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Nonlinear propagation of surface waves in a cold electron-plasma half-space is the-
oretically investigated by using the method of multiple scale. It is shown that
high-frequency surface waves are modulationally unstable at a plasma – vacuum
interface. The growth of the modulational instability of the surface waves is dis-
cussed. It is also shown that the electric field associated with a finite amplitude
surface wave can take the form of an envelope soliton which propagates along the
plasma – vacuum interface with a velocity independent of the soliton height.
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1. Introduction

The possibility of plasma heating by means of large-amplitude waves has cre-
ated great interest in the study of nonlinear wave propagation in plasma. Moreover,
the surface wave modes promise a wide range of applications in many other fields
such as laser plasma interaction, plasma diagnostics, microelectronics, etc. In recent
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years, with a view to comparing with experimental results, investigations on the
nonlinear propagation of surface waves in bounded plasma have increased consid-
erably [1–10]. Yu and Zhelyazkov [5] made electromagnetic treatment for providing
dispersion relation even for a cold homogeneous plasma at a nearly electrostatic
limit of frequency range. They derived a nonlinear Schrödinger equation by making
a Taylor expansion of the linear dispersion relation which cannot account fully for
the effect of nonlinearity on the wave attenuation. On the other hand, Nikerson and
Johnston [6] analytically examined the existence of solitary surface plasma waves in
the electrostatic limit, including ponderomotive-force effects. The resulting solitary
wave has a somewhat arbitrary shape but must move with a particular velocity
parallel to the surface. From the surface waves in an unmagnetized semi-infinite
plasma, Gradov and Stenflo [7] showed the existence of high-frequency surface wave
solitons. A high-power circularly-polarized electromagnetic wave interacting with
an electron plasma can give rise to solitary wave structures of which the density
profile contains a depression at the centre, together with the shoulders of density
excess on the sides [8]. It is understood from this investigation that the density
shoulders are due to charge separation effects, since thermal dispersion has been
neglected. Lindgren et al. [9] considered the problem of nonlinear boundary condi-
tions relevant to the generation and evolution of surface modes in spatially bounded
plasma configurations. Propagation of nonlinear high-frequency TM surface waves
in a thin unmagnetized plasma layer bounded by vacuum has been investigated by
Zakharov and Shabat [10]. They showed that envelope-surface-wave solitons exist
from the modulation of finite amplitude electron waves by slow ion acoustic motion.
They also discussed the non-existence of solitons with purely electronic modulation.
Azarenkov et al. [11] studied the surface wave that produces and sustains the mi-
crowave gas discharge propagating along an external magnetic field and has an
eigenfrequency in the range in between electron-cyclotron and electron plasma fre-
quency. They obtained analytically and numerically the spatial distributions of the
produced plasma density, electromagnetic field, energy flow density, phase velocity
and reverse skin-depth of surface waves. Subsequently Sita and Dasgupta [12] have
studied the electrostatic surface waves propagating along the interface between a
warm magnetized plasma and vacuum. They investigated the general dispersion re-
lation in a closed form and certain special cases particularly when the magnetic field
is directed parallel and perpendicular to the boundary surface. A planar plasma
wave-guide with a single interface between an isotropic homogeneous plasma, con-
sidered as a nonlinear medium, and a linear dielectric (vacuum) has been studied
theoretically by Georgieva and Shivarova [13] with respect to the nonlinear effects
of self-action of surface waves. Electrostatic surface waves at the interface between
a low-temperature nonisothermal dusty plasma and a metallic wall have been inves-
tigated by Ostrikov and Yu [14] when a plasma contains massive negatively-charged
impurities or dust particles. They showed that impurities can significantly alter the
characteristics and damping of surface waves by reducing their phase velocity and
causing charge-related damping. Alam et al. [15] have studied the propagation of
surface waves at the interface of a semi-infinite dusty plasma considering the effect
of dust-charge fluctuation in a dusty plasma. They have shown that there exists a
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modified low-frequency mode of propagation in the plasma. They have evaluated
numerically the value of the attenuation coefficient of the wave and showed the
variation of the attenuation coefficient graphically for different values of the dust
density and charge variation.

In the present paper, we develop a detailed electro-magnetic treatment of non-
linear surface waves in a cold homogeneous electron plasma half-space. By the
method of multiple scales [1], we derive a nonlinear Schrödinger equation describ-
ing the nonlinear evolution of surface waves. From this equation, the criteria of
instability are obtained. Numerical computations are presented which show that
surface waves are modulationally unstable throughout the whole electro-magnetic
region of their existence when one disregards the ion motion. The growth rate of
this instability and existence of solitary waves have been discussed.

2. Formulation

We start from the following equation of continuity equation of motion of elec-
trons and Maxwell’s equation which governs the wave propagation in a cold plasma

∂n

∂t
+ N0∇ · u = −∇ ·

(

nu
)

, (1)

∂u

∂t
+

e

me

[

E +
1

c

(

u × B
)

]

= −
(

u · ∇
)

u, (2)

∇× E +
1

c

∂B

∂t
= 0, (3)

∇× B =
1

c

∂E

∂t
− 4πe(N0 + n)u

c
, (4)

∇ · E = −4πen, (5)

where the notations are standard (thus n is the perturbation of the uniform density,
N0, of electrons, u is the fluid velocity). Ions will be assumed to form a uniform
stationary background having density N0.

We consider a plasma which occupies the half-space x > 0 and is bounded by
vacuum. Let us consider a transverse electromagnetic (TEM) wave propagating
parallel to the interface (x-y plane) along the z-direction. The wave magnetic field
is along the y-direction and the wave electric field lies in the (x-z) plane [16]. For
vacuum, x < 0, Maxwell’s equations corresponding to vacuum are to be used.

To derive the dispersion relation for surface waves, the usual boundary condi-
tions, namely, the continuity of the tangential components of electric and magnetic
fields are used.
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3. Lowest-order solutions for first, second and zero-th

harmonic components

To obtain the equations for modulated surface waves, we make the following
Fourier expansion for the field quantities

W
(

n, ux, uz, Ex, Ez, By, Evx, Evz, Bvy

)

,

W = ǫ2W0 +

∞
∑

s=1

ǫs
[

Ws exp(isψ) + W ∗

s exp(−isψ)
]

(6)

in which ψ = kz−ωt, (ω is the wave frequency and k is the wave number) and W0,
Ws and W ∗

s are functions of x, ζ, τ where

ζ = ǫ(z − Cgt), τ = ǫ2t. (7)

Here the subscript v denotes the field quantities in vacuum (x < 0). In Eq. (7),
Cg = dω/dk is the group velocity and ǫ is a small parameter.

Substituting the expansion (6) in Eqs. (1)–(4) and the Maxwell’s equations
corresponding to free space, and then equating on both sides the coefficients of
exp(iψ) and exp(2iψ), we get two sets of equations in component forms which we
call I and II, respectively. In the set of equations I and II only terms containing
ǫ with power up to 3 and 2, respectively, are to be retained as other terms thus
neglected will have no influence on the evolution in the lowest order.

We now make the following perturbation expansion for the field quantities W0,
Ws and W ∗

s , which we denote by Pj (j = 0, 1, 2, . . .)

Pj = P
(1)
j + ǫP

(2)
j + ǫ2P

(3)
j + . . . . (8)

Keeping in mind that for a surface wave field, the quantities decrease exponentially
as we move away from the interface due to the self-consistent bunching of the surface
charges, we solve the lowest order equations obtained from the set of equations I
after substituting the expansion (8). Thus we get for the first harmonic quantities
in the lowest order the following solutions

n
(1)
1 = 0,

u
(1)
x1 = α

eωk

mek⊥(ω2
e − ω2)

e−βx, u
(1)
z1 = −iα

eωβ

mek⊥(ω2
e − ω2)

e−βx,

E
(1)
x1 = iα

kω2

k⊥(ω2
e − ω2)

e−βx, E
(1)
z1 = α

ω2β

k⊥(ω2
e − ω2)

e−βx,

B
(1)
y1 = −iα

ω

k⊥c
e−βx, E

(1)
vx1 = −iα

k

k⊥
ek⊥x,

E
(1)
vz1 = α ek⊥x, B

(1)
vy1 = −iα

ω

k⊥c
ek⊥x, (9)
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and the linear dispersion relation

β = −k⊥ε(ω) (10)

where

ε(ω) = 1 − ω2
e

ω2
, β2 = k2 − ω2

c2
ε(ω),

k2
⊥

= k2 − ω2

c2
, ω2

e =
4πN0e

2

me
. (11)

β and k⊥ are the wave attenuation coefficients in plasma and vacuum semi-spaces,
respectively. ωe is the electron plasma frequency and α represents the amplitude of

the wave field E
(1)
z at the surface. We seek an evolution equation for α. Similarly,

solving the lowest-order equations obtained from the set of equations II, after sub-
stituting the expansion (8), we get the following solutions for the second harmonic
components, where we use the solutions (9),

n
(1)
2 = −α2 c2a2(β

2 − k2)

2πe(ω2
e − 4ω2)

e−2βx,

u
(1)
x2 = iα2 e

2meω

[

2k

β2
C1e

−β2x + βC2e
−2βx

]

,

u
(1)
z2 = α2 e

2meω

[

C1e
−β2x + kC2e

−2βx

]

,

E
(1)
x2 = −α2

[

2k

β2
C1e

−β2x +
a2c

2β

ω2
e − 4ω2

e−2βx

]

,

E
(1)
z2 = iα2

[

C1e
−β2x +

a2c
2k

ω2
e − 4ω2

e−2βx

]

,

B
(1)
y2 = α2 c(β2

2 − 4k2)

2ωβ2
C1e

−β2x, (12)

where

a2 =
eω2ω2

e (β2 − k2)

mec2k2
⊥

(ω2
e − ω2)2

, C1 =
2ka2ω

2c2β2

k⊥(ω2
e − 4ω2)2 − 2ω2β2(ω2

e − 4ω2)
,

C2 =
4a2ω

2c2

ω2
e (ω2

e − 4ω2)
, β2

2 = 4k2 +
(ω2

e − 4ω2)

c2
. (13)

To find the zero-th harmonic (i.e low-frequency) components of field quantities,
we neglect the wave magnetic field and introduce the electric potential φ through
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the relation E = −∇φ. Thus we obtain from Eqs. (1) – (5) the following equations
governing low-frequency surface waves

∂n

∂t
+ N0∇ · u = −∇ ·

(

nu
)

, (14)

∂u

∂t
− e

me
∇φ = −

(

u · ∇
)

u, (15)

∇2φ = 4πen. (16)

For vacuum

∇2φv = 0. (17)

Substituting the expansion (6) and a similar expansion for φ, φv in Eqs. (14) –
(17), and then equating the terms independent of ψ on both sides, we get the set
of equations III. The lowest-order equations, obtained from the set of equations III
after substituting perturbation expansion like (8) for the field quantities, are solved
by applying the usual boundary conditions (continuity of φ and normal electric
displacement), and keeping in mind that for surface waves field quantities decay
away from the interface. Thus we obtain the following solution in the lowest order
for the zero-th harmonic components

n
(1)
0 = αα∗

2ω2k2β2

πmeK2
I (ω2

e − ω2)2
e−2βx,

u
(1)
x0 = 0,

u
(1)
z0 = αα∗

e2ω2(β2 − 2k2)

mek2
⊥

(ω2
e − ω2)2Cg

e−2βx. (18)

Other quantities, which we do not write explicitly, will not be useful in our analysis.

4. Derivation of the modulation equation

Collecting the coefficient of ǫ3 from both sides of the set of equations I, after
substituting the perturbation expansion (8), we get a set of equations for the first
harmonic quantities in the third order which can be put in the following matrix
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form

































−iω N0
∂

∂x
ikN0 0 0 0

0 −iω 0
e

me
0 0

0 0 −iω 0
e

me
0

0 0 0 ik
∂

∂x
− iω

c

0
4πeN0

c
0

iω

c
0 −ik

0 0
4πeN0

c
0

iω

c

∂

∂x







































































n
(3)
1

u
(3)
x1

u
(3)
z1

E
(3)
x1

E
(3)
z1

B
(3)
y1







































=



































M1

M2

M3

M4

M5

M6



































, (19)













ik − ∂

∂x
− iω

c
iω

c
0 −ik

0
iω

c

∂

∂x



























E
(3)
vx1

E
(3)
vz1

B
(3)
vy1















=











Mv1

Mv2

Mv3











, (20)

where

M1 = m1 −
∂n1

∂τ
− N0

∂u
(2)
z1

∂ξ
+ Cg

∂n
(2)
1

∂ξ
,

M2 = m2 −
∂u

(1)
x1

∂τ
+ Cg

∂u
(2)
x1

∂ξ
,

M3 = m3 −
∂u

(1)
z1

∂τ
+ Cg

∂u
(2)
z1

∂ξ
,

M4 = m4 −
1

c

∂B
(1)
y1

∂τ
− ∂E

(2)
x1

∂ξ
+

Cg

c

∂B
(2)
y1

∂ξ
,

M5 = m5 +
1

c

∂E
(1)
x1

∂τ
+

∂B
(1)
y1

∂ξ
− Cg

c

∂E
(2)
x1

∂ξ
,

M6 = m6 +
1

c

∂E
(1)
z1

∂τ
− Cg

c

∂E
(2)
z1

∂ξ
,

m1 = − ∂

∂x

[

n
(1)
2 u

(1)
x1 + n

(1)
2 u

(x1)∗
x1

]

− ik
[

n
(1)
0 u

(1)
z1 + n

(1)
2 u

(1)∗
z1

]

,

m2 = − ∂

∂x

[

u
(1)
x2 u

(1)∗
x1

]

− ik
[

u
(1)
z0 u

(1)
x1 + 2u

(1)∗
z1 u

(1)
x2 − u

(1)
z2 u

(1)∗
x1

]

,
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+
e

mec

[

u
(1)
z0 B

(1)
y1 + u

(1)∗
z1 B

(1)
y2 − u

(1)
z2 B

(1)∗
y1

]

,

m3 = −
[

u
(1)
x1

∂u
(1)
z0

∂x
+ u

(1)
x2

∂u
(1)∗
z1

∂x
+ u

(1)∗
x1

∂u
(1)
z2

∂x

]

− ik
[

u
(1)
z0 u

(1)
z1 + u

(1)∗
z1 u

(1)
z2

]

− e

mec

[

u
(1)
x1 B

(1)
y2 + u

(1)
x2 B

(1)∗
y1

]

,

m4 = 0, m5 = −4πe

c

[

n
(1)
0 u

(1)
x1 + n

(1)
2 u

(1)∗
x1

]

,

m6 = −4πe

c

[

n
(1)
0 u

(1)
z1 + n

(1)
2 u

(1)∗
z1

]

,

Mv1 = −1

c

∂B
(1)
vy1

∂τ
− ∂E

(2)
vx1

∂ξ
+

Cg

c

∂B
(2)
vy1

∂ξ
,

Mv2 =
1

c

∂E
(1)
vx1

∂τ
+

∂B
(2)
vy1

∂ξ
− Cg

c

∂E
(2)
vx1

∂ξ
,

Mv3 =
1

c

∂E
(1)
vz1

∂τ
− Cg

c

∂E
(2)
vz1

∂ξ
. (21)

The boundary conditions are

(

E
(3)
z1

)

x=0+ =
(

E
(3)
vz1

)

x=0−
,

(

B
(3)
y1

)

x=0+ =
(

B
(3)
vy1

)

)x=0− . (22)

We multiply Eq. (14) from the left side by the row matrix [f1, f2, f3, f4, f5, f6],
where the quantities fm are assumed to be functions of x and vanish at x = ∞,
and integrate the resulting equation with respect to x from 0 to ∞. Similarly,
we multiply Eq. (20) by the row matrix [fv1, fv2, fv3] and integrate the resulting
equation with respect to x from −∞ to 0 where the functions fvl are assumed to
vanish at x = −∞. On addition, the two equations thus obtained give the following
equation

∞
∫

0

6
∑

m=1

fmMmdx +

0
∫

−∞

3
∑

l=1

fvlMvldx = 0 , (23)

provided we use the boundary conditions (22), and choose the functions fm, fvl in
such a way that they can satisfy the following equations and boundary conditions

f1 = 0, −iωf2 +
4πeN0

c
f5 = 0, −iωf3 +

4πeN0

c
f6 = 0,

e

me
f2 + ikf4 + i

ω

c
f5 = 0,

e

me
f3 +

∂f4

∂x
+ i

ω

c
f6 = 0,
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−i
ω

c
f4 − ikf5 −

∂f6

∂x
= 0, ikfv1 +

iω

c
fv2 = 0,

∂fv1

∂x
+ i

ω

c
fv3 = 0, −i

ω

c
fv1 − ikfv2 −

∂fv3

∂x
= 0, (24)

(f4)x=0+ = (fv1)x=0− and (f6)x=0+ = (fv3)x=0− . (25)

The solutions of Eqs. (24) under the boundary conditions (25) are easily found to
be the following

f1 = 0, f2 = −A
4πeN0kω

ek⊥(ω2
e − ω2)

e−βx,

f3 = −iA
4πeN0ωβ

ek⊥(ω2
e − ω2)

e−βx, f4 = −iA
ω

k⊥c
e−βx,

f5 = −iA
kω2

k⊥(ω2
e − ω2)

e−βx, f6 = A
βω2

k⊥(ω2
e − ω2)

e−βx,

fv1 = −iA
ω

k⊥c
ek⊥x, fv2 = iA

k

k⊥
ek⊥x, fv3 = Aek⊥x, (26)

where A is some arbitrary constant independent of x.

It will be found subsequently that Eq. (23) leads to the nonlinear Schrödinger
equation. We are yet to determine the first harmonic quantities in the second order.
To deal with these, we take the help of a similar but linear problem with slightly
different wave number k ′ = k + ǫ. Following Blenerhasset [17], the problem is
formulated as follows

−iω ′F1 + N0
∂F2

∂x
+ ik ′N0F3 = 0, −iω ′F2 +

e

me

F4 = 0,

−iω ′F3 +
e

me

F5 = 0, −ik ′F4 −
∂F5

∂x
− iω ′

c
F6 = 0,

4πeN0

c
F2 + i

ω ′

c
F4 − ik ′F6 = 0,

4πeN0

c
F3 + i

ω ′

c
F5 +

∂F6

∂x
= 0,

ik ′Fv1 −
∂Fv2

∂x
− i

ω ′

c
Fv3 = 0, i

ω ′

c
Fv1 − ik ′Fv3 = 0,

i
ω ′

c
Fv2 +

∂Fv3

∂x
= 0, (27)

where

k ′ = k + ǫ, and ω ′ = ω(k + ǫ).

Fm and Fvl are functions of x such that Fm vanishes at x = ∞ and Fvl vanishes
at x = −∞. Further, they satisfy the following boundary conditions

(

F5

)

x=0+ =
(

Fv2

)

x=0−
,
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(

F6

)

x=0+ =
(

Fv3

)

x=0−
. (28)

Now make the following expansions

Fm = F (1)
m + ǫF (2)

m + ǫ2F (3)
m + . . . ,

Fvl = F
(1)
vl + ǫF

(2)
vl + ǫ2F

(3)
vl + . . . ,

ω′ = ω + ǫCg + ǫ2
1

2

dCg

dk
. (29)

Substituting the expansions (29) in Eqs. (27) and (28), and then equating the
coefficients of like powers of ǫ from both sides, we get equations and boundary

conditions satisfied by different order quantities F
(j)
m , F

(j)
vl (j = 1, 2, 3, . . .). Thus

F
(1)
m , F

(1)
vl are found to satisfy a set of equations and boundary conditions identical

in form to those satisfied by Φ
(1)
m and Φ

(1)
vl where

Φ(1)
m =

[

n
(1)
1 , u

(1)
x1 , u

(1)
z1 , E

(1)
x1 , E

(1)
z1 , B

(1)
y1

]

,

Φ
(1)
vl =

[

E
(1)
vx1, E

(1)
vz1, B

(1)
vy1

]

.

So, we can set

F (1)
m = Φ(1)

m ,

F
(1)
vl = Φ

(1)
vl . (30)

Setting

F (2)
m = αΨ(2)

m , F
(2)
vl = αΨ

(2)
vl (31)

in the equations satisfied by F
(2)
m , F

(2)
vl and

Φ(2)
m = −i

∂α

∂ξ
χ(2)

m , Φ
(2)
vl = −i

∂α

∂ξ
χ

(2)
vl , (32)

where

Φ(2)
m =

[

n
(2)
1 , u

(2)
x1 , u

(2)
z1 , E

(2)
x1 , E

(2)
z1 , B

(2)
y1

]

, Φ
(2)
vl =

[

E
(2)
vx1, E

(2)
vz1, B

(2)
vy1

]

(33)

in equations satisfied by Φ
(2)
m , Φ

(2)
vl , which are obtained from the set of equations I

after substituting the expansion (8) and equating the coefficients of ǫ2 from both

sides, we find that ψ
(2)
m , ψ

(2)
vl and χ

(2)
m , χ

(2)
vl satisfy same set of equations and bound-

ary conditions. Hence, we can identify ψ
(2)
m with χ

(2)
m and Ψ

(2)
vl with χ

(2)
vl , i. e.

ψ(2)
m = χ(2)

m and ψ
(2)
vl = χ

(2)
vl . (34)
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Setting F
(3)
m = αψ

(3)
m and F

(3)
vl = αψ

(3)
vl in the equations obtained from Eq.(27)

after substituting the expansion (29) and equating the coefficient of ǫ2 from both

sides, we obtain the following equations satisfied by ψ
(3)
m , ψ

(3)
vl , where we use the

relations (30) and (31),

































−iω N0
∂

∂x
ikN0 0 0 0

0 −iω 0
e

me
0 0

0 0 −iω 0
e

me
0

0 0 0 ik
∂

∂x
− iω

c

0
4πeN0

c
0

iω

c
0 −ik

0 0
4πeN0

c
0

iω

c

∂

∂x







































































ψ
(3)
1

ψ
(3)
2

ψ
(3)
3

ψ
(3)
4

ψ
(3)
5

ψ
(3)
6







































=



































N1

N2

N3

N4

N5

N6



































, (35)













ik − ∂

∂x
− iω

c
iω

c
0 −ik

0
iω

c

∂

∂x

























ψ
(3)
v1

ψ
(3)
v2

ψ
(3)
v3













=











Nv1

Nv2

Nv3











, (36)

where

N1 = i
(

Cgψ
(2)
1 − N0ψ

(2)
3 + Pθ

(1)
1

)

, N2 = i
(

Cgψ
(2)
2 + Pθ

(1)
2

)

,

N3 = i
(

Cgψ
(2)
3 + Pθ

(1)
3

)

, N4 = i

(

− ψ
(2)
4 +

Cg

c
ψ

(2)
6 +

1

c
Pθ

(1)
6

)

,

N5 = i

(

− Cg

c
ψ

(2)
4 + ψ

(2)
6 − 1

c
Pθ

(1)
4

)

, N6 = i

(

− Cg

c
ψ

(2)
5 − 1

c
Pθ

(1)
5

)

,

Nv1 = i

(

− ψ
(2)
v1 +

Cg

c
ψ

(2)
v3 +

1

c
Pθ

(1)
v3

)

, Nv2 = i

(

ψ
(2)
v3 − Cg

c
ψ

(2)
v1 − 1

c
Pθ

(1)
v1

)

,

Nv3 = i

(

− Cg

c
ψ

(2)
v2 − 1

c
Pθ

(1)
v2

)

, (37)

in which

P =
1

2

dCg

dk
, θ(1)

m =
Φ

(1)
m

α
, θ

(1)
vl =

Φ
(1)
vl

α
. (38)
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The boundary conditions satisfied by ψ
(3)
m , ψ

(3)
vl are

ψ
(3)
5 |x=0+ = ψ

(3)
v2 |x=0− ,

ψ
(3)
6 |x=0+ = ψ

(3)
v3 |x=0− . (39)

Following the same procedure as adopted in deriving the equation (23) from the
set of Eqs. (19) – (22), we obtain from Eqs. (34) – (39) the following equation

∞
∫

0

6
∑

m=1

fmNmdx +

0
∫

−∞

3
∑

l=1

fvlNvldx = 0. (40)

Using Eqs. (31)–(33) and (38), Eqs. (21) can be rewritten as follows

M1 = α2α∗m̄1 −
∂α

∂τ
θ
(1)
1 − i

∂2α

∂ξ2

(

Cgψ
(2)
1 − N0ψ

(2)
3

)

,

M2 = α2α∗m̄2 −
∂α

∂τ
θ
(1)
2 − i

∂2α

∂ξ2
Cgψ

(2)
2 ,

M3 = α2α∗m̄3 −
∂α

∂τ
θ
(1)
3 − i

∂2α

∂ξ2
Cgψ

(2)
3 ,

M4 = α2α∗m̄4 −
1

c

∂α

∂τ
θ
(1)
6 − i

∂2α

∂ξ2

(

− ψ
(2)
4 +

Cg

c
ψ

(2)
6

)

,

M5 = α2α∗m̄5 +
1

c

∂α

∂τ
θ
(1)
4 − i

∂2α

∂ξ2

(

ψ
(2)
6 − Cg

c
ψ

(2)
4

)

,

M6 = α2α∗m̄6 +
1

c

∂α

∂τ
θ
(1)
5 + i

∂2α

∂ξ2

Cg

c
ψ

(2)
5 ,

Mv1 = −1

c

∂α

∂τ
θ
(1)
v3 − i

∂2α

∂ξ2

(

− ψ
(2)
vl +

Cg

c
ψ

(2)
v3

)

,

Mv2 =
1

c

∂α

∂τ
θ
(1)
v1 − i

∂2α

∂ξ2

(

ψ
(2)
v3 − Cg

c
ψ

(2)
v1

)

,

Mv3 =
1

c

∂α

∂τ
θ
(1)
v2 + i

∂2α

∂ξ2

(

Cg

c
ψ

(2)
v2

)

,

m̄1 = − ∂

∂x

(

θ
(0)
1 θ

(1)
2 + θ

(2)
1 θ

(1)⋆
2

)

− ik
(

θ
(0)
1 θ

(1)
3 + θ

(2)
1 θ

(1)⋆
3

)

,

m̄2 = − ∂

∂x

(

θ
(0)
2 θ

(1)∗
2

)

− ik
(

θ
(0)
3 θ

(1)
2 + 2θ

(0)
3 θ

(2)∗
2 − θ

(2)
3 θ

(1)∗
2

)

+
e

mec

(

θ
(0)
3 θ

(1)
6 + θ

(1)∗
3 θ

(2)
6 + θ

(2)
3 θ

(1)∗
6

)

,
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m̄3 = −
(

θ
(1)
2

∂

∂x
θ
(0)
3 + θ

(2)
2

∂

∂x
θ
(1)∗
3 + θ

(1)∗
2

∂

∂x
θ
(2)
3

)

− ik
(

θ
(0)
3 θ

(1)
3 + θ

(1)∗
3 θ

(2)
3

)

− e

mec

(

θ
(1)∗
2 θ

(2)
6 + θ

(2)
2 θ

(1)∗
6

)

,

m̄4 = 0, m̄5 = −4πe

c

(

θ
(0)
1 θ

(1)
2 + θ

(2)
1 θ

(1)∗
2

)

,

m̄6 = −4πe

c

(

θ
(0)
1 θ

(1)
3 + θ

(2)
1 θ

(1)∗
3

)

, (41)

where

θ(2)
m =

Φ
(2)
m

α2
, θ

(0)
1 =

n
(1)
0

αα∗
, θ

(0)
3 =

u
(1)
z0

αα∗
. (42)

Note that the quantities θ
(1)
m , θ

(1)
vl are given by Eq. (9), θ

(2)
m by Eq. (12) and θ

(0)
1 ,

θ
(0)
3 by Eq. (18), all set with α = 1.

Now, using Eqs. (40) and (41), we get from Eq. (23) the following nonlinear
Schrödinger equation which describes the nonlinear evolution of finite-amplitude
surface waves in a homogeneous cold-electron-plasma half-space,

i
∂α

∂τ
+ P

∂2α

∂ξ2
= Qα2α∗, (43)

where

P =
1

2

dCg

dk
,

Q = i

∞
∫

0

dx

6
∑

j=1

f̄jm̄j ×
[

∞
∫

0

dx

( 3
∑

l=1

f̄lθ
(4)
l +

1

c
f̄4θ

(1)
6 − 1

c
f̄5θ

(1)
4 − 1

c
f̄6θ

(1)
5

)

+
1

c

0
∫

−∞

dx

(

f̄v1θ
(1)
v3 − f̄v2θ

(1)
v1 − f̄

(1)
v3 θ

(1)
v2

)]−1

,

in which

f̄i =
fj

A
, f̄vl =

fvl

A

and are given by Eq. (26) with A = 1.

Using the previous solutions, we obtain

Cg =
(2ω2 − ω2

e )c2k

(2ω2 − ω2
e − k2c2)ω

, (44)
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P =
(2ω2 − ω2

e )c2 + 8ωkCgc
2 − (6ω2 − ω2

e − 2k2c2)C2
g

2ω(2ω2 − ω2
e − k2c2)

, (45)

Q =
e2ω3ω2

e

2m2
ek

2
⊥

(ω2
e − ω2)4(ω2

e − 4ω2)

[

8ω2k4β +
ω2(β2 − k2)3

β

−16ω4βk2(β2 + k2)

ω2
e

− 2ω2ω4
ek2(β2 − k2)(2k2 + ββ2)

ω2
ek⊥ − 2ω2(2k⊥ + β2)

]

×
[

k2

k⊥
+

ω2

2βc2
+

ω2(ω2
e + ω2)(k2 + β2)

2β(ω2
e − ω2)2

]−1

. (46)

5. Results and discussion

Solutions of the nonlinear Schrödinger equation like (43) have been extensively
studied in connection with nonlinear propagation of waves of various kinds. It is a
well known result that a uniform plasma wave is modulationally stable or unstable
depending on whether

PQ > 0 or PQ < 0. (47)

So, with the values of P and Q given, respectively, by Eqs. (45) and (46), for
PQ < 0, one obtains the condition for the modulational instability of a surface wave
propagating parallel to the interface of a cold homogeneous electron-plasma half-
space and vacuum. Numerical computation shows that the surface wave at a cold
homogeneous electron-plasma half-space is modulationally unstable throughout the
whole electro-magnetic region where they exist. The maximum growth rate gmax

of this instability is given by [18]

gmax = α2
0

∣

∣Q
∣

∣ (48)

where α0 is a real constant.

By using the inverse scattering method, Zakharav and Shabat [10] solved the
nonlinear Schrödinger equation like (43) for an initial value problem and showed
that in the modulationally unstable case, an initial distribution tends to evolve
into a series of solitary wave packets called envelope solitons. The formation of soli-
tons in the nonlinear stage of instability can be considered as a dynamical balance
between the dispersion effects and nonlinear effects. For PQ < 0, Eq. (43) has a
solution of the form of an envelope soliton. Representing the complex amplitude α
by ρ(ξ, τ) exp[iσ(ξ, τ)], it can be shown that the envelope soliton solution is given
as

ρ
(

ξ − Vgτ
)

=
√

2ρ0cosh−1

[

√

∣

∣Q
∣

∣/
∣

∣P
∣

∣ρ0

(

ξ − Vgτ
)

]

, (49)

where the soliton speed Vg is independent of the soliton amplitude ρ0. Thus the
electric field associated with a finite-amplitude surface wave can take the form of
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an envelope soliton which propagates along the plasma – vacuum interface with a
velocity independent of the soliton height.

6. Summary and concluding remarks

We make detailed electromagnetic treatment of nonlinear surface waves in a
cold, homogeneous electron-plasma half-space. It has been shown that these waves
are modulationally unstable throughout the whole electromagnetic region where
they exist. Thus the detailed inclusion of the effects of nonlinearities does not
change the stability character of surface waves [2]. However, there is a definite
quantitative change in the growth rate of the instability.

Finally, we point out that our analysis of purely electronic modulation under
the rigid boundary assumption is relevant to plasmas bounded by solid-dielectric
and solid state plasmas. The above analysis may be conveniently extended to more
realistic studies including the temperature effects and ion motion.
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MODULACIJSKA NESTABILNOST VISOKOFREKVENTNIH POVRŠINSKIH
VALOVA NA GRANICI PLAZMA – VAKUUM

Teorijski istražujemo nelinearno širenje površinskih valova u poluprostoru s hlad-
nom elektronskom plazmom metodom vǐsestruke ljestvice. Pokazuje se da su
visokofrekventni površinski valovi modulacijski nestabilni na granici plazma –
vakuum. Raspravlja se rast modulacijske nestabilnosti površinskih valova. Takod–er
pokazujemo da električno polje, koje je povezano s površinskim valovima konačne
amplitude, može primiti oblik anvelopnog solitona koji se širi duž granice plazma
– vakuum brzinom koja ne ovisi o visini solitona.
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