discussion
of Fig. 3, z = 0, 14, 8 and 26 nm were chosen for the four branches of IO phonon
modes 1H (1L), 2H (2L), 3H (3L) and 6H (6L), respectively. It is seen that, as qz

is small (such as 0.2 nm−1), the
∣

∣ΓIO
qz

(z)
∣

∣ for the modes 1H, 2L, 3L and 6L reveal

slight oscillatory behaviour, but when qz is over 0.2 nm−1, the
∣

∣ΓIO
qz

(z)
∣

∣ for each
mode decreases monotonously with the increasing of qz. A similar behaviour for
each mode for higher values of qz is found because, for higher qz, the polarized
zone is smaller (refer to Fig. 3), and the electron – IO phonon interaction becomes
weaker. Comparing the modes iH with iL (i = 1, 2, 3 and 6), it is found that
electron – IO phonon coupling for the higher-frequency branch is more important
than that for the lower-frequency branch. Another interesting feature in Fig. 4 is
that the strong coupling obtained in the 2H and 1L branches is in the vicinity of
the center of the Brillouin zone (qz → 0). This is because, as qz → 0, the mode
2H with frequency ω+ and mode 1L with frequency ω− may cause a remarkable
polarization in media. Thus the frequency-forbidden behaviour of an asymmetric
heterostructure has significant influence on the electron–phonon interaction [12,13].

Next, we consider the relations between the theoretical results of IO phonon
modes obtained in this paper and some previous results of IO phonon modes in
fixed layer-number heterostructure systems. In fact, the work described in this pa-
per can be regarded as a generalization of previous work [6–13], namely, if the cor-
responding layer-number and material parameters for the heterostructure systems
are chosen, the results for the dispersion relations, the electron–coupling functions
of the IO phonons in two- to five-layer heterostructure systems can be obtained
[6–13]. Moreover, with a little modification, the results on the IO phonon modes
in the case of the finite boundary width, such as in Refs. [9] and [11] can also be
obtained. Through the analysis of the numerical results in this work and previous
work [6-8,10,12-13], it is found that the number of IO phonon modes in the systems
is 2(n− 1) (n ≥ 2). For example, the number of IO phonon modes in three- [6] and
four-layer [10,12] heterosturcture systems are four and six branches, while in the
seven-layer system, the number is twelve. Due to the asymmetry of the seven-layer
heterostructure system discussed in this paper, the frequency-forbidden behaviour
has been observed, which is analogous to the case in Ref. [13].

4. Summary

In the present paper, by using the determinant method, we have deduced the
interface-optical (IO) phonon modes in a n-layer coupling QW system within the
framework of the dielectric continuum approximation. The orthogonal relation of
the polarization vector, dispersion relation and the electron – IO phonon interaction
Hamiltonian have been derived. Numerical calculations on a seven-layer system re-
veal that there are twelve branches of IO phonon modes in the system. When qz

approaches 0, the frequency-forbidden behaviour is observed due to the asymmetry
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of the system [10]. When qz → ∞, each frequency value approaches one of the two
frequency values of single heterostructure. This feature is used to distinguish and
label these branches of the IO phonon modes. When qz is small, the spatial dis-
tribution of the coupling function ΓIO

qz
(z) does not reveal a very sharp peak. With

increasing qz, the spatial distribution of ΓIO
qz

(z) tends to be localized at some inter-

face. Furthermore, the coupling magnitude
∣

∣ΓIO
qz

(z)
∣

∣ becomes smaller and smaller.
In the case of weak coupling in multi-layer quantum systems, it seems appropriate
to use the perturbation method to investigate the polaron effects as in the case of
other low-dimensional heterostructures.

On the basis of the numerical results in this and previous work [6-8,10,12-13], it
is reasonable to draw the following conclusions for a n-layer coupling QW system
as shown in Fig. 1. The number of IO phonon modes in the system is 2(n − 1)
(n ≥ 2). On each interface, there exist two IO phonon modes. The dispersion
is obvious only when the wave vector in z-direction is small. With the increase
of the wave vector, the dispersion frequency of each mode approaches to the one
frequency value of the single heterostructure, which can be used to label the IO
phonon modes. Further study revealed that, as the wave vector increases, each IO
phonon mode is more and more localized in the vicinity of a certain interface, so
that each IO phonon frequency approaches one of the limiting frequency values of
the single heterostructure. This work can be regarded as a generalization of previous
work [6-14], and it provides an effective method to solve the phonon effects, such
as the polaronic effect, the bound polaronic effect and the effect of exciton–phonon
interaction in the multi-layer coupling quantum well systems.
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POLARNE GRANIČNE OPTIČKE OSCILACIJE I FRÖHLICHOVI
HAMILTONIJANI S ELEKTRONSKO-FONONSKIM MED– UDJELOVANJEM

U n-SLOJNOJ VEZANOJ KVANTNOJ JAMI

U približenju dielektričnog kontinuuma i primjenom determinantne metode, izveli
smo granične optičke (GO) fononske modove, relaciju za ortogonalnost polarizaci-
jskog vektora i Fröhlichov hamiltonijan s elektronsko-fononskim med–udjelovanjem
za n-slojnu vezanu kvantnu jamu. Proveli smo numeričke račune za sedmoslojni sus-
tav AlxGa1−xAs/GaAs. Raspravljamo GO fononsku disperzijsku relaciju i funkciju
vezanja elektrona i GO fonona. Na osnovi ishoda numeričkog računa ovog i ranijih
radova, izveli smo opća svojstva GO fononskih modova u sustavu n-slojne vezane
kvantne jame. Ovaj se rad može smatrati poopćenjem prethodnih istraživanja.
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