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Building portfolios based on machine learning
predictions
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aDepartment of Investment and Financial Markets, Pozna�n University of Economics and Business,
Pozna�n, Poland

ABSTRACT
This paper demonstrates that portfolio optimization techniques
represented by Markowitz mean-variance and Hierarchical Risk
Parity (HRP) optimizers increase the risk-adjusted return of port-
folios built with stocks preselected with a machine learning tool.
We apply the random forest method to predict the cross-section
of expected excess returns and choose n stocks with the highest
monthly predictions. We compare three different techniques—
mean-variance, HRP, and 1/N— for portfolio weight creation using
returns of stocks from the S&P500 and STOXX600 for robustness.
The out-of-sample results show that both mean-variance and HRP
optimizers outperform the 1/N rule. This conclusion is in the
opposition to a common criticism of optimizers’ efficiency and
presents a new light on their potential practical usage.
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1. Introduction

The goal of this study is to propose a portfolio composition technique that leverages
the power of machine learning tools in empirical asset pricing. We compare the
results of equal-weighted portfolios with 1) mean-variance optimized portfolios
(Markowitz, 1952), and 2) portfolios optimized with the modern Hierarchical Risk
Parity (HRP) (L�opez de Prado, 2016). We demonstrate that cross-sectional predic-
tions based on the random forest method provide more valuable input data for the
Markowitz quadratic portfolio optimization technique (Markowitz, 1952) than histor-
ical returns. This comparison adds to studies on machine learning in empirical asset
pricing and portfolio theory.

In the current literature, there are several new portfolio optimization techniques
aimed to solve the well-identified inefficiency and instability issues with quadratic
optimizers.1 However, most of them seem not to provide any realistic value to the
portfolios’ quality.2 One study identified that efficiency problems could be addressed
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by changing the input forecasts from volatile historical predictions to more reliable
ones (DeMiguel et al., 2009). To address this problem, this study proposes to use the
cross-section of expected excess returns derived from the machine learning tool as a
reliable source of forecasting input data for portfolio optimization.

Using machine learning algorithms in empirical asset pricing is a relatively new
field. The idea is to track factors predicting the cross-section of expected returns. The
theoretical background for factor predictions was built with the three-factor model
(Fama & MacBeth, 1973), which opened the door for dynamic factor mining.
Currently, there are “a zoo of new factors” (Cochrane, 2011) identified as important
in explaining the cross-section of excess returns (Harvey et al., 2016). Machine learn-
ing techniques are a natural candidate to analyze such diverse data input. Most
recently, Gu et al. (2020) analyzed different machine learning methods in comparison
to traditional regression techniques in predicting the cross-section of expected
returns. They indicated that the most efficient machine learning methods, such as
artificial neural networks or random forest, may deliver out-of-sample equal-weighted
long-short portfolios with a Sharpe ratio value that is double that of the same ratio
value for a benchmark from the panel regression.

However, to the best of our knowledge, machine learning predictions have not
been yet applied as input data for portfolio optimizers. So far, the efficiency of port-
folios built with machine learning algorithms has been verified only for unoptimized
portfolios. That is why we apply portfolio optimization techniques to the set of stocks
that are predefined with excess return forecasts derived from the machine learn-
ing engine.

We conduct a considerably large-scale empirical analysis, investigating stocks from
the S&P500 index with over 20 years of history from 1999 to 2019. Our factors
include 22 characteristics for each stock and 7 macroeconomic variables observed
monthly, resulting in more than 120 thousand observations and almost 10 million
records. For each stock, we prepare monthly predictions with the random forest
method, which Gu et al. (2020) identified as one of the most effective machine learn-
ing tools in empirical asset pricing. To protect the random forest method against
overfitting, we tune its hyperparameters with the k-fold cross-validation. Next, for
each month t, we choose n stocks with the highest predictions and provide weights
for them with three techniques: 1) 1/N naive diversification, 2) mean-variance, and 3)
HRP optimization. We feed both optimizers with d days of historical daily prices and
use our random forest predictions as expected returns for the mean-variance opti-
mizer. Finally, we measure the risk-adjusted performance of three different portfolios
with an out-of-sample approach.

This study contributes to the literature in two ways. First, we shed a new light on
the potential usage of quadratic portfolio optimization techniques. One of their big-
gest, well-known disadvantages is that they are very sensitive to changes in the inputs,
resulting in unstable and/or unintuitive results. This drawback can be effectively man-
aged with machine learning techniques that are well-suited in predicting future excess
returns. Second, we extend the research on predicting the cross-section of excess
returns with machine learning. We propose a two-step portfolio-creation method-
ology oriented to maximize the Sharpe ratio. It starts with predicting the cross-section
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of excess returns with the random forest method and ends with portfolio optimiza-
tion techniques. Our methodology significantly outperforms an equal-
weighted benchmark.

The rest of the paper is organized as follows. In Section 2, we review the existing
literature on machine learning techniques applied to forecasting stock markets as well
as on the cross-section of expected returns, along with applications of machine learn-
ing in predicting the cross-section of expected returns. Additionally, we review the
current research on portfolio optimization techniques and present the detailed meth-
odology of our empirical research. In Section 3, we apply the random forest method
on the S&P500 constituent stocks to generate forecasts, verify forecast volatility, and
discuss the efficiency of optimized portfolios. Section 4 verifies the robustness of our
findings. Finally, Section 5 concludes the study and identifies some future work.

2. Materials and methods

2.1. Literature review

Machine learning is an umbrella term for methods and algorithms that allow
machines to uncover patterns without explicit programming instructions
(Rasekhschaffe & Jones, 2019).3 Machine learning algorithms are widely used for
financial market predictions and portfolio constructions, especially for automated
trading strategies. Decision trees are machine learning algorithms that can perform
both classification and regression tasks. The term CART (classification and regression
tree) was introduced by Breiman et al. (1984). CART describes a computational-stat-
istical predictive algorithm that takes a form of a decision tree. The first application
of CART took place in medical diagnostics. In finance, the algorithm was introduced
by Frydman et al. (1985) and used, e.g., by Kao and Shumaker (1999) and Sorensen
et al. (2000). Regression trees are powerful algorithms that can incorporate both the
individual impact of each predictor on expected returns and multiway interactions
between predictors. Decision trees are also key components of random forests
(Breiman, 2001). Random forest is an ensemble method consisting of a group of deci-
sion trees. Each decision tree generates predictions with a randomly chosen group of
predictors. Based on the wisdom of the crowd idea, a group of single predictions gen-
erates a wise, powerful, and aggregated prediction. Random forest is one of the most
powerful machine learning algorithms available today (Gu et al., 2020).

Atsalakis and Valavanis (2009b) reviewed more than 100 articles concerning
machine learning techniques applied to forecasting stock markets. The majority of
the surveyed articles concentrate on forecasting returns of a single stock market index
or of multiple stock market indexes. Only a few aim at predicting a single stock or
multiple stock behaviours (Abraham et al., 2001; Atsalakis & Valavanis, 2009a;
Pantazopoulos et al., 1998). These stock-oriented predictions rely on historical prices,
forecast the next day’s trend, and, as an outcome, produce a stock’s rise or fall projec-
tion. None of them analyze a cross-section of expected returns.

The indicating factors that explain the cross-section of expected returns are a very
lively field of research activity. At roughly the same time, Sharpe, Lintner, and
Mossin (Lintner, 1965; Mossin, 1966; Sharpe, 1964) proposed a single-factor model:
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the capital asset pricing model (CAPM). Following the three-factor model introduced
by Fama et al. (Fama & MacBeth, 1973), hundreds of papers on testing the CAPM
were published. Most of these factors have been proposed over the last ten years
(Harvey et al., 2016). Following Cochrane, a variety of factors explaining the cross-
section of expected returns was termed “a zoo of new factors” (Cochrane, 2011). On
one hand, the zoo of new factors can be a valuable source of input information into
prediction models, but on the other hand, the complexity of relationships between
factors questions the efficiency of using traditional linear models for that purpose.

Predicting the cross-section of expected returns with machine learning algorithms
is a relatively new subject. Miller et al. (2013, 2015) found that classification trees can
be more effective than linear regressions when predicting factor returns. Naveed Jan
and Ayub (2019) demonstrate that artificial neural networks could be effective in
forecasting returns using the Fama and French five-factor model on the Pakistan
Equity Market. The high prediction capabilities of the ensemble method, consisting of
four machine learning algorithms, are presented by Rasekhschaffe and Jones (2019).
The authors apply the combination of a bagging estimator that uses AdaBoost, a gra-
dient boosted classification and regression tree (GBRT) algorithm, neural networks,
and a bagging estimator that uses a support vector machine. The research covers 194
arbitrarily chosen factors and an average of 5,907 stocks per month from 22 devel-
oped countries. The algorithm outcome is a decile spread of portfolio returns by tak-
ing the difference in return between the top and bottom deciles (i.e., a long-short
portfolio) and weighted in two ways: 1) equal, and 2) scaled with each stock during
an historical 100-day standard deviation. The research shows a strong performance of
implied machine learning techniques. No significant differences are found in the per-
formance of equal-weighted and risk-weighted portfolios.

A wide study on the predictive power of different machine learning algorithms
based on scientifically documented factors was conducted by Gu et al. (2020). A com-
parison of linear methods with machine learning tools (e.g., boosted regression trees,
random forests, and neural networks with one to five hidden layers) was made based
on almost 30,000 stocks from the U.S. market, through a 60-year period, and 94 fac-
tors. The algorithm’s outcome is an out-of-sample predictive R2 and equal-weighted
long-short portfolios based on one-month-ahead out-of-sample stock return predic-
tions for each method. Machine learning tools present strong predictive capabilities
in comparison to linear models. In particular, random forests and artificial neural
networks prove to be the strongest predicting models.

In summary, some studies have already proven the high effectiveness of machine learn-
ing techniques in forecasting the cross-section of expected returns. Generally, the strongest
results are provided by a random forest and artificial neural networks. Most research con-
centrates on building an equal-weighted portfolio, and only a few try to differentiate equity
weights with very basic techniques. There is no research dedicated to verifying how port-
folio optimization techniques can impact the efficiency of portfolios built with expected
returns and predicted by machine learning methods. In this article, we fill this gap.

Portfolio optimization is perhaps the most recurrent financial problem. The port-
folio selection theory, popularly referred to as “modern portfolio theory”, was intro-
duced by Markowitz (1952), who solves the mean-variance optimization (MVO)
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problem. Despite the unquestionable popularity of his theory, there is much criticism
of its unreliability in practice. Specifically, risk-return optimization can be very sensi-
tive to changes in the inputs, resulting in unstable and/or unintuitive results (Kolm
et al., 2014). There is a lot of research on alternatives to achieving robustness by
incorporating additional constraints (Clarke et al., 2002), introducing Bayesian priors
(Black & Litterman, 1992), or improving the numerical stability of the covariance
matrix inverse (Ledoit & Wolf, 2003). Nevertheless, DeMiguel et al. (2009) empirically
proved that equal-weighted portfolios outperform those methods.

The literature indicates a few new directions in portfolio optimization enhance-
ments. One direction is the shift from using statistical moments of asset returns
toward more reliable predictions, perhaps supported with cross-sectional characteris-
tics of assets (DeMiguel et al., 2009). The other is the change from quadratic opti-
mization to modern mathematics: graph theory and machine learning. The
Hierarchical Risk Parity (HRP) optimization technique proposed by L�opez de Prado
(2016) replaces the covariance matrix used by quadratic optimizers with a tree struc-
ture, increasing the stability of the weights. Monte Carlo experiments show that HRP
delivers a lower out-of-sample variance than the Markowitz Critical Line Algorithm
(CLA) (L�opez de Prado, 2016).

In this research, we verify the efficiency of both directions. Due to reliable predic-
tions of the future cross-section of excess returns coming from the random forest
method, we can deal with the problem of highly inconsistent input data. Thus, we
compare 1) naive equal-weighted portfolios, 2) the mean-variance quadratic opti-
mizer, fed with more stable input data, and 3) the modern HRP approach that does
not use expected returns as input data.

2.2. Proposed model

Our empirical study can be divided into four stages: 1) Data preparation, 2) Random
forest configuration, 3) Prediction of excess returns, stock selection, portfolio cre-
ation, and 4) Evaluation of results. All calculations are prepared in Python
Programming Language. Random forest is configured and trained with scikit-learn.
We use PyPortfolioOpt to implement portfolio optimization techniques.

Following Gu et al. (2020), we describe an asset’s excess return as an additive pre-
diction error model:

ri, tþ1 ¼ Et ri, tþ1ð Þ þ ei, tþ1 (1)

where

Et ri, tþ1ð Þ ¼ g� zi, tð Þ (2)

Stocks are indexed as i ¼ 1, . . . ,Nt and months by t ¼ 1, . . . ,T: The goal of our pre-
diction algorithm is to optimize Et ri, tþ1ð Þ as a function of predictor variables that
maximizes the out-of-sample explanatory power for realized ri, tþ1: Predictors can be
described as the P-dimensional vector zi, t, and assume the conditional expected
return. g� :ð Þ is a flexible function of these predictors.

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 23



The prediction function g� :ð Þ is stable across different stocks i and different predic-
tion periods t: As all predictions are based on the same prediction function, the final
results are more stable in comparison to the model optimized for every stock i and
period t: Also, g� :ð Þ depends only on z characterized by stock i and time t, which
means our predictions do not use historical information before t, or from an individ-
ual stock other than the ith:

2.2.1. Data preparation
This study is based on data from companies listed in the S&P500 index in the period
starting from 31 December 1999 until 31 December 2019. To avoid survivorship bias
in each month, we use stocks from the real index constituents. Stocks from the
S&P500 index represent the most liquid segment of the world’s biggest U.S. stock
market. Findings from the S&P500 can be considered a good entry point for a wider
analysis covering other equity markets. To confirm the robustness of our results, we
repeat all calculations with the data for stocks from the STOXX600 index.

Following Gu et al. (2020), we obtain a collection of stock-level predictive charac-
teristics based on the cross-section of stock return literature. Since the goal of our
study is to build stable stock predictions and not to maximize the predictive perform-
ance, we concentrate on factors that have the biggest impact on final predictions. Our
research is based on the random forest approach. We use factors that are documented
to have the most significant impact on the predictive performance of this machine
learning method.4 Additionally, as our instrument scope and time horizon is different
from Gu et al. (2020), we include factors that provide full exposition to Fama and
French (2015) five-factor model. Furthermore, we add 43 industry dummies corre-
sponding to the Industry Classification Benchmark (ICB). The detailed list of factors
is presented in Table A.1. in the Online Appendix.5

Finally, we calculate 7 macroeconomic predictors following the definitions in
Welch and Goyal (2008). These variables include: dividend-price ratio (dp), earnings-
price ratio (ep), book-to-market ratio (bm), Treasury-bill rate (tbl), term spread (tms),
default spread (dfy), and stock variance (svar). We obtain all data, including log total
monthly equity returns, stock daily prices along with data used to calculate monthly
stock characteristics and macroeconomic indicators, from Refinitiv Datastream. We
use the Treasury-bill rate to proxy for the risk-free rate from which we calculate indi-
vidual log excess returns. The descriptive statistics of all variables used in the research
are presented in Table A.2. and A.3. in the Online Appendix.

We divide our time-sorted data into two data sets: training and testing samples in
the rates of 50% to 50%. The training sample is used to estimate the model parame-
ters. Since we implement k-fold cross-validation, we do not use a separate validation
sample and we tune the random forest hyperparameters on a sequentially split testing
sample. These solutions enhance the model’s efficiency and make the maximal use of
the input data with the final predictions made truly out-of-sample. Our data split the
results in a 10-year testing window starting from 31 December 2009 until
December 2019.
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2.2.2. Random forest configuration
Random forest is an ensemble of decision trees. Since this machine learning method is
very prone to overfit, it is crucial to go through a rigorous procedure of tuning its hyper-
parameters. We follow the CART procedure introduced by Breiman et al. (1984), which
helps to find the best hyperparameters for a decision tree. We use k-fold cross-validation
and repeatedly search for tree hyperparameters that minimize the predictive mean squared
error. Using the data from the training sample, we optimize the maximum depth of the
tree, minimum samples required to split the branch, and minimum samples in each leaf.
In comparison to the decision trees, random forest requires two additional hyperpara-
meters that impact its predictive abilities: the number of trees in the forest and the num-
ber of predictors in each split. We extend the k-fold cross-validation procedure with the
search of these two hyperparameters (Gu et al., 2020). Detailed information about the
hyperparameters’ tuning procedure is presented in the Online Appendix B.

2.2.3. Prediction of excess returns, stock selection, and portfolio creation
Once we tune the random forest hyperparameters, we use the data testing sample for
a portfolio creation. Following our general model, for every month t and every stock
i, we generate a vector of predictions Et ri, tþ1ð Þ with the g� zi, tð Þ function. In every
month t, we sort the values in the predictions’ vector and choose n stocks with the
highest prediction values where n ¼ 25, 50, . . . , 250:

Next, we calculate the weights. We use three different portfolio creation techniques.
First, we use naive diversification with weights equal to 1=n for every stock i: Second, we
implement a mean-variance portfolio optimization oriented to maximize the Sharpe ratio.
In this case, we search for a tangency portfolio, which is the intercept point of the Capital
Market Line (CML) and efficient frontier (Sharpe, 1964). The mean-variance optimizer
needs two input data for optimum calculation: expected returns and the covariance
matrix. It is a common practice to calculate expected returns with historical stock prices.
This approach generates high instability, causing the mean-variance optimizer to produce
unstable and ineffective portfolios (DeMiguel et al., 2009). We modify this approach and,
in our model, we use a random forest vector of predictions Et ri, tþ1ð Þ as expected returns.
A covariance matrix is calculated for each month t with d days of daily historical prices,
where d ¼ 365, 2� 365, 3� 365, representing one, two, or three years of daily histor-
ical prices, respectively. The covariance matrix is calculated with the shrinkage algorithm
proposed by Ledoit and Wolf (2003). The shrinkage procedure transforms the sample
covariance by pulling the most extreme coefficients towards more central values, which
reduce the estimation error where it matters the most. One additional parameter that
needs to be settled with the mean-variance optimization is the maximum weight limit for
a single instrument. Without the limit, this technique tends to substantially overweight
some investments, which generate high systematic risks for the portfolio. We apply a 10%
limit for a single instrument in our base methodology.

Finally, as a third portfolio creation technique, we use HRP. This optimizer con-
sists of three stages: tress clustering, quasi-diagonalization, and recursive bisection
(L�opez de Prado, 2016). The scope of data required to optimize a portfolio with HRP
is limited to the historical prices. Therefore, similar to the mean-variance optimizer,
we feed HRP with d days of daily historical data, where d ¼ 365, 2� 365, 3� 365:
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It is important to highlight that HRP does not use expected returns in the calculation
procedure, which is a big contrast to the mean-variance optimizer.

2.2.4. Evaluation of results
In this research, we assume that optimization techniques represented by the mean-vari-
ance and HRP optimizers are well-suited tools to enhance the Sharpe ratio of portfolios
built with machine learning predictions. We verify this hypothesis with a performance
comparison of portfolios built with n stocks having the highest random forest predictions
for each month. The main performance measure that we use is the Sharpe ratio. We sup-
port our findings with the Calmar ratio. We calculate the weights for these portfolios with
three techniques: naive diversification, mean-variance, and HRP optimization.

Simulations are repeated with a different number of stocks in the portfolio, and a
different timeframe of data is used to feed the optimizers. We verify the efficiency of
the portfolios consisting of n shares with the highest random forest predictions per
month where n 2 25, 50, 75, . . . , 250h i: All optimizers need historical prices to create
portfolio weights. The mean-variance optimizer requires historical prices to at least
calculate the covariance matrix. Furthermore, it is a popular technique to estimate
expected returns based on historical prices. The HRP optimizer uses historical stock
daily returns as the key input. We use daily historical prices from d days before
month t for which we calculate the weights, where d 2 365, 2�365, 3�365h i, corre-
sponding to one, two, or three years of historical daily prices, respectively.

Finally, to verify the robustness of our results, we adopt two changes. The first
change covers the mean-variance optimizer setting. Instead of using a 10% limit per
single stock, we reduce the maximum single exposition to 5%. In the second modifi-
cation, we exchange the whole input data from stocks representing the S&P500 index
to stocks from the European STOXX600 index.

3. Results

3.1. Random forest portfolio overview

Monthly predictions from the random forest method play a major role in our
research. In the first step, we present the results of naive portfolios created with

Table 1. Performance of an Equal-Weighted Portfolio vs. Equal-Weighted Benchmark.
Performance measure n¼ 10 n¼ 20 n¼ 30 n¼ 40 n¼ 50 S&P500

Return 14.3 14.5 13.9 14.3 14.3 12.4
Stand dev 23.7 20.4 19.0 18.2 17.5 14.8
Max drawdown 45.5 38.7 36.3 33.2 31.3 22.5
Sharpe ratio 0.60 0.71 0.73 0.78 0.82 0.84
Calmar ratio 0.31 0.38 0.38 0.43 0.46 0.55

Table 1 presents the performance measures of five equal-weighted portfolios built with random forest predictions.
In each month, n stocks with the highest predictions are chosen for the portfolio. The data is compared to an
equal-weighted portfolio consisting of all stocks from the S&P500 index. The data covers the period from 1/01/2010
to 31/12/2020. Table 1 consists of seven columns: the name of the performance indicator, five columns representing
five equal-weighted portfolios consisting of 10 (n¼ 10), 20 (n¼ 20), 30 (n¼ 30), 40 (n¼ 40), and 50 (n¼ 50) stocks,
and the seventh column that represents an equal-weighted S&P500 portfolio (S&P500). Each row represents a per-
formance measure: annual return (Return), standard deviation (Stand dev), maximum drawdown (Max drawdown),
the Sharpe ratio (Sharpe ratio), and the Calmar ratio (Calmar ratio). The first three rows are presented in percentage
points (Return, Stand dev, and Max drawdown).
Source: The Authors.
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random forest monthly predictions. As market capitalization does not impact the
weights of our portfolios, we choose an equal-weighted benchmark consisting of all
stocks from the S&P500, rebalanced monthly. Table 1 presents the equal-weighted
portfolios that deliver higher returns for the cost of higher risk in comparison to the
benchmark. As a result, both risk-adjusted performance measures (the Sharpe and
Calmar ratios) are worse than the benchmark’s. A portfolio consisting of 50 stocks
reaches the Sharpe ratio of 0.82, which is close to the benchmark’s 0.84. The differ-
ence between the Calmar ratio is higher (0.46 vs. 0.55). Figure 1 visualizes these
relationships.

3.2. The optimum length of historical data as an input for the mean-
variance optimizer

We start the empirical study on optimizers with a search for the optimum number of
days that should be used to calculate the covariance matrix for the mean-variance
optimizer. Additionally, we examine the HRP optimizer’s performance depending on
the length of input data. Figure 2 visualizes the differences in the Sharpe ratio of
portfolios constructed by the mean-variance and HRP optimizers that use 1–3 years
of daily historical prices that are not high. The biggest difference appears between
small portfolios consisting of 25 stocks. In this case, according to data from Table 2,
the mean-variance portfolio with 3 years of daily prices generates a Sharpe ratio that
is 5% better than a portfolio with 2 years of prices and 13% higher in comparison to

Figure 1. Equal-Weighted Portfolios vs. SPX500 Equal-Weighted.
This figure presents a line plot between the compounded rate of return and dates. The lines show the compounded
total return of two equal-weighted portfolios consisting of 10 stocks (n¼ 10) and 50 stocks (n¼ 50) vs. the com-
pounded total return of the equal-weighted S&P500 index. The sample period runs from 01/01/2010 to 31/12/2019.
Source: The Authors.
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the portfolio with 1 year of prices. We can see similar relationships with the smallest
portfolio when using the HRP optimizer. However, this relationship stops working
for portfolios built with additional stocks. The broken line, which represents a port-
folio built with an optimizer fed with 2 years of daily prices, tends to situate over the
other lines for most portfolios. For portfolios constructed with 100, 200, 225, and 250
stocks, the broken line lies above the others. In the case of the HRP optimizer, the
differences in the Sharpe ratio for 2 or 3 years of historical daily prices are not
important. It seems to be irrelevant to the HRP if the input history covers 2 or
3 years of historical daily prices.

We can confirm our observations about the optimum length of data fed to the
optimizer with the Calmar ratio. In this case, the mean-variance optimizer prefers
1 year of historical prices, while the HRP is not relatively sensitive, preferring 2 years.
For larger portfolios, the Calmar ratio takes the highest values with 2 years of prices
confirming the base relationship found with the Sharpe ratio.

Figure 2. Optimized Portfolio Performance Depending on the Length of Historical Data.
This figure presents line plots between the Sharpe or Calmar ratios and the number n of stocks in portfolios. The two
upper subfigures present the Sharpe ratio on the vertical axis. The two lower subfigures present the Calmar ratio on
the vertical axis. The two subfigures on the left demonstrate ratios for the mean-variance (MV) optimized portfolios.
The two subfigures on the right demonstrate ratios for the HRP (HRP) optimized portfolios. Optimizers fed with d ¼
365 daily historical data are marked as 1-year history. Optimizers fed with d ¼ 2 � 365 daily historical data are marked
as 2-year history. Optimizers fed with d ¼ 3 � 365 daily historical data are marked as 3-year history. The sample period
runs from 01/01/2010 to 31/12/2019. The data covers stocks from the S&P500 index.
Source: The Authors.
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Finally, we conclude that the optimum length of daily prices for the mean-variance
optimizer is 2 years. Data with a shorter timespan might be problematic in the case of
portfolios built with a smaller number of stocks (n ¼ 25). On the other hand, data
with a longer timespan might present some old price correlations that are no longer
valid and misrepresent the present stock price relationships. This can reduce the
mean-variance optimizer’s efficiency for portfolios built with a large number of stocks
(n � 150). In the case of HRP, it is not that important if we choose 1, 2, or 3 years of
historical input. To stay constant with the length of input data in the research, we
take 2 years as the best choice for both optimizers.

3.3. Optimized portfolios vs. the 1/n rule

Figure 3 visualizes how different portfolio creation techniques impact the Sharpe and
Calmar ratios. Equal-weighted portfolios achieve the worst results measured with the
Sharpe ratio. Table 2 shows that in the case of equal-weighted portfolios, the highest
Sharpe ratio is achieved for portfolios consisting of n ¼ 150 and n ¼ 200 stocks with

Table 2. Performance of Optimized Portfolios vs. Equal-Weighted portfolios and Equal-
Weighted benchmarks.

n¼ 25 n¼ 50 n¼ 75 n¼ 100 n¼ 125 n¼ 150 n¼ 175 n¼ 200 n¼ 225 n¼ 250

Panel A: Sharpe ratio
Equal-weighted 0.76 0.82 0.90 0.92 0.92 0.94 0.93 0.94 0.91 0.90
MV-weighted (1 year) 0.77 1.02 1.02 1.05 1.08 1.06 1.08 1.12 1.12 1.13
MV-weighted (2 years) 0.83 0.98 1.01 1.05 1.06 1.03 1.06 1.11 1.13 1.15
MV-weighted (3 years) 0.87 0.99 1.01 1.04 1.06 1.01 1.03 1.09 1.11 1.14
HRP-weighted (1 year) 0.87 1.03 1.05 1.06 1.07 1.12 1.07 1.06 1.01 1.02
HRP-weighted (2 years) 0.90 1.03 1.05 1.07 1.09 1.13 1.10 1.07 1.05 1.05
HRP-weighted (3 years) 0.91 1.04 1.06 1.06 1.10 1.13 1.09 1.08 1.04 1.05
S&P500 equal-weighted 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
S&P500 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Panel B: Calmar ratio
Equal-weighted 0.39 0.46 0.51 0.54 0.55 0.59 0.59 0.59 0.57 0.58
MV-weighted (1 year) 0.42 0.59 0.63 0.70 0.78 0.76 0.76 0.78 0.78 0.78
MV-weighted (2 years) 0.45 0.56 0.61 0.65 0.68 0.67 0.72 0.76 0.77 0.79
MV-weighted (3 years) 0.50 0.57 0.61 0.64 0.66 0.62 0.65 0.68 0.68 0.69
HRP-weighted (1 year) 0.49 0.61 0.64 0.69 0.71 0.77 0.76 0.76 0.73 0.75
HRP-weighted (2 years) 0.52 0.61 0.64 0.67 0.72 0.78 0.77 0.76 0.75 0.78
HRP-weighted (3 years) 0.53 0.62 0.66 0.66 0.71 0.76 0.75 0.75 0.74 0.77
S&P500 equal-weighted 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
S&P500 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73

Table 2 presents the Sharpe and Calmar ratios of portfolios with different stock numbers and different construction
techniques. This table consists of 11 columns. The first column represents the name of the construction technique.
Columns 2-11 demonstrate portfolios with different number n of stocks selected to build them. The rows are organ-
ized by panels. Panel A presents portfolio performance measured with the Sharpe ratio. Panel B presents portfolio
performance measured with the Calmar ratio. Both panels demonstrate the same portfolio construction techniques
represented in nine rows. The first row shows equal-weighted portfolios constructed with the 1/N rule (Equal-
weighted). Rows 2-4 show mean-variance optimized portfolios with maximum weight in a single stock at 5%, ran-
dom forest prediction used as expected returns, and shrunk covariance matrix fed with d days of historical daily
stock prices, where d ¼ 365 days for MV-weighted (1 year), d ¼ 2 � 365 days for MV-weighted (2 years), and d ¼
3 � 365 days for MV-weighted (3 years). Rows 5-7 show HRP optimized portfolios with the optimizer fed with d days
of historical daily stock prices, where d ¼ 365 days for HRP-weighted (1 year), d ¼ 2 � 365 days for HRP-weighted
(2 years), and d ¼ 3 � 365 days for HRP-weighted (3 years). Row 8 presents equal-weighted portfolios consisting of all
stocks from the S&P500 index. Row 9 presents the results of the S&P500 index. The data covers the period from 1/
01/2010 to 31/12/2020.
Source: The Authors.
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a value of 0.94. This is in contrast to the traditional approach where equal-weighted
portfolios are commonly used for machine learning portfolio creation (Gu et al.,
2020; Rasekhschaffe & Jones, 2019).

The best Sharpe ratio is achieved by the mean-variance optimizer. The optimizer
creates a portfolio from n ¼ 250 stocks that reaches a Sharpe ratio equal to 1.15. The
mean-variance optimizer enhances its results with a growing number of selected
stocks. The bigger its degree of freedom, the better the results. The relative outper-
formance of the mean-variance optimizer over the HRP optimizer starts with n ¼
200: This is quite surprising taking into account that there are only 500 stocks in the
S&P500 index. The mean-variance optimizer needs 40% of stocks from the index to
show its best performance. With n < 200, the best portfolios are created by HRP.
This technique reaches its highest peak performance for n ¼ 150 with a Sharpe ratio
of 1.13. Despite the lower number of stocks required to build a high-quality portfolio,
HRP strongly diversifies the portfolio and the sum of the highest 10 weights state
only for 20.1% of the portfolio. In contrast, a mean-variance optimizer that uses n ¼
250 stocks concentrates on the top 10 weights 76.6% of the portfolio. Finally, the
average outperformance in terms of the Sharpe ratio of mean-variance and HRP opti-
mized portfolios over equal-weighted ones is 16.5% and 18.0%, respectively.

A portfolio’s efficiency measured with the Calmar ratio presents very similar ten-
dencies. Overall, the best results are demonstrated by the mean-variance optimizer

Figure 3. Portfolio Performance Depending on Creation Technique.
This figure presents line plots between Sharpe or Calmar ratios and the number n of stocks in portfolios. The left sub-
figure presents the Sharpe ratio on the vertical axis. The right subfigure presents the Calmar ratio on the vertical axis.
The equal-weighted line represents portfolios built with the 1/N rule. The MV-weighted (2 years) line represents port-
folios built with the mean-variance optimizer using 2 years of daily historical prices. The HRP-weighted (2 years) line
represents portfolios built with HRP optimized using 2 years of daily historical prices. The S&P500 equal-weighted bro-
ken line represents an equal-weighted portfolio of all stocks from the S&P500 index. The S&P500 dotted line repre-
sents the market portfolio of the S&P500 index. Note that for S&P500 equal-weighted and S&P500, all index
constituents are taken under consideration; thus, the horizontal axis representing the different number of stocks used
to create a portfolio does not impact these constants.
Source: The Authors.
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for n ¼ 250 stocks. The HRP optimizer demonstrates almost the same results with
the peak performance reached for n ¼ 150 stocks. The weakest performance is shown
by naive diversification with a peak Calmar ratio that is worse by 25% in comparison
to the mean-variance peak performance. From an average perspective, in terms of the
Calmar ratio, mean-variance portfolios outperformed equal-weighted ones by 23.9%
and HRP portfolios by 30.6%.

3.4. Optimized portfolios vs. benchmarks

Figure 3 presents the Sharpe and the Calmar ratios for an equal-weighted portfolio
consisting of S&P500 stocks and for the S&P500 index. The Sharpe ratio for the
equal-weighted portfolio index reaches 0.84. Only one portfolio constructed with the
mean-variance optimizer gets a worse score (n ¼ 25, Sharpe ratio equal to 0.83). The
rest of the configurations bring much better results. On its peak performance, the
mean-variance optimizer outperforms the equal-weighted portfolio index by 37%.
This relationship is confirmed with the Calmar ratio where the maximum overper-
formance reaches 44%.

In the analyzed period, the S&P500 index outperformed its equal-weighted port-
folio in terms of both the Sharpe and the Calmar ratios by 15% and 32%, respectively.
However, this performance was not enough to match the efficiency of the mean-vari-
ance portfolio that reaches a better score by 18% in terms of the Sharpe ratio and by
8% in terms of the Calmar ratio at its peak performance. It is worth noting that HRP
managed to beat the index performance, too. Thus, optimized portfolios showed con-
siderably better results than their benchmarks.

4. Robustness and additional tests

We verify the robustness of our results with two modifications from the original
methodology. First, we adjust the mean-variance optimizer configuration by changing
the limit of maximum weight per single instrument from 10% to 5%. This change
affects more diversified portfolios. Second, we change the input data for our study
from the S&P500 stocks to companies listed in the STOXX600 index. Additionally, to
present the meaning of random forest predictions to the mean-variance optimizer’s
performance, we show the performance of portfolios optimized with historical
returns. In other words, we change the source of the expected return of information
from the random forest predictions to historical returns.

4.1. Verification of optimal length of historical data

In Section 3.2, we conclude that the optimum length of historical data that should be
used to feed the mean-variance and HRP optimizers is 2 years. Figure C.1. in the
Online Appendix demonstrates the performance of portfolios created with a mean-
variance optimizer that has a constraint for the maximum share of a single stock in
the portfolio at the 5% level (instead of 10%). The charts visualize similar tendencies
to the basic setting (see Figure 2). The broken line that represents the mean-variance
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optimizer fed with 2 years of historical daily stock prices tends to be situated above
the other lines. Table C.1. in the Online Appendix shows precise numbers for each of
the portfolios. In terms of the Sharpe ratio, a mean-variance optimizer that uses
2 years of historical data performs best for portfolios built with 100 to 250 stocks
(which is 7 out of 10 configurations). In terms of the Calmar ratio, the performance
of a mean-variance optimizer fed with 2 years of historical data is similar to that with
1 year of data and significantly better than for the optimizer using the longest time-
frame. Therefore, the study on a more diversified optimizer (with a 5% limit) con-
firms our base findings that we should use 2 years of historical daily prices to feed
the mean-variance optimizer.

Figure C.2. in the Online Appendix presents the performance of portfolios created
with stocks from the STOXX600 index. The two subfigures on the left concentrate on
the mean-variance optimizer. This time, the broken lines that represent the mean-
variance optimizer fed with 2 years of historical daily prices lie very close to the con-
tinuous line that represents the optimizer using 3 years of historical data. The shortest
data feed, represented by the dotted line, is situated considerably lower. Slightly dif-
ferent relationships are demonstrated in the two subfigures on the right. It seems that
the HRP optimizer prefers a shorter feed. This is in contrast to results obtained with
stocks from the S&P500 index. Table C.2. in the Online Appendix presents detailed
values of the portfolios’ performances created with the STOXX600 index.

In summary, our robustness check confirms that the mean-variance optimizer
should be fed with 2 years of historical data. The HRP optimizer is more unstable
with its data length preference: the S&P500 case with 1 year of historical data is the
worst choice, whereas in the STOXX600 case, it is the best solution. Yet, in both
cases, the differences in HRP performance are not major and for consistency with
our research, we stay with 2 years of data for both the mean-variance and
HRP optimizers.

4.2. The sensitivity of results to mean-variance configuration changes

In this section, we verify how two configuration parameters impact the mean-variance
optimizer’s performance. First, we change the constraint for maximum weight in a
single instrument from 10% to 5%. Second, we modify the data used as expected
returns. In our base model, we use the random forest prediction as input for expected
returns. We test how the optimizer performs if it uses 2 years of historical prices as a
proxy for expected returns. Figure C.3. in the Online Appendix visualizes the Sharpe
and Calmar ratios’ performances in portfolios optimized with the mean-variance opti-
mizer and configured with three different settings.

The mean-variance optimizer that uses a 10% maximum weight reaches the best
Sharpe ratios (illustrated in the continuous line). The broken line representing the
optimizer with a 5% limit has a similar slope, but lies slightly under the continuous
line. In contrast, the dotted line indicating an optimizer fed with historical returns as
a proxy for expected return has a downward orientation. With portfolios of more
than 50 stocks, it lies significantly under the other lines. The difference grows with
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the rising number of stocks used to build portfolios. A performance measured with
the Calmar ratio confirms the relationships visualized with the Sharpe ratio.

The analysis of the results presented in Figure C.3. proves that the performance of
the mean-variance optimizer is not highly sensitive to constraint by the maximum
weight limit per single instrument. Depending on the investor’s preferences or invest-
ment policy, different limits can be chosen without any major impact on portfolio
performance. On the other hand, when one decides to build optimized portfolios
with machine learning predictions, the expected returns should be estimated with
such predictions instead of historical prices. This choice has a major impact on the
portfolios’ performances.

4.3. Optimized portfolios vs. the 1/n rule on data from the STOXX600 index

Finally, we verify how mean-variance optimization performs with a different dataset.
We move our focus from the U.S. S&P500 index to the European STOXX600 index.
We use the same factors to create the random forest predictions and follow the ran-
dom forest configuration methodology described in Section 2.2.2. It is important to
highlight that the factors we use are optimized from the U.S. stocks’ perspective
(Fama & French, 2015; Gu et al., 2020; Welch & Goyal, 2008). Therefore, it is not
surprising that the relative overperformance of our portfolios in comparison to the
STOXX600 benchmark is smaller than in the case of the S&P500.

Figure C.4. in the Online Appendix demonstrates the performance of different
portfolio creation techniques. The left subfigure concentrates on the Sharpe ratio. The
black continuous line that represents the mean-variance optimized portfolios is situ-
ated significantly higher than the other continuous lines. Along with data from Table
C.2. in the Online Appendix, the maximum Sharpe ratio for the mean-variance opti-
mizer using 2 years of historical daily prices reaches 0.66 for n ¼ 100, 125, and 150
stocks used to create the portfolio. That is 16% more than the maximum performance
for an equal-weighted portfolio (0.57), and 10% more than for the HRP optimizer
using 2 years of data (0.60).6 Very similar tendencies are visualized on the left subfig-
ure of Figure C.4 in the Online Appendix. The Calmar ratio performance measure
confirms the relative strength of the mean-variance optimizer over other portfolio
creation techniques.

5. Conclusions

Using the recent advances in predicting the cross-section of excess returns with the
random forest machine learning tool, we perform a comparative analysis of different
portfolio construction techniques. We use 20 years of historical data of stocks from
the S&P500 index to train the random forest and prepare the out-of-sample predic-
tions. We find that, on average, the mean-variance optimized portfolios outperform
the 1/N portfolios by 16.5% in terms of the Sharpe ratio. This result is in opposition
to common criticism towards mean-variance optimizers (DeMiguel et al., 2009; Kolm
et al., 2014). In an extensive study on optimizers, DeMiguel et al. (2009) demonstrate
that the traditional mean-variance optimizer measured with the Sharpe ratio
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underperforms an equal-weighted portfolio on average by 41.1%. It reached an out-
performance by 5.0% for only 1 out of the 6 tested portfolios. Furthermore, none of
the 11 other modified mean-variance optimizers, on average, outperform a naive,
equal-weighted portfolio.

We confirm the sound results of optimized portfolios’ performances with the
Hierarchical Risk Parity (HRP) optimizer that, on average, outperforms the equal-
weighted portfolios by 18.0%. The differences in the performance of the mean-vari-
ance and HRP optimizers are not significant and depend mainly on the number of
stocks used to create portfolios, where HRP prefers a smaller number of shares and
the mean-variance prefers a larger one. In absolute terms, the mean-variance opti-
mizer outperforms HRP. Our results are robust with stocks from the European
STOXX600 index and with different settings for the mean-variance optimizer.

At the highest level, our findings demonstrate that optimizers are efficient tools
that cooperate with machine learning predictions. In the studies on empirical asset
pricing that uses machine learning, it is a common practice to create equal-weighted
portfolios with n stocks having the highest monthly predictions (Gu et al., 2020;
Rasekhschaffe & Jones, 2019). Our research proves that with optimizers, we can
enhance the performance of machine learning portfolios.

From the portfolio optimization theory perspective, we show that excess return
forecasts derived from machine learning may help to overcome the well-identified
problems of quadratic mean-variance optimizers connected with sensitivity to changes
in the inputs. We find that mean-variance optimizers fed with machine learning pre-
dictions as expected returns build more efficient portfolios in terms of the Sharpe
ratio compared to naive diversification. This finding is supported by the Calmar ratio
observations.

Our research proposes a portfolio-creation methodology based on the random for-
est machine learning tool and one of two optimizers (the mean-variance or HRP).
This methodology is effective in outperforming the market benchmark. While we test
two different optimizers to weighted portfolios derived from a cross-section of
expected returns, other methods such as the Bayesian approach to estimation error,
moment restrictions, portfolio constraints, or optimal combinations of portfolios may
also be applied for the same purpose (DeMiguel et al., 2009). For future studies, one
may explore the effect of a wider set of optimizers used with a cross-section of
expected excess returns, where an improved methodology may result in better effi-
ciency measures. Another direction of further studies may be to search for further
improvements in the predictions’ accuracy and volatility. Following Gu et al. (2020),
we implement the random forest method to forecast excess returns, but potentially
one can use other, more effective methods. Finally, it is worth verifying how this
two-step methodology performs in different markets and after the impact of transac-
tion costs.

Notes

1. Kolm et al. (2014) present some of the approaches developed to address the challenges
encountered when using portfolio optimization in practice, including the sensitivity to the
estimates of expected returns. In order to mitigate the impact of estimation errors in
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mean variance optimization, the following techniques are demonstrated: 1) constraints on
portfolio weights (Jagannathan & Ma, 2003), 2) diversification measures (Bouchaud et al.,
1997), 3) Bayesian techniques and the Black-Litterman model (Black & Litterman, 1992),
4) robust optimization (Goldfarb & Iyengar, 2003), and 5) incorporating higher moments
and tail-risk measures (Rockafellar & Uryasev, 2000). Futhermore Tang et al. (2004)
demonstrates different approaches to incorporate uncertainty in portfolio optimization
categorized as stochastic uncertainy and fuzziness.

2. The empirical study on the mean-variance model and its extensions showed that none is
consistently better than the 1/N rule in terms of the Sharpe ratio, certainty-equivalent
return, or turnover (DeMiguel et al., 2009).

3. We follow the machine learning definition proposed by Gu et al. (2020). The full
definition is: “(i) a diverse collection of high-dimensional models for statistical prediction,
combined with (ii) so-called ‘regularization’ methods for model selection and mitigation of
overfit, and (iii) efficient algorithms for searching among a vast number of potential
model specifications.”

4. Gu et al. (2020) indicate 20 factors that have the biggest impact on the random forest
method. Datastream provides data for 18 factors that explain around 90% of the model’s
performance. Thus, 10% of unexplained performance is not problematic in the context of
our research main objective, which is to prepare stable stock excess return predictions.

5. We look closely for any potential forward-looking bias. We conclude that the data from
Revinitiv Datastream does not need to be time shifted. Note, however, that the verification
of the time shifts is crucial for a prediction’s reliability. Another issue is missing
characteristics. We remove monthly observations that lack both the closing price and 12-
month rate of returns. We replace other gaps with the cross-sectional median.

6. As highlighted in Section 4.1., the HRP optimizer performs best with 1 year of historical
data on stocks from the STOXX600 index. With 1 year of data, its maximum Sharpe ratio
reaches 0.66, which is equal to the mean-variance optimizer’s maximum performance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The project was financed within the Regional Initiative for Excellence programme of the
Minister of Science and Higher Education of Poland, years 2019-2022, grant no. 004/RID/
2018/19, financing 3,000,000 PLN.

ORCID

Tomasz Kaczmarek http://orcid.org/0000-0003-1828-100X
Katarzyna Perez http://orcid.org/0000-0003-3331-8456

Data availability statement

The data that support the findings of this study are available from Refinitiv. Restrictions apply
to the availability of these data, which were used under license for this study. Data are avail-
able from the authors on request with the permission of Refinitiv.

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 35



References

Abraham, A., Nath, B., & Mahanti, P. K. (2001). Hybrid intelligent systems for stock market
analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2074, 337–345. https://doi.org/10.1007/3-
540-45718-6_38

Atsalakis, G. S., & Valavanis, K. P. (2009a). Forecasting stock market short-term trends using
a neuro-fuzzy based methodology. Expert Systems with Applications, 36(7), 10696–10707.
https://doi.org/10.1016/j.eswa.2009.02.043

Atsalakis, G. S., & Valavanis, K. P. (2009b). Surveying stock market forecasting techniques –
Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941.
https://doi.org/10.1016/j.eswa.2008.07.006

Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal,
48(5), 28–43. https://doi.org/10.2469/faj.v48.n5.28

Bouchaud, J.-P., Potters, M., & Aguilar, J.-P. (1997). Missing information and asset allocation.
Science & Finance (CFM) working paper archive 500045, Science & Finance, Capital Fund
Management. https://ideas.repec.org/p/sfi/sfiwpa/500045.html

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/
A:1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. Chapman & Hall.

Clarke, R., De Silva, H., & Thorley, S. (2002). Portfolio constraints and the fundamental law of
active management. Financial Analysts Journal, 58(5), 48–66. https://doi.org/10.2469/faj.v58.
n5.2468

Cochrane, J. H. (2011). Presidential address: discount rates. The Journal of Finance, 66(4),
1047–1108. https://doi.org/10.1111/j.1540-6261.2011.01671.x

DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inef-
ficient is the 1/N portfolio strategy? Review of Financial Studies, 22(5), 1915–1953. https://
doi.org/10.1093/rfs/hhm075

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial
Economics , 116(1), 1–22. https://doi.org/10.1016/j.jfineco.2014.10.010

Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: empirical tests. Journal of
Political Economy, 81(3), 607–636. In The University of Chicago Press. https://doi.org/10.
2307/1831028 https://doi.org/10.1086/260061

Frydman, H., Altman, E. I., & Kao, D.-L. (1985). Introducing recursive partitioning for finan-
cial classification: the case of financial distress. The Journal of Finance, 40(1), 269–291.
https://doi.org/10.2307/2328060

Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of
Operations Research, 28(1), 1–38. https://doi.org/10.1287/moor.28.1.1.14260

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of
Financial Studies, 33(5), 2223–2273. https://doi.org/10.1093/rfs/hhaa009

Harvey, C. R., Liu, Y., Zhu, H. (2016). … and the cross-section of expected returns. Review of
Financial Studies, 29(1), 5–68. https://doi.org/10.1093/rfs/hhv059

Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: why imposing the wrong
constraints helps. The Journal of Finance , 58(4), 1651–1683. In ( Issue John Wiley & Sons,
Ltd. https://doi.org/10.1111/1540-6261.00580

Kao, D. L., & Shumaker, R. D. (1999). Equity style timing. Financial Analysts Journal, 55(1),
37–48. Issue CFA Institute. https://doi.org/10.2469/faj.v55.n1.2240

Kolm, P. N., T€ut€unc€u, R., & Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical
challenges and current trends. European Journal of Operational Research, 234(2), 356–371.
https://doi.org/10.1016/j.ejor.2013.10.060

Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns
with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603–621.
https://doi.org/10.1016/S0927-5398(03)00007-0

36 T. KACZMAREK AND K. PEREZ

https://doi.org/10.1007/3-540-45718-6_38
https://doi.org/10.1007/3-540-45718-6_38
https://doi.org/10.1016/j.eswa.2009.02.043
https://doi.org/10.1016/j.eswa.2008.07.006
https://doi.org/10.2469/faj.v48.n5.28
https://ideas.repec.org/p/sfi/sfiwpa/500045.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2469/faj.v58.n5.2468
https://doi.org/10.2469/faj.v58.n5.2468
https://doi.org/10.1111/j.1540-6261.2011.01671.x
https://doi.org/10.1093/rfs/hhm075
https://doi.org/10.1093/rfs/hhm075
https://doi.org/10.1016/j.jfineco.2014.10.010
https://doi.org/10.2307/1831028
https://doi.org/10.2307/1831028
https://doi.org/10.1086/260061
https://doi.org/10.2307/2328060
https://doi.org/10.1287/moor.28.1.1.14260
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1093/rfs/hhv059
https://doi.org/10.1111/1540-6261.00580
https://doi.org/10.2469/faj.v55.n1.2240
https://doi.org/10.1016/j.ejor.2013.10.060
https://doi.org/10.1016/S0927-5398(03)00007-0


Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of
Finance, 20(4), 587. https://doi.org/10.2307/2977249

L�opez de Prado, M. (2016). Building diversified portfolios that outperform out of sample. The
Journal of Portfolio Management, 42(4), 59–69. https://doi.org/10.3905/jpm.2016.42.4.059

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77. https://doi.org/10.
2307/2975974

Miller, K. L., Li, H., Zhou, T. G., & Giamouridis, D. (2015). A risk-oriented model for factor
timing decisions. The Journal of Portfolio Management, 41(3), 46–58. https://doi.org/10.
3905/jpm.2015.41.3.046

Miller, K. L., Ooi, C., Li, H., & Giamouridis, D. (2013). Size rotation in the U.S. equity market.
The Journal of Portfolio Management, 39(2), 116–127. https://doi.org/10.3905/jpm.2013.39.2.
116

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768. https://doi.
org/10.2307/1910098

Naveed Jan, M., & Ayub, U. (2019). Do the fama and french five-factor model forecast well
using ANN? Journal of Business Economics and Management, 20(1), 168–191. https://doi.
org/10.3846/jbem.2019.8250

Pantazopoulos, K. N., Tsoukalas, L. H., Bourbakis, N. G., Br€un, M. J., & Houstis, E. N. (1998).
Financial prediction and trading strategies using neurofuzzy approaches. IEEE Transactions
on Systems, Man, and Cybernetics. Part B, Cybernetics : a Publication of the IEEE Systems,
Man, and Cybernetics Society, 28(4), 520–531. https://doi.org/10.1109/3477.704291

Rasekhschaffe, K. C., & Jones, R. C. (2019). Machine learning for stock selection. Financial
Analysts Journal, 75(3), 70–88. https://doi.org/10.1080/0015198X.2019.1596678

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal
of Risk, 2(3), 21–41. https://doi.org/10.21314/JOR.2000.038

Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of
risk. The Journal of Finance, 19(3), 425. https://doi.org/10.2307/2977928

Sorensen, E. H., Miller, K. L., & Ooi, C. K. (2000). The decision tree approach to stock selec-
tion. The Journal of Portfolio Management, 27(1), 42–52. https://doi.org/10.3905/jpm.2000.
319781

Tang, J., Wang, D. W., Fung, R. Y. K., & Yung, K.-L. (2004). Understanding of fuzzy opti-
mization: theories and methods. Journal of Systems Science and Complexity, 17(1), 117–136.

Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity
premium prediction. Review of Financial Studies, 21(4), 1455–1508. https://doi.org/10.1093/
rfs/hhm014

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 37

https://doi.org/10.2307/2977249
https://doi.org/10.3905/jpm.2016.42.4.059
https://doi.org/10.2307/2975974
https://doi.org/10.2307/2975974
https://doi.org/10.3905/jpm.2015.41.3.046
https://doi.org/10.3905/jpm.2015.41.3.046
https://doi.org/10.3905/jpm.2013.39.2.116
https://doi.org/10.3905/jpm.2013.39.2.116
https://doi.org/10.2307/1910098
https://doi.org/10.2307/1910098
https://doi.org/10.3846/jbem.2019.8250
https://doi.org/10.3846/jbem.2019.8250
https://doi.org/10.1109/3477.704291
https://doi.org/10.1080/0015198X.2019.1596678
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.2307/2977928
https://doi.org/10.3905/jpm.2000.319781
https://doi.org/10.3905/jpm.2000.319781
https://doi.org/10.1093/rfs/hhm014
https://doi.org/10.1093/rfs/hhm014

	Abstract
	Introduction
	Materials and methods
	Literature review
	Proposed model
	Data preparation
	Random forest configuration
	Prediction of excess returns, stock selection, and portfolio creation
	Evaluation of results


	Results
	Random forest portfolio overview
	The optimum length of historical data as an input for the mean-variance optimizer
	Optimized portfolios vs. the 1/n rule
	Optimized portfolios vs. benchmarks

	Robustness and additional tests
	Verification of optimal length of historical data
	The sensitivity of results to mean-variance configuration changes
	Optimized portfolios vs. the 1/n rule on data from the STOXX600 index

	Conclusions
	Disclosure statement
	Funding
	Orcid
	Data availability statement
	References


