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In the direct-action form of classical electromagnetism we give the equation of mo-
tion for a classical massless bare charge without self-interaction in the presence of
an external field. That equation permits superluminal speeds and time-reversals,
and so is a realization of the Stueckelberg-Feynman view of electrons and positrons
as different segments of a single trajectory. We give a particular solution to a one
body problem, and briefly discuss some aspects of the two-body problem. There is
some discussion of the historical context of this effort, including the direct action
and absorber theories, and some speculation on how the massless bare charge may
acquire mass, and how these findings impact the problem of singular self-action.
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1. Introduction

Stueckelberg [1, 2] and Feynman [3] suggested that all electrons and positrons
are the same particle undergoing time reversals. Classical electrodynamics (CED)
prohibits a particle passing from a sub-luminal to a superluminal speed and under-
going a time-reversal, and therefore apparently cannot implement the Stueckelberg-
Feynman conjecture. However, this prohibition applies only to charged particles
possessing an intrinsic rest mass, whereas we show here that CED without the tra-
ditional inertial-mass action permits transitions from sub-luminal to superluminal
speeds by the same particle.

We take as a starting point here that the bare charge is free of both self-action
and compensating forces. Since radiation reaction is also an action of the parti-
cle’s fields upon itself, it follows that the bare charge is not subject to radiation
reaction, and, from energy and momentum conservation, that the secondary ra-
diation emitted by the particle can carry no independent energy or momentum.
These requirements are satisfied by the time-symmetric, direct-action without self-
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action form of electromagnetism that originated with Schwarzschild [4], Tetrode
[5], and Fokker [6] in the early part of the last century. Those early presentations
lacked an explanation for exclusively retarded radiation and the radiation reaction
on the source. Subsequently, Dirac [7] showed that radiation reaction arises if the
advanced fields are set to zero, for which the Wheeler and Feynman [8, 9] absorber
theory gave a physical justification. Here however, unlike those works, the charge
sources will not be ascribed an intrinsic (now necessarily non-electromagnetic) iner-
tial mass, because the focus of this document is on the behavior of classical charges
in their allegedly pre-mass condition.

In the direct-action electrodynamics, electromagnetic (EM) fields, if they are
used at all, are purely mathematical devices for conveying ‘interaction’ between
pairs of charged particles; there are no independent (vacuum) fields. A classical
particle then has no self energy - though there seems to be no simple way to rid the
corresponding quantized theories of divergences [10–13]. However, we will revisit
this issue in Sect. 4.3.

Initially, we will presume a state of affairs at zero Kelvin wherein the advanced
and retarded fields have equal status, wherein one is not cancelled and the other
enhanced at the location of the particle. The viability of the direct action formula-
tion at elevated (non-zero) temperatures however demands a plausible explanation
for the predominance of retarded radiation. The particular implementation of the
direct-action electromagnetism advocated by Wheeler and Feynman, in order to
explain the emergence of time-asymmetric retarded radiation, is contingent on the
existence of relatively cold distant absorbers of radiation on the future light cone.
These absorbers provide a thermal sink, permitting radiation energy and momen-
tum to flow away from local sources, thereby performing the role traditionally
played by the vacuum degrees of freedom. The flow of radiation energy is properly
accompanied by a reaction back upon the source, performing the role traditionally
played by the self-fields. The time-asymmetric boundary condition (cold absorbers
on the future light cone) also succeeds in explaining how time-asymmetric radiation
arises in an intrinsically time-symmetric theory. (Of course, the equations of clas-
sical electromagnetism - with or without field degrees of freedom - are intrinsically
time-symmetric.) In order to guarantee complete absorption on the future light
cone, the absorber theory places constraints on the rate of cosmological expansion,
which according to Davies [14, 15] are satisfied only by the oscillating Friedmann
cosmology - which is now out of favor. Davies claims that the constraints are also
satisfied by the steady-state theory which, however, has also fallen out of favor due
to its failure to explain the cosmic microwave background. In his comprehensive
review of the subject, Pegg [16] contests Davies’ claim that radiation in the steady-
state cosmology is perfectly absorbed by future matter, citing the fall-off with
increasing wavelength - and therefore red-shift - of absorbtion in a plasma. How-
ever, there may still be sufficient absorbtion in the steady-state cosmology through
the action of Thomson scattering, which remains independent of frequency for low
frequencies, and though elastic, removes energy from the primary wave.

Wheeler and Feynman also proposed an alternative to the theory of future
absorbers wherein the future is transparent and the history is perfectly absorbing
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to advanced radiation emitted from the present [8]. This possibility appears to be
consistent with the open (and flat) Friedmann cosmologies, and the steady-state
theory.

The investigation of a massless condition of a classical charge would benefit
from some indication of how the observed mass might arise classically. (The Higgs
mechanism, which otherwise satisfies that requirement, is excluded.) In particular
we have in mind attempts to explain inertial mass in electromagnetic terms - an
endeavour towards which Feynman was sympathetic [17]. It is not correct to include
in such attempts the now discarded models of the classical electron by Poincaré
[18] and updated by Schwinger [19] because these are not solely electromagnetic;
they rely upon non-electromagnetic forces to hold the particle together. Of greater
relevance are recent efforts to explain inertial mass by calling upon a special role
for the zero point field (ZPF) [20–27]. An alternative suggestion, favoring a fully
non-local electromagnetic origin of, specifically, electron mass, is given in Sect. 4.2.

2. Equation of motion

2.1. Action and the Euler equation

In the following, we begin with the simplest possible version of classical elec-
tromagnetism: with the particle stripped of intrinsic mass, and the fields stripped
of vacuum degrees of freedom, radiation reaction and time-asymmetry. We use the
convention uava = u0v0 − u · v and Heaviside-Lorentz units with c = 1, except for
the explicit calculation in Section 3.3.

The contribution to the action from a single massless charge, assuming the fields
are given, is just

I = −

∫
d4y Aµ (y) jµ (y) = −e

∫
dλAµ (x (λ))uµ (λ) , (1)

where we have used that the 4-current due to a single charge is

jµ (y) = e

∫
dλuµ (λ) δ4 (y − x (λ)) , uµ (λ) ≡

dxµ (λ)

dλ
, (2)

where λ is any ordinal parameterization of the trajectory, and where x and y are 4-
vectors. From its definition, the current is divergenceless for as long as the trajectory
has no visible end-points. In the event that it is necessary to refer to other particles,
let the particular source that is the subject of Eq. (1) have label l. And consistent
with the assumption of direct action without self action, the potential in Eq. (1)
must be that of other sources, which therefore can be written

Aµ

l
=

∑

k ; k /=l

Aµ
k , Aµ

k = G ∗ jµ
k , (3)
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where the bar over the l signifies that the potential is formed from contributions
from all sources except the lth source, G is the time-symmetric Green’s function
for the wave equation, and the ∗ represents convolution. Then

Aµ
k (y) =

1

4π

∫
d4x δ

(
(y − x)

2
)

jµ
k (x) =

ek

4π

∫
dκ δ

(
(y − xk (κ))

2
)

uµ
k (κ) , (4)

where (y − x)
2
≡ (y − x)

µ
(y − x)µ. These ‘particle-specific’ fields are the same as

those by Leiter [28]. Putting this into Eq. (3) and putting that into Eq. (1) and
then summing over l would cause each unique product (i.e. pair) of currents to
appear exactly twice. Considering every particle position as an independent degree
of freedom, the resulting total action, consistent with the action Eq. (1) for just
one degree of freedom, is therefore

Iall = −
∑

k, l; k /=l

ekel

8π

∫
dκ

∫
dλ δ

(
(xk (κ) − xl (λ))

2
)

uµ
k (κ) uµl (λ) . (5)

Equivalent to the supposition that the potential from the other sources, k /=l, is
given, is that the fields are in no way correlated with the motion of the single
source responsible for the current j in Eq. (1). Therefore, this investigation may be
regarded as an analysis of the state of affairs pertaining to the first of an infinite
sequence of iterations of the interaction between the lth current and the distant
k /= l currents responsible for the fields.

With the fields given, the Euler equation for the (massless) lone particle degree
of freedom in Eq. (1) is simply that the Lorentz force on the particle in question
must vanish,

F νµ

l
uµl = 0 , (6)

where F is the EM field-strength tensor, wherein the fields E and B are to be
evaluated along the trajectory. In 3+1 form, and omitting the particle labels, this
is

dt (λ)

dλ
E (t(λ),x (λ)) +

dx (λ)

dλ
× B (t(λ),x (λ)) = 0 (7)

where E and B can be found from the usual relations to A.

2.2. Confinement to a nodal surface

To have a solution for Eq. (6), the determinant of F must vanish, which gives

S (x (λ)) ≡ E (x (λ)) · B (x (λ)) = 0 . (8)

Note that though this condition imposes a constraint on the values of the fields,
it does so only on the trajectory itself. Consequently, Eq. (8) permits the inter-
pretation that it is a constraint on the set of possible paths that a trajectory can
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take through a given, and perfectly general, set of fields. It is consistent with the
condition that the Lorentz force on the particle must vanish - recognized as the
constraint on the fields such that there exists a frame in which the electric field
is zero. In an environment of arbitrary field variation, Eq. (8) selects the surface
upon which a charge source may conceivably see no electric field in its own frame.
Accordingly, Eq. (8) will be regarded as a constraint on the initial conditions - the
location of the charge at some historical time. Only if the source is initially placed
upon this surface, can a trajectory exist consistent with the presumption of mass-
lessness and consequent vanishing of the Lorentz force. At present it is not known
if Eq. (8) permits multiple, unconnected, closed surfaces, connoting localization of
the particle.

Since Eq. (8) is required to be true for all λ-time along the trajectory, it must be
true that all derivatives with respect to λ of the function S are zero. In particular,
in order to solve Eq. (6), we will need that

dS

dλ
= uµ∂µS = 0 , (9)

which is just the condition for particle to remain on the surface.

2.3. The trajectory of a massless charge

Writing Eq. (7) in the form

ṫE + ẋ × B = 0 , (10)

where dots indicate differentiation with respect to λ, it may be observed that
ẋ · E = 0; the velocity is always perpendicular to the local electric field. The vec-
tors E ×B and B are mutually orthogonal and both of them are orthogonal to E
because E · B = 0. Therefore, they can serve as an orthogonal basis for the velocity

ẋ = αE × B + βB , (11)

where α and β are undetermined coefficients. Substitution of this expression into
Eq. (9) gives

ṫE + α (E × B) × B = ṫE + α
(
(E·B) B − B2E

)
= 0 (12)

i.e. α = ṫ/B2 ,

unless E or B are zero. Substitution of Eqs. (11) and (12) into Eq. (9) then gives

ṫ
∂S

∂t
+

ṫ

B2
(E × B) · ∇S + βB · ∇S = 0 , (13)

i.e. β = −
ṫ

B2
B · ∇S

(
(E × B) · ∇S + B2 ∂S

∂t

)
,
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unless B·∇S is zero. With Eqs. (12) and (13), the velocity, Eq. (11), is

ẋ =
ṫ

B2B·∇S

(
(B · ∇S) E × B −

(
(E × B) · ∇S + B2 ∂S

∂t

)
B

)

=
ṫ

B2B · ∇S

(
(B × (E × B)) ×∇S − B2B

∂S

∂t

)
(14)

=
ṫ

B2B·∇S

((
B2E− (E·B) B

)
×∇S − B2B

∂S

∂t

)

=
ṫ

B·∇S

(
E ×∇S − B

∂S

∂t

)
.

With this the 4-velocity is
uµ = f (x(λ))w µ , (15)

with the convention that a 4-vector with a non-repeated symbolic-non-numerical
index, e.g. uµ, means the set of 4 coordinates rather than a single element, and

w µ ≡ −F̃µν∂νS =

(
B·∇S,E ×∇S − B

∂S

∂t

)
, (16)

where F̃ is the dual of F , i.e. F̃ ab = ǫabcdFcd where ǫ is the totally antisymmetric
tensor [29], and where

f (x(λ)) = ṫ/B · ∇S (17)

is an arbitrary function, undetermined by Eq. (10). That

uµ = −fF̃µκ∂κS (18)

solves Eq. (6) is easily confirmed upon substitution, whereupon

F νµuµ = −fF νµF̃µκ∂κS . (19)

But it is easily computed that

F νµF̃µκ = δν
κS , (20)

so Eq. (19) is
F νµuµ = −fS∂νS , (21)

which is zero on S = 0, as required.

2.4. Segmentation into a sequence of 4-vectors

One obtains from Eq. (14) that

v (x, t) =
dx/dλ

dt/dλ
=

E ×∇S − B∂S/∂t

B · ∇S
(22)
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is the ordinary velocity of the trajectory passing through (t(λ) ,x (λ)). The right-
hand side is an arbitrary function of x and t, decided by the fields. In general,
Eq. (22) will not admit a solution of the form x = f(t) since the solution trajectory
may be non-monotonic in time. With this caveat, in principle Eq. (22) may be solved
to give the trajectory, and is therefore a complete description for a single trajectory
as it stands, provided one ignores the sense (see below).

Let us suppose for now that the trajectory is sparse, so that uµ defined in
Eq. (15) cannot be a 4-vector field, because it is not defined off the trajectory.
Then one would like to parameterize the trajectory in a Lorentz invariant way, so
that u along the trajectory is a (Lorentz) 4-vector. This requires that the norm

uµuµ = f2 (x(λ))wµ (x(λ))wµ (x(λ)) (23)

is a constant scalar (i.e. a 4-scalar, as opposed to a relativistic scalar field) where

wµwµ = F̃µνF̃µλ (∂νS)
(
∂λS

)
= (B · ∇S)

2
− (E ×∇S−B∂S/∂t)

2
. (24)

Then it is clear from Eq. (23) that, up to an arbitrary universal constant, one must
set the function f to

f (x(λ)) =
σ√

|wµwµ|
, (25)

where σ = ±1. Then the norm is

uµuµ = sign (wµwµ) = sign
(
1−v2

)
(26)

which is 1 in the sub-luminal segments of the trajectory, and -1 in the superluminal
segments. Equations (15) and (25) now give the desired solution for the 4-velocity
in terms of the external fields

uµ ≡

(
dt

dλ
,
dx

dλ

)
=

σF̃µν∂νS√∣∣∣F̃αβF̃αγ (∂βS) (∂γS)
∣∣∣

=
σ (B · ∇S,E ×∇S − B∂S/∂t)√∣∣∣(B · ∇S)

2
− (E ×∇S − B∂S/∂t)

2
∣∣∣

(27)

= sign (σB·∇S)
1√

|1 − v2|
(1,v) ,

where v is given by Eq. (22). From Eq. (26) one has

uµuµ ≡

(
dt

dλ

)2

−

(
dx

dλ

)2

= sign
(
1 − v2

)
, i.e. (dλ)2 = (dt)2

∣∣1 − v2
∣∣ , (28)
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and therefore, following the particular choice Eq. (25) for f , λ is now a Lorentz in-
variant (i.e. with respect to sub-luminal boosts) parameter that in the sub-luminal
segments is just the commonly defined proper time τ , but generalised so that it
remains an ordinal parameter throughout the trajectory. The trajectory is now
divided up into a sequence of sub-luminal and superluminal segments, whose des-
ignation is Lorentz invariant, and for which the norm is 1 and −1, respectively.
(The segment boundary points and the sub-luminal and superluminal labels are
Lorentz invariant because the three conditions v < 1, v = 1, and v > 1 are Lorentz
invariants.) Hence, in each segment uµ is now a true Lorentz 4-vector.

2.5. Limit that the trajectory is a space-filling curve

In the limit that the trajectory is sufficiently dense in space, it will no longer be
possible to identify individual trajectories, and one must go over to a continuum
description. Then it seems reasonable to assume that at every x, t location (really
a small 4-volume centered on that location) observation implies an interaction with
the accumulated sum of visits by the trajectory to that location. In that case one
should define a Lorentz vector field jµ say,

jµ (x) =

∞∫

−∞

dλwµ = −

∞∫

−∞

dλ F̃µν∂νS . (29)

However, since the trajectory must lie on the surface Eq. (8), it cannot ‘fill’ 3-space.
The best it can do is to fill that surface, in which case jµ (x) is defined only on that
surface, and is otherwise zero. Since the trajectory is ‘conserved’, it follows that
the 4-divergence of its accumulation vanishes,

∂µjµ = −

∞∫

−∞

dλ
((

∂µF̃µν
)

(∂νS) − F̃µν∂µ∂νS
)

= 0 , (30)

i.e. jµ is a 4-current, in agreement with the identification made by Stuckelberg [2].

(That the first term is zero follows from Maxwell’s equation ∂µF̃µν = 0 [29], and

the second term is zero due to the antisymmetry of F̃ .) Consequently,

j0 (x) = ρ (x) =

∞∫

−∞

dλ B · ∇S (31)

is the density of a conserved charge, for which

j (x) =

∞∫

−∞

dλ (E ×∇S − B∂S/∂t) (32)

is the current density.
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2.6. CPT

There is some overlap here with the theory of tachyons, and much of the fol-
lowing may be inferred from the ‘Reinterpretation Principle’ of tachyon theory
[30, 2, 3]. However, it is to be stressed that we are dealing with a single ‘particle’
that is intrinsically massless, whereas the study of tachyons is generally concerned
with particles that have intrinsic ‘transcendental momentum’ - the tachyon coun-
terpart to the intrinsic mass of bradyonic (v < c) matter. As a consequence, tra-
ditionally the energy for both bradyons and tachyons becomes singular as speed of
light is approached from either side. Therefore speed of light constitutes a barrier,
making the labels bradyon and tachyon permanent attributes of these particles -
unlike the massless particle that is the focus of this document.

Fig. 1. A trajectory that reverses in ordinary time may be interpreted as giving
rise to pair creation and pair destruction events.

With reference to Fig. 1 wherein a time reversal occurs at point Q, the segments
PQ and QR have different signs for dt/dλ. However, which sign is attributed to
which segment (the direction of the arrow in the figure) is not decided by Eq. (22).
Instead, the sense of the trajectory must be initiated at some point ‘by hand’.
Noticing that Eqs. (17) and (25) give

sign (σB · ∇S) = sign

(
dt

dλ

)
, (33)

it is clear that σ = ±1 is the degree of freedom that permits one to choose the sign
of just one segment, the sign of all other segments on that trajectory being decided
thereafter. If there is only one trajectory, then the sign of σ is a common factor for
the whole action, so this choice will amount to no more than a convention without
any physical consequences unless some (additional) absolute sense specificity is
introduced into the dynamics. But if there are multiple, unconnected, trajectories,
then clearly their relative senses will be important.
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For given fields at a fixed space-time location (t,x), the change σ → −σ in the
equation of motion Eq. (27) is equivalent to dt → −dt, dx → −dx. Therefore,
consistent with CPT invariance, σ can be interpreted as the sign of the charge at
some fixed point on the trajectory. In accord with the conjecture of Stueckelberg and
Feynman, the alternating segments of positive and negative signs (of σB ·∇S) along
the trajectory can then be regarded as denoting electrons and positrons respectively.
From the perspective of uniformly increasing laboratory time t, the electrons and
positrons are created and destroyed in pairs, as illustrated in Fig. 1. Note that
charge is conserved in t just because these events occur in (oppositely charged)
pairs as entry and exit paths to and from the turning points. (If the total trajectory
is not closed, charge is not conserved at the time of the two endpoints of the whole
trajectory.)

For the particular case of an anticlockwise circular trajectory in x and t, Fig. 2
identifies the eight different segment types corresponding to charge type, direction
in time, direction in space, and speed (sub-luminal versus superluminal). Superlu-
minal, v > 1, segments remain superluminal when viewed from any (sub-luminally)
boosted frame. Likewise, segments with v < 1 remain sub-luminal when viewed
from any (sub-luminally) boosted frame. That is, as mentioned above, the labels
v < 1 and v > 1 are Lorentz invariant. Note though that the invariant status of these
labels is a consequence of the restriction of the boost transformations to sub-luminal
velocities. However, having permitted the massless particle to travel superluminally,
one should be prepared to consider augmentation of the traditional set of trans-
formations to include superluminal boosts of the frame of reference. Upon replacing

Y� ��Y� ��

W

[

� �, , ,� � � ! � �, , ,� � � !

� �, , ,� � � �� �, , ,� � � �

� �, , ,� � � �

� �, , ,� � � ! � �, , ,� � � !

� �, , ,� � � �

� �, , ,� � � ! � �, , ,� � � !

� �, , ,� � � �

� �, , ,� � � �

� �, , ,� � � !� �, , ,� � � !

� �, , ,� � � �

� �, , ,� � � �

Fig. 2. The bracketed symbols denote (sign of charge, sign of dt/dτ sign of dx/dτ ,
speed: > or < speed of light). In the interior of the circle the sign of the charge
is fixed, but can take either value in the absence of any other context – the choice
that it is positive is arbitrary. In the exterior of the circle, the bracketed symbols
denote the CPT-invariant alternative designation in which dt/dτ is always positive.
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the traditional γ in the Lorentz transformation formulae with γ = 1/
√

|1 − v2| and
permitting superluminal boosts (an ‘extended’ Lorentz transformation), the labels
v < 1 and v > 1 cease to be immutable aspects of the trajectory. The points v = 1,
however, remain immutable.

The sign of the direction in time of a sub-luminal segment cannot be changed by
applying a (sub-luminal) boost transformation and therefore the sign of the charge
is a Lorentz invariant. However, with reference to the labelling exterior to the
circle in Fig. 2 (wherein the direction in time is always positive), a superluminally-
moving charge can change sign under a (sub-luminal) boost transformation. This is
apparent from Fig. 1, where at the pair creation and destruction events dt/dλ = 0,
whereas dx/dλ /=0 implying that v = |dx/dt| there is infinite. And if extended
Lorentz transformations are permitted, then no part of the trajectory can be given
an immutable label corresponding to the sign of charge.

The hypersurface E · B = 0 is a Lorentz-invariant collection of events arising
here from the requirement that the determinant of F vanish. One might ask of the
other Lorentz invariant associated with the field strengths, E2 − B2, and why not
the hypersurface E2 − B2 = 0 instead? From the fact that the latter quantity is

the determinant of F̃ it can be inferred that the source of the broken symmetry
lies in the fact of the existence of the electric charge but not magnetic charge; the
trajectory of a massless magnetic monopole, were it to exist, would be constrained
to lie on the hypersurface E2 − B2 = 0.

3. Dynamics

3.1. Power flow

Whilst following the instructions of the EM field, the particle generates its own
advanced and retarded secondary fields as a result of its motion as determined by
the usual formulae of electromagnetism. By taking the scalar product of Eq. (22)
with v, one observes that

v (x(λ)) ·E (x(λ)) = 0 , (34)

from which it can be concluded that the massless charge cannot absorb energy
from the fields. (Of course, if the system were properly closed, one could not ar-
bitrarily pre-specify the fields; the incident and secondary fields would have to be
self-consistent.) The massless charge cannot absorb energy from the field because
there is no internal degree of freedom wherein such energy could be ‘stored’.

3.2. Acceleration

From Eq. (22) the proper acceleration of the massless charge is

aµ =
duµ

dλ
= uκ∂κuµ (35)
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where u is given in Eq. (27) and where the factor of σ2 = 1 has been omitted. To
define the motion, both E and B must be non-zero, or else it must be assumed
that one or both must default to some noise value. One might then ask if the space
part of the proper acceleration is correlated with the Lorentz force, i.e. whether
F · a = (E + v × B) · du/dλ is non-zero. But it is recalled that the massless
particle executes a path upon which the Lorentz force is always zero. Specifically,
from Eq. (22),

v × B =
(E ×∇S − B∂S/∂t) × B

B · ∇S

=
(E ×∇S) × B

B · ∇S
(36)

=
(E · B)∇S − (B · ∇S) E

B · ∇S

= −E ,

and therefore E + v × B = 0, and obviously therefore, F · a = 0. It is concluded
that the proper 3-acceleration is always orthogonal to the applied force.

3.3. Motion near a charge with magnetic dipole moment

As an example of a one-body problem, i.e. of a test charge in a given field, we
here consider a static classical point charge with electric field in SI units

E =
er̂

4πǫ0r2
(37)

that is coincident with the source of a magnetic dipole field of magnitude µ oriented
in the z direction

B =
µ0µ (3r̂z − rẑ)

4πr4
(38)

(see, for example, [29]). Then

E · B =
µ0eµz

8π2ǫ0r6
, (39)

and so the constraint that the particle trajectory be confined to the surface E · B =
0 demands that z = 0; i.e., the particle is confined to the equatorial plane for all
time. The gradient in the plane is

∇ (E · B)|z=0 =
µ0eµẑ

8π2ǫ0ρ6
, (40)
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where ρ =
√

x2 + y2. With this, and using that at z = 0 B = −µ0µẑ/4πρ3, one
obtains for the denominator in Eq. (22)

B · ∇ (E · B) = −
µ0

2eµ2

32π3ǫ0ρ9
. (41)

Since E · B is constant in time, the numerator in Eq. (22) is just

E ×∇ (E · B) =
µ0e

2µ

32π3ǫ02ρ8
ρ̂ × ẑ = −

µ0e
2µ

32π3ǫ02ρ8
φ̂ , (42)

the latter being a cylindrical polar representation of the vector with basis
(
ρ̂, φ̂, ẑ

)
.

Substitution of Eqs. (41) and (42) into Eq. (22) gives that the velocity in the
cylindrical basis is vρ = vz = 0 and

vφ ≡
dφ

dt
ρ =

eρ

µ0ǫ0µ
, (43)

which immediately gives that z = 0, ρ = constant, and

φ̇ = ec2/µ . (44)

So it is found that the massless charge is constrained to execute, with radian fre-
quency ec2/µ, a circular orbit in the equatorial plane about the axis of the magnetic
dipole, as illustrated in Fig. 3.

[� \ �� ] ��� � [� \ �� ] ��� �� [� \ �� ] ��� �� D � E �� F ��� �� D � E �� F ��� �� D � E �� F ��� �� [E \ E� ] E�� �� [F \ F� ] F�� ��

D[LV�RI
PDJQHWLF�GLSROH�PRPHQW

�HTXLSRWHQWLDO��VXUIDFH�RI
FRQVWDQW�HOHFWULF�ILHOG�VWUHQJWK

VXUIDFH�RI
FRQVWDQW�PDJQHWLF�ILHOG�VWUHQJWK

OHJDO�RUELW�RI
PDVVOHVV�WHVW�FKDUJH

Fig. 3. Orbit of massless charge in a field due to a single electric charge with a
magnetic dipole.
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The solution is determined up to two constants: the radius of the orbit, ρ, and
the initial phase (angle in the x, y plane when t = 0). It is interesting to note that
if the magnetic moment is that of the electron, i.e. µ = ec2/2ωc where ωc is the
Compton frequency, then the equatorial orbital frequency is twice the Compton
frequency, at all radii.

3.4. Some remarks on the two-body problem

Previous discussion of the motion of a source has been with the understanding
that the fields acting on it are given. Analysis based upon this assumption may
be regarded as the first iteration in an infinite perturbative series, whereupon a
completely closed - non-perturbative - two-body interaction is equivalent to having
iterated the particle field interaction to convergence. By two-body problem, we
mean here either a pair of trajectories each of which is forever superluminal or
forever sub-luminal, or a single trajectory with just one light-cone crossing in its
entire λ-history. (A trajectory that crosses its own light cone, emanating from any
4-point on the trajectory, cannot be regarded as a single charged particle, and
should be segmented into multiple particles accordingly.)

Let the electric field at r at current time t, due to a source at an earlier time
tret, i.e., due to a source at r (tret), be denoted by Eret ≡ E (r, t|r (tret)) , where
tret is the solution of tret = t − |r (t) − r (tret)| . With similar notation for the
magnetic field, the relation between retarded E and B fields from a single source
can be written ([18])

Bret = ŝret × Eret; ŝret ≡
x − x (tret)

|x − x(tret)|
. (45)

It is deduced that the retarded fields of a single source give Bret·Eret = 0 every-
where. In such circumstances the problem is ill-posed and Eq. (22) is insufficient to
determine the velocity of a test charge. Specifically, the component of the velocity
of the test charge in the direction of the B field is undetermined. In our case how-
ever, retarded and advanced fields are mandatory, and the total (time-symmetric,
direct action) fields are

E (x, t) =
1

2
(Eret + Eadv) , B (x, t) =

1

2
(Bret + Badv) . (46)

Their scalar product is

B (x, t) ·E (x, t) =
1

2
(Eret + Eadv) · (ŝret × Eret + ŝadv × Eadv)

=
1

2
(ŝret−ŝadv) · (Eret × Eadv)

which is not zero in general, so the massless two-body problem is not ill-posed.
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The ‘no-interaction’ theorem of Currie, Jordan, and Sudarshan [31] asserts that
the charged particles can move only in straight lines if energy, momentum and an-
gular momentum are to be conserved; the theorem effectively prohibits any EM
interaction if a Hamiltonian form of the theory exists. Hill [32], Kerner [33], and
others have observed that the prohibitive implication of the theorem can be circum-
vented if the canonical Hamiltonian coordinates are not identified with the physical
coordinates of the particles. (Trump and Shieve [34] claim that the original proof
is logically circular.) In any case, it is doubtful that the theorem can be applied to
the massless electrodynamics described here: The theorem applies specifically to
direct-action classical electrodynamics written in terms of a single time variable,
which, if time-reversals are permitted, seems unlikely to be generally feasible.

4. Discussion and speculation

4.1. QM-type behaviour

It observed that the particle does not respond to force in the traditional sense
of Newton’s second law. Indeed, its motion is precisely that which causes it to feel
no force, Eq. (10). Yet its motion is nonetheless uniquely prescribed by the (here
misleadingly termed) ‘force-fields’ E and B. These fields still decide the particle
trajectory (given some initial condition), just as the Lorentz force determines the
motion of a massive particle (again, given some initial condition). But the important
difference is that whereas in traditional (massive) classical electrodynamics the local
and instantaneous value of the external fields determine the acceleration, these fields
and their first derivatives determine the velocity.

It is also observed that each term in the denominator and numerator of Eq. (22)
is proportional to the same power (i.e. cubic) of the components of E and B. Hence,
in the particular case of radiation fields wherein the magnitudes E and B are equal,
the equation of motion of the massless test charge is insensitive to the fall-off of
intensity from the radiating source.

These two qualities of the response to external fields - velocity rather than
acceleration, and insensitivity to magnitude - are shared by the Bohm particle in
the de Broglie-Bohm presentation of QM [35–37], suggestive, perhaps, of a relation
between the Bohm point and the massless classical charge.

We recall that the Schrödinger and (‘first quantized’) Dirac wavefunctions are
not fields in an (a priori) given space-time in the manner of classical electromag-
netism, to which all charges respond equally. Rather, the multi-particle Schrödinger
and Dirac wavefunctions have as many spatial coordinate triples as there are par-
ticles (i.e., they exist in a direct product of 3-spaces). It is interesting that to some
degree this characteristic is already a property of direct action without self action.
To see this, note that for two bodies Eq. (6) becomes

F νµ
(2)

(
x(1)

) dx(1)

dλ
= 0, F νµ

(1)

(
x(2)

) dx(2)

dλ
= 0 (47)
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where F νµ
(2)

(
x(1)

)
is the field at x(1) (λ) due to the total future and historical contri-

butions from the particle at x(2) (κ) such that
(
x(1) (λ) − x(2) (κ)

)2
= 0. The point

is that if both particles pass just once through the 4-point ξ say, then, in general,
the forces acting on each at that point are not the same: F νµ

(2) (ξ) /=F νµ
(1) (ξ) . Thus,

in common with QM, the fields can no longer be considered as existing in a given
space-time to which all charges respond equally. Instead, each particle sees a differ-
ent field at the same location. As a result of the conclusion of Sect. 4.3, however,
this state of affairs may be subject to revision.

Assuming it has any connection to real physics, the massless particle discussed
here cannot be a classical relative of the neutrino. And it does not seem to be a
traditional classical object in need of quantization. Given the fact of the charge,
plus the suggestively QM-type behavior described above, and taking into account
the non-locality conferred by super-luminal speeds, it seems more appropriate to
investigate the possibility that the object under consideration is a primitive relative
- in a pre-mass and perhaps pre-classical and pre-quantum-mechanical condition -
of the electron.

4.2. Electron mass

One cannot expect convergence with QM or QFT for as long as the intrinsically
massless electron has not somehow acquired mass. Though a detailed explanation
will not be attempted here, it is observed that one of the Dirac Large Number
coincidences may be interpreted in a manner suggestive of a role for advanced
and retarded fields in the establishing electron mass. It was argued in Ref. [27]
that the coincidence me ∼ e2/RH , where RH is the Hubble radius, may be a
universal self-consistency condition maintained by EM ZPF fields. Though this
may be conceivable in a static universe, it cannot be true in our expanding universe
because the mean path length of a photon of (retarded) radiation is of the order of
the Hubble radius. Self-consistency may be possible, however, if both retarded and
advanced fields are employed, as is the case in this document. Then it is conceivable
that the calculations in Ref. [27] will retain their validity in realistic cosmologies,
about which it is hoped to say more elsewhere. Very briefly, the suggestion is that
the electron mass may be the result of a constructive interference of time-symmetric
fields reflecting - elastically - off distant sources at zero Kelvin. The idea may be
regarded as an extension of the absorber theory of Wheeler and Feynman, the
latter describing the elevated temperature behavior of the same scatterers, which
might then serve both as the explanation for the origin of inertial mass and the
predominance of retarded radiation.

4.3. Self action

In Sect. 2.1 the choice was made to deal with infinite self energy by excluding self
action and adopting the direct action version of electromagnetism. The distribution
of particle labels in Eqs. (3) – (5) enforces exclusion of the ‘self-self’ terms that
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connote self-interaction. However, a finding of this investigation is that a massless
particle in a given EM field obeying Eq. (27) can travel at both sub-luminal and
superluminal speeds, whose behavior undermines the labelling scheme. To see this,
with reference to the left-hand diagram in Fig. 4, if the particle never achieves speed
of light, then clearly it will never cross any light cone emanating from any point
on that trajectory. That is, the particle will never see its own light cone. Similarly
for a particle that is always superluminal. But with reference to the right-hand
diagram in Fig. 4, a trajectory with both sub-luminal and superluminal segments
necessarily intersects its own light cone. If the whole trajectory is deemed to be
non-self-interacting, in accordance with the assumption of no self action, then these
points of electromagnetic contact cannot contribute to the action. Yet these points
of interaction are similar in character to the ‘genuine’ - and therefore admitted -
points of contact between any two different trajectories (if indeed there are multiple,
distinguishable trajectories, each with its own starting points and end points). The
problem is that the ‘no self action’ rule, necessary for masslessness of the bare
charge, now impacts points of contact that are quite different to the infinitesimally
local self action, i.e. y = x in Eq. (4), that was the original target of the rule. In
order that these distant points on the same trajectory conform to the rule and be
excluded from self action it must be supposed that the trajectory, even after any
number of time reversals, forever distinguishes itself from other trajectories across
all space-time, which requires that each trajectory carries a unique label (quite
apart from its charge and state of motion). In addition to its intrinsic ugliness, this
strategy is unappealing because it precludes the possibility that all electrons and
positrons can be described by just one trajectory.

W

[

W

[

Fig. 4. Left-hand diagram: Sub-luminal trajectory showing light cones from three
selected space-time points. Right-hand diagram: Presence of both sub-luminal and
superluminal speeds necessarily gives rise to self-interaction, shown here by dashed
lines connecting selected space-time points (circles) on the trajectory.
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In order to save the masslessness conjecture, the alternative must be consid-
ered that electromagnetic contact is permitted between distant points on the same
trajectory, whilst the energy associated with contact at infinitesimally local points
- the Coulomb self-energy in the rest frame of the particle - is somehow rendered
finite. But then it would seem that we are back with the infinite self-energy prob-
lem we set out to avoid by assuming directly-coupled massless sources without
self-action, i.e., back to the problem of finite structures (that are not observed),
and Poincaré stresses (that connote new non-electromagnetic forces) which have
had to be abandoned - for recent examples see [19] and [38]. As observed by Pegg
[16], despite the contention in Ref. [8], Feynman subsequently decided that it was
unlikely that a successful theory could be constructed without having electrons act
upon themselves [39]. In support of this conclusion, Feynman cites the contribution
to a total scattering amplitude from a process in the vicinity of an existing elec-
tron in which an electron-positron pair is created, the latter then annihilating the
original electron, leaving only the new electron surviving. In QED, such a process
occurring in the close vicinity of an electron can be regarded as due to self-action.
But it cannot be excluded from the physics, because the same process is necessary
for a description of events involving discrete particles initially separated by large
distances in space. In Ref. [13] Davies comes to a similar conclusion about the
inevitability of self-action.

Here, distinct from those works, at least in so far as they address CED, is
the novel input of superluminal motion - a consequence of the presumed massless-
ness of the bare charge. Superluminal motion permits the possibility of singular
self-interaction between distant (i.e. not ‘infinitesimally-local’) points on the same
trajectory, leading in turn to the possibility that the Coulomb energy may be offset
by singular self-attraction between different points on the same trajectory. Initial
efforts in this direction [40], though incomplete, are promising. If that approach is
successful, an outcome will be that the distinguishing labels in Eq. (5) will become
unnecessary, and it becomes possible to represent the total current by

jµ (y) = |e|

∫
dλuµ (λ) δ4 (y − x (λ)) , (48)

wherein all electrons and positrons are now segments of a single, closed, time-
reversing trajectory.

5. Summary

We have investigated the accommodation of massless charges within the direct-
action without self-action form of classical electromagnetism. The charges move so
as to feel no Lorentz force, which, for given external fields, constrains their location
at all times to the surface E ·B = 0. These two conditions determine the equation
of motion for the particle, given by Eqs. (15) and (16). That equation permits sub-
liminal and superluminal speeds, time-reversals, and crossing of the light-speed
‘barrier’, connoting non-locality and pair creation and destruction. An interesting
solution has been given for a one-body problem.
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It is argued that if there is to be a correspondence with the physics of real
electrons, perhaps at a pre-quantum-mechanical level, inertial mass must originate
from external electromagnetic interaction. In agreement with Feynman’s later com-
ments, it is shown that the self-action cannot be excluded after all. It is concluded
that for the charge to retain its intrinsic masslessness, some additional remedy is re-
quired so as to render the Coulomb part of the self-action finite, in which, perhaps,
superluminal motion could turn out to be an essential novel ingredient.
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[18] H. Poincaré, Comptes Rendue 140 (1905) 1504.

[19] J. Schwinger, Found. Phys. 13 (1983) 373.

[20] B. Haisch, and A. Rueda, in Causality and Locality in Modern Physics, eds. G. Hunter,
S. Jeffers and J.-P. Vigier, Kluwer Academic, Dordrecht (1998) 171.

[21] B. Haisch, A. Rueda, A. and Y. Dobyns, Annalen der Physik 10 (2001) 393.

[22] B. Haisch, A. Rueda, A. and H. E. Puthoff, Phys. Rev. A 49 (1994) 678.

[23] A. Rueda and B. Haisch, Found. Phys. 28 (1998) 1057-1108.

FIZIKA A 12 (2003) 2, 55–74 73



ibison: massless classical electrodynamics

[24] A. Rueda and B. Haisch, in Causality and Locality in Modern Physics, eds. G. Hunter,
S. Jeffers and J.-P. Vigier, Kluwer Academic, Dordrecht (1998) 179.

[25] A. Rueda and B. Haisch, Phys. Lett. A 240 (1998) 115.

[26] R. Matthews, Science 263 (1994) 612.

[27] M. Ibison, in Gravitation and Cosmology: From the Hubble Radius to the Planck Scale,
eds. R. L. Amoroso, G. Hunter, M. Kafatos and J.-P. Vigier, Kluwer Academic, Dor-
drecht (2002) 483.

[28] D. Leiter, in Foundations of Radiation Theory and Quantum Electrodynamics, ed. A.
O. Barut, Dover, New York (1980) 195.

[29] J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, New York (1998).

[30] E. Recami, in Tachyons, Monopoles, and Related Topics, ed. E. Recami, North-Holland,
Amsterdam (1978) 3.

[31] D. G. Currie, T. F. Jordan and E. C. G. Sudarshan, Rev. Mod. Phys. 35 (1963) 350.

[32] R. N. Hill, in Relativistic Action at a Distance: Classical and Quantum Aspects, ed. J.
Llosa, Springer-Verlag, Berlin (1982) 104.

[33] E. H. Kerner, in The Theory of Action-At-A-Distance in Relativistic Particle Dynamics,
ed. E. H. Kerner, Gordon and Breach, New York (1972) vii.

[34] M. A. Trump and W. C. Schieve, Classical Relativistic Many-body Dynamics, Kluwer
Academic, Dordrecht (1999) 333.

[35] L. de Broglie, C. R. Acad. Sci. Paris 183 (1926) 24.

[36] D. Bohm, Phys. Rev. 85 (1952) 165.

[37] P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, Cam-
bridge (1993).

[38] M. Ibison, in Causality and Locality in Modern Physics, eds. G. Hunter, S. Jeffers, and
J.-P. Vigier, Kluwer, Dordrecht (1998) 477.

[39] R. P. Feynman, Phys. Rev. 76 (1949) 769.

[40] M. Ibison, in Has the Last Word Been Said on Classical Electrodynamics?, eds. A.
Chubykalo, V. Onoochin, A. Espinoza and R. Smirnov-Rueda, Rinton Press, New
Jersey (2004) Ch. 23.

BEZMASENA KLASIČNA ELEKTRODINAMIKA

U okviru klasične elektrodinamike s izravnim djelovanjem izvodimo jednadžbu
gibanja za klasičan bezmaseni naboj bez samodjelovanja u prisutnosti vanjskog
polja. Ta jednadžba dopušta nadsvjetlosne brzine i obrat vremena te predstavlja
ostvarenje Stueckelbergove i Feynmanove zamisli elektrona i pozitrona kao različitih
odsječaka jedne putanje. Izvodi se rješenje za poseban zadatak gibanja jedne čestice
i kratko raspravljaju neka pitanja sustava dva tijela. Daje se povijesni osvrt na te
pokušaje, uključivši teorije izravnog djelovanja i apsorpcije, kao i neka razmǐsljanja
kako bi goli naboj mogao dobiti masu, te kako postignuti rezultati promiču zadatak
samodjelovanja izdvojene čestice.
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