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In this work an extended Jacobian elliptic function expansion method is applied to
construct the exact periodic solutions of two nonlinear wave equations. The periodic
solutions obtained by this method can be reduced to the solitary wave solutions
under certain limiting conditions.
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1. Introduction

Studying nonlinear problems is an important subject in every scientific field,
including social science field. These problems are usually characterized by nonlin-
ear evolution partial differential equations (NLEPDESs). The construction of exact
solutions of the associated nonlinear equations plays an important role in under-
standing the nonlinear problems. Recently, many methods have been proposed,
such as the homogeneous balance method [1-3], the hyperbolic tangent expansion
method [4-5], the trial function method [6], the nonlinear transformation method
[7] and sine-cosine method [8]. Many exact solutions have been obtained. However,
these methods can only get the shock and solitary wave solutions and cannot obtain
the periodic solutions. Liu et al. have proposed the Jacobian elliptic function ex-
pansion method [9,10] and obtained many periodic solutions. In this paper, we will
use the extended Jacobian elliptic function expansion method to construct new
exact periodic solutions of the Benjamin-Bona-Mahoni (BBM) equation and the
nonlinear Klein-Gordon equation. Under limiting conditions, the periodic solutions
can be reduced to the corresponding solitary wave solutions.
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2. The extended Jacobi elliptic function expansion method

Consider a given nonlinear wave equation
N (w, wg, Uy, Uy, Uge,---) = 0. (1)
We seek its traveling wave solutions in the form
u(z,t) =u(§), {=k(x—ct), (2)

where k and kc are the wave number and phase velocity, respectively. Substituting
(2) into Eq. (1) yields a nonlinear ordinary differential equation (ODE)

du d%u

Let us define the concept of “rank”. If the nonlinear term in the above reduced
ODE can be written as

wkoy k (u”)kz - (u(m))km’ (4)
with k; real constants, then the rank of this term is defined as the number
0k0+k1+2k2+"'+mkm (5)

that is, by the sum of the number of d/d€. If the rank of every term in the reduced
ODE is even or odd, we can use following extended Jacobian elliptic function ex-
pansion method.

We assume that Eq. (3) has the solutions in the form
W@ = Y aifl +Y bl (6)
7=0 j=1

where f; and g; are the following pairs of the closed Jacobian elliptic functions

fi€) =sn(§),  g1(§) = en(§),
fa(§) =sn(8),  g2(§) = dn(§),

1 cn(§)
f3(§) =mns(§) = —=,  93(§) =cs(§) = :
©=ns() = o0 2O =es©) = T
where sn(¢), en(§) and dn(§) are the Jacobian elliptic sine function, the Jacobian
elliptic cosine function and the Jacobian elliptic function of the third kind, respec-

tively. They have the following relations

n’(§) =1-sn%(¢), dn’(§) =1-m?sn?(¢), cs’(§) =ns’(§) - 1, (8)

d d d
d—gsn(é) = cn(§) dn(§), d—gcn(é) = —sn(§) dn(¢), d—gdn(ﬁ) = —m?sn(€) en(§)
(9)

(7)
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with the modulus m (0 < m < 1). To determine n, we can use the homogeneous
balance method, which balances the degree of the highest order linear term with the
nonlinear term [9,10]. In addition when the modulus m — 1, then sn(§) — tanh(¢),
sn(§) — sech(§) and dn(&) — sech(§).

3. Modified BBM equation

We consider now the Benjamin-Bona-Mahoni (BBM) equation

Oou  Ou 5 0u u
E+8_x+au 8_x+ﬁ—8t8u2 = 0. (10)

Substituting (2) into Eq. (10) yields

du du d3u
1—c)— 2 _k2ef— = 0. 11
(1-¢) a + au a@ c & (11)

3.1. Jacobian elliptic functions sn(§) and cn(§) expansion

We assume that Eq. (11) has the solution
u(€) = Y agnd () + ) bysnI 7€) en(é). (12)
3=0 j=1

The highest degree of (12) is

O (u(§) = n, (13)
and we can also get
du _ Qdu B d3u _
O(d—g) =n+1,  Ou d_f) =3n+1, O(d—fa) =n+3. (14)

Balancing the highest order of derivative term and nonlinear term in Eq. (11), we
can obtain

n = 1 (15)
So the solution of Eq. (11) can be assumed as
u(€) = ag+asn(§) + bien(§). (16)
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Substituting (16) into Eq. (11) yields
[(1—c)+a(af +b}) + k*cB(1 +m?)]ar - en(€)dn(€)
+[— (1 — )by — a(ad +b3)br — k2eB(1 + 4m?)by + 2aa?] - sn(€)dn(€)
+2aag(af - b7) - sn(§)en(€)dn()
+[ = 2ab; + a(af — b3) — 6k*cBm?]ar - sn?(€)en(€)dn(€)
+[ = 2aai — a(af — b7)by + 6k*cAm3b;] - sn®(€)dn(€) =0 (17)

from which it is determined that

| —6k2cOm? c—1
=0 =0 by =+ — K= ———— 18
ag ) ay ) 1 o ) C,@(l — 2m2)3 ( )
a1 =

or
[6k2cBm? c—1
apg = 07 b1 = 0, + T, k’2 = mv (19)
or
- o 3m2(c—1) o 2(c—1)
ap=0, b =d4ia; =+ @) ktm. (20)
Thus we can obtain the periodic solutions
_ 6m?(c—1) c—1
up = i\/m -sm(\/m(w—ct))7 (21)
B 6m?2(c—1) c—1
uy = i\/m ~cn<\/m(xct)>, (22)
B 6m2(c—1) 2(c—1)
" i\/a@mz -1 [CH(M —) Ct))’
. 2(c—1
:|:1~sn< Cm(;;_n;)(x—ctoy (23)

When the modulus m — 1, Egs. (21)-(23) can be reduced to following solitary
solutions

W, =+ 3(6; Y tanh ( 02; 51 (z— ct)), (24)
uy =+ 6(0; D -sech( 18_60(:6—@)), (25)
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i 6(0; D [sech< 2(; D ct)) 4 itanh ( 2(%1)(95 - ct)ﬂ.

(26)

3.2. Jacobian elliptic functions cn(€) and dn(§) ezpansion
We assume that Eq. (11) has the solution
u(€) = ag + aren(€) + bydn(€). (27)
Substituting (27) into Eq. (11) yields

[(c—1) —aag — a(l —m?)b] + kcB(2m® — 1)]ardn(€)sn(€)

Fl(c— 1m? - aadm? - abim? (1 - m?) — 2aa3 (1 - m?)

—k*cB(4m® — 5m*)]bien(€)sn(€) — 2aapbiar (1 — m?)sn(€)

—(aai + 3abim?® + 6k*cfm?)aren®(€)dn(€)sn(€)

—(3aat + abim?® + 6k*cBm*)m>bycn®(€)sn(€)

—2aag (a1 + bIm?)en(€)dn(€)sn(€) — daagaibym’en®(€)sn(€) =0 (28)

from which it is determined that

| —6k2cfm? —(c—1)
=0, by =0, =, K== 29
a0 ! “ e cB(2m? — 1) (29)
—6k2cf3 9 1-c
=0 =0 by = k= ————~ 30
ag ) ai ) 1 o ) 05(2 — m2> ) ( )
— 1)m?2 2(1 —
ap =0, a; = +mb; = u k2 = g (31)

(14+m?)a’ (14+m2)ef

From Eq. (29), we get the same solution as (22), and from (30) and (31), we get

P %«m( ﬁ(ag—cw), (32)
o= a?(ffn?zy[m'cn( cﬁZ((11+_22)(”_Ct)>
idn( %(gﬁ_ct)ﬂ. (33)

When the modulus m — 1, Egs. (32) and (33) are reduced to the same solitary
solution as (25).
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3.3. Jacobian elliptic functions sn(€) and dn(§) expansion
We assume that the solution of Eq. (11) is
u(§) = ao+ asn(§) + bidn(g). (34)
Substituting (34) into Eq. (11) yields

[(1—¢)+ alad +b3) + k2 eB(1 +m?)]ardn(€)en(€)

+2aa0 (a2 — m?b2)sn(€)dn()en(€)

+[(c = 1)m? — a(af + b7)m® + 20a] — k*cB(m®* + 4m?)]bysn(€)en(€)
—daagarbym?sn®Eené + bym? (abim?® — 3aai + 6k*cBm?)sn®(¢)en(€)

—a1 (a — 3abim? + 6k*cBm?)sn*(€)dn(&)ené = 0 (35)

from which it is determined that

/6kzcﬂm2 c—1
ag = O, bl C/B 1+ mg) (36)

—6k2¢ 6 1-c
cﬂ cB(2 —m?2)’

3m2k26 (c—1
ap =0, a; = *imb; = £/ ——— '6 = 5= m)2) (38)

From Egs. (36) and (37), we can get the solutions same as (21) and (32), respec-
tively. From Egs. (38), we can obtain

ug = =+ ?’(C_l))-[m-sn< 2(6_1))(3:—@))

ag=0, a =0, (37)

a(2 —m2 B(2—m?
4 dn( %(@« - ct))] . (39)

When the modulus m — 1, Eq. (39) is reduced to the following solitary wave
solution

= 44/ 3= {mh( 2(;1)(x—ct)) ii~sech( 2(0_1)(:5—@))} (40)
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3.4. Jacobian elliptic functions ns(€) and cs(§) expansion
We assume that Eq. (11) has the solution
u(€) = ap + ains(§) + byes(€). (41)
Substituting (41) into Eq. (11) yields
ar[(c—1) — a(ad — b?) — k2cB(1 + m?)|ns(&)cs(€)dn(€) + 2aapabins(€)dn(€)
+b1[(e —1) — afag — b] — 2a1) — K*cA(4 + m?) ns?(€)dn(€)
—4daagarbins®(§)dn(§) — 2aag (af + b7)ns®(€)es()dn(€)
—b1 (3aa} + ab? — 6k*cB)ns* (£)dn(€)
—ay (3ab} + aaf — 6k%cf)ns®(€)cs(€)dn(€) = 0. (42)

From this equation, it is determined that

aw=0, b =0, a =+ 6kicﬁ, kQZcﬂ(%;ﬁ)’ (43)
a=0, a;=0, b=+ 6]“;05, k2:ﬁ7 (44)
ap=0, a;=+b = 3’??, kQ:%. (45)
Hence, we obtain three new periodic solutions
wr = i\/m.m(\/M(md)>, (46)
us = i\/%ws<\/ﬁ(3§—ct)>, (47)
:I:cs< e g?;ﬁ 1_)1) (a — ct)ﬂ . (48)

When the modulus m — 1, Eqgs. (46)—(48) degenerate to the following solitary wave
solutions

uh = & @ coth < 2;; (x — ct)), (49)
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Wy = + 6(1; C)csch< 1c_ﬁc(acct)), (50)
uy = + ?{coth( Q(CC; 1)(x—ct))
j:csch( 2(0(% 1)(x—ct))]. (51)

4. Nonlinear Klein-Gordon equation

We discuss the following nonlinear Klein-Gordon equation

0%u 0%u
W—cgﬁ—l—au—ﬁu?’zo. (52)

Substituting the traveling solution (2) into Eq. (52) yields

It is easily seen that

E*(c* — CQ)dZ_u +au—pu* =0 (53)
0 d£2 -
n=1. (54)

By using different double Jacobian elliptic functions expansion, we can obtain the
following periodic solutions

U1

U2

us

Ug

168

+ f B(i”ff;z) -sn<\/(1 - mQ;‘(CQ —y (- ct)), (55)

(e ) o
i (o)
- “<\/ amma g )]
sy o

FIZIKA A 12 (2003) 4, 161-170



CETEy [m ' “(\/ (- Cgfémz T ct)) (59)

w = g {m“w e L) B

sin (gt )
w = 5 S(\/<1+m§y< =) (61)
w = o e emmat ) o
W <2m251>6[“<\/ FmEEe ) ®

When the modulus m — 1, we can obtain the following solitary solutions

b = fpu ([T -a) oy
e Bsean(\ [T o) (65)
i = 2 [ ([T o) isean(| /o) |00
w = x5 ([F g il [Fiow-m)]. o
i = i\/g.coth( 2(6%03)(9:—&)) (68)
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uh = j:\/%-[coth( %(m—ct))icseh( ;%Cg(x—ct))].(m)

5. Conclusion

In this paper, the new extended Jacobian elliptic function expansion method
is applied to BBM equation and nonlinear Klein-Gordon equation. Many different
periodic solutions are obtained by this method based on different double Jacobian
elliptic function expansion. Also many solitary solutions are obtained in the limiting
conditions, which shows that this method is powerful. We believe that if the rank of
every term in Eq. (3) is even or odd, this method can be used to construct explicit
solutions.
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POOPCENA METODA RAZVOJA PO JACOBLJEVIM ELIPTICKVIM
FUNKCIJAMA I PRIMJENE NA NELINEARNE VALNE JEDNADZBE

Primijenili smo prosirenu metodu razvoja po Jacobijevim eliptickim funkcijama
za izvod to¢nih periodi¢nih rjesenja dviju nelinearnih valnih jednadzbi. Periodi¢na
rjeSenja koja smo izveli tom metodom svode se na solitonska rjeSenja u odredenim
grani¢nim uvjetima.
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