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Business School, Yunnan University of Finance and Economics, Kunming, P.R. China

ABSTRACT
In the classification calculation, the data are sometimes not
unique and there are different values and probabilities. Then, it is
meaningful to develop the appropriate methods to make classifi-
cation decision. To solve this issue, this paper proposes the
machine learning methods based on a probabilistic decision tree
(DT) under the multi-valued preference environment and the
probabilistic multi-valued preference environment respectively for
the different classification aims. First, this paper develops a data
pre-processing method to deal with the weight and quantity
matching under the multi-valued preference environment. In this
method, we use the least common multiple and weight assign-
ments to balance the probability of each preference. Then, based
on the training data, this paper introduces the entropy method
to further optimize the DT model under the multi-valued prefer-
ence environment. After that, the corresponding calculation rules
and probability classifications are given. In addition, considering
the different numbers and probabilities of the preferences, this
paper also uses the entropy method to develop the DT model
under the probabilistic multi-valued preference environment.
Furthermore, the calculation rules and probability classifications
are similarly derived. At last, we demonstrate the feasibility of the
machine learning methods and the DT models under the above
two preference environments based on the illustrated examples.
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1. Introduction

With the development of artificial intelligence, machine learning plays a vital role in
it. Machine learning is used in addressing data set containing a lot of messy informa-
tion (Blum & Langley, 1997), and it can be widely applied in various fields, such as
the sales (Sun et al., 2008; Tsoumakas, 2019; Wong & Guo, 2010), the credit assess-
ment (Kruppa et al., 2013; Pal et al., 2016), and the autonomous vehicles (Qayyum
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et al., 2020), etc. Moreover, machine learning is commonly be divided into two differ-
ent types including the unsupervised learning and the supervised learning. The
unsupervised learning is a method that classifies samples through data analysis of a
large number of samples without the category information (Barlow, 1989; Goldsmith,
2001). The most common unsupervised learning algorithm is the k-means method
(Cap�o et al., 2020; Han et al., 2020). The supervised learning is a kind of method to
learn a function from a given training data. Next, when new data comes, it can pre-
dict the result based on the former function (Figueiredo, 2003; Gerfo et al., 2008).
The supervised learning contains many algorithms, such as the decision tree (DT)
(Pal & Mather, 2003; Polat & G€uneş, 2007), the k-nearest neighbor (Zhang & Zhou,
2007; Lee et al., 2019), the random forests (Mantas et al., 2019), and the support vec-
tor machines (Utkin, 2019; Yuan et al., 2010). Obviously, we can conclude that the
machine learning method is not only widely used but also has many kinds of
extended algorithms. Based on this, the machine learning method can be developed
by fusing some new conditions according to the actual requirements.

In the above machine learning methods, the DT is a basic machine learning classi-
fication, regression (Galton, 1889), and data mining (Han & Micheline, 2006)
method. Hunt (1965) proposed the Concept Learning System (CLS) which introduces
the concept of the DT. Based on the ID3 algorithm, the DT was formally proposed
and defined (Quinlan, 1986, 1987). After that, some scholars continued to research
and improve this method based on the ID3 algorithm, resulting in many classic clas-
sification algorithms such as the CART (Crawford, 1989; Rutkowski et al., 2014), the
C4.5 (Quinlan, 1996), and the SLIQ (Narasimha & Naidu, 2014). In addition, these
methods have a large number of extended applications (Bhargava et al., 2013;
Hardikar et al., 2012; Ruggieri, 2002; Santhosh, 2013). Although the above algorithms
with inductive properties used to construct the DTs can make classification and
regression in the single-valued attributes environment, the operation results are not
satisfactory when the environment changes (Chen et al., 2003).

According to the above analysis, the multi-valued concept and the multi-valued
environment were presented (Miao & Wang, 1997). Some scholars built the models by
using the similarity (Clarke, 1993; Santini & Jain, 1999; Tversky,1977) to solve the
problem under the defined multi-valued and multi-labeled environments (Chen et al.,
2010; Cheng, 2014; Chou & Hsu, 2005; Hsu, 2021; Yi et al., 2011; Zhao & Li, 2007).
Obviously, they realized the transition from the single-valued to the multi-valued envi-
ronments. This lays a research foundation for the proposal of a decision classification
algorithm under the multi-valued preference environment. However, in the decision-
making process, the numbers and weights of the preferences are sometimes different.
Therefore, it also provides a research direction for this paper to extend the multi-valued
preference environment to the probabilistic multi-valued preference environment.

To achieve the above aims, this paper is organized as follows: This paper briefly
reviews the traditional DT models in Section 2. The weight and quantity matching
method and the DT algorithm under the multi-valued preference environment are
proposed in Section 3. In Section 4, we further propose a machine learning model
under the probabilistic multi-valued preference environment and demonstrate the
operation process with an example. Section 5 gives the derived conclusions.
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2. Preliminaries

The concept of the probabilistic multi-valued attributes environment can be divided
into two perspectives to understand. The first perspective is the environment with the
multi-valued preferences; the second perspective is the environment with the prob-
abilistic multi-valued preferences. It is found that both of these environments are
established based on the traditional single-valued attributes environment. Therefore,
before introducing the two new environments in detail, we first briefly review
machine learning in the traditional single-valued attributes environment. Then, this
paper introduces the construction process of the DT model under the traditional sin-
gle-valued attributes environment. Finally, we describe the multi-valued and probabil-
istic multi-valued preference environments. By comparing the three environments
through examples, this paper can intuitively present the changes.

2.1. The DT model in a traditional single-valued attributes environment

The traditional DTs include the ID3, C4.5, and CART methods. In this paper, the
ID3 algorithm is selected as the basic technique. This method uses the entropy
method and information gain to construct a DT, where the information gain is the
difference between the information entropy and conditional entropy, and then selects
the attribute with the largest information gain as the optimal attribute to form a clas-
sification node. The main construction steps of the DT model are shown below:

Assume that a training data set is S where jSj denotes the sample number, and
these samples have K classes labeled Ck, k ¼ 1, 2, 3, . . . ,K, and Ckj j represents the
number of samples belonging to the class Ck: If a discrete attribute A has m possible
values, and then A divides the training data set S into D training data subsets and
each training data subset can be labeled as Sd ðd ¼ 1, 2, . . . ,DÞ, where Sdj j is the
number of samples in Sd: Note that the set Sdk belongs to the class Ck in the subset
Sd and Sdkj j is its sample number of Sdk: The corresponding calculation formula of
the information gain is given as follows:

GainðS,AÞ ¼ InfoðSÞ�InfoðS=AÞ (1)

Eq. (1) denotes the information gain of the attribute A in the training data set S,
it is used to measure the degree of information uncertainty reduction.

Eq. (2) represents the information entropy of the training set S:

InfoðSÞ ¼ �
XK

k¼1

Ckj j
jSj log 2

Ckj j
jSj (2)

Eq. (3) denotes the conditional entropy of the attribute A in the training data set
S: Generally, the classification ability of an attribute is enhanced with the increase of
the information gain. Then, we can select the attribute with the largest information
gain as the optimal attribute.
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InfoðS=AÞ ¼ �
XD

d¼1

Sdj j
jSj
XK

k¼1

Sdkj j
Sdj j log 2

Sdkj j
Sdj j : (3)

According to this idea, this paper traverses the entire training data set and finds
out all the attributes to construct the probabilistic DT. Note that the study in this
subsection is only based on the traditional single-valued attributes environment, and
then we study the multi-valued and probabilistic multi-valued preference environ-
ment in the next section.

2.2. The multi-valued and probabilistic multi-valued preference environment

As we know, there are some situations which show the multi-valued preference and
probabilistic multi-valued preference characters in real life. However, few models are
developed based on the multi-valued and probabilistic multi-valued preference envi-
ronments. Therefore, we try to study these two new environments and propose the
feasible probabilistic classification and machine learning models in this paper.

It is noted that the original data are derived from the DT cases (Quinlan, 1987).
Tables 1–3 respectively represent the above three environments in this reference. We can
find that there are four attributes in each table, namely “outlook, temperature, humidity,
windy”. Each attribute has its sub attributes. For example, “outlook” contains three sub
attributes of “sunny, overcast, rain”; “humidity” contains three sub attributes of “hot,
mild, cool”; “temperature” contains two sub attributes “high, normal”, and “windy” con-
tains two sub attributes “true, false”. Among them, Di denotes the sample of day i: The
attributes “outlook, temperature, humidity, windy” means that there are four attributes in
the data set; each attribute contains different sub attributes such as “sunny, overcast,
rain”. According to these setting, we have oij, tij, hij, and wij represent the probability
values of the j th attribute in the i th sample. Classes P and N represent the positive and
negative instances. pi and 1�pi denote the probability values of P and N in the i th sam-
ple. Therefore, we can further describe these three environments in detail.

Table 1 shows a single-value preference environment. Extract sample D13 from
Table 1 as an illustration, we can find that D13 shows each attribute only retains one
attribute value as the final state. For example, the attribute “outlook” selects the attri-
bute of “overcast”, “temperature” selects the attribute of “hot”, “humidity” selects the
attribute of “high”, and “windy” selects the attribute of “false”. In this single-valued
preference environment, each rule corresponds to only one classification result P or
N, which is called the absolute classification.

Table 2 shows a multi-valued preference environment. We can find that the prefer-
ence values of the sample have the multi-valued forms. Take the sample D23 in

Table 1. A single-valued preference sample.

No.

Attributes
Class
P/NOutlook Temperature Humidity Windy

D11 rain mild normal false P
D12 rain cool normal true N
D13 overcast hot high false P

Source: The Authors.
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Table 2 as an illustrated example, D23 shows that its each attribute contains one or
more preferences. In this example, the attribute “outlook” selects three preferences,
namely “overcast, sunny, rain”, which means that three different preferences of
“outlook” appeared on this day. Obviously, this situation is common in real life. In
this paper, we focus on these three preferences but not the order that they occur.
Based on this, a multi-valued preference environment can be shown as follows:

Definition 1. Let Di be the i th sample with j attributes, and each attribute con-
tains t preferences, and then this case can be defined as the multi-valued preference
environment, where the probability of each preference is equal, i ¼ 1, 2, . . . , n, j ¼
1, 2, . . . ,m, and t ¼ 1, 2, . . . , l:

According to Def. 1, we can obtain the multi-valued preference environment. Then,
it is found that all the attributes in the data retain the single and multiple preferences.
The weight of each preference in the same sample and the same attribute is equal.
Furthermore, we can find that the probability of preference is not involved here.

Table 3 shows the multi-valued preference environment with the probability.
Taking D33 in Table 3 as an example, we can find that this is different from Table 2
and each preference have their probability. Moreover, O, T, H, and W respectively
represent the possible probabilities. Taking the attribute “temperature” in D33 as an
example, this shows that the occurrence probability of preference “hot” is t31, “mild”
is t32, and “cool” is t33 on the same day, and the sum of the probabilities of these
three preferences is 1.

Moreover, the attribute “humidity” just has one attribute value “high”. Obviously,
the occurrence probability of the attribute value “high” in this day can be set as 100%,
and the occurrence probability of the other attribute “normal” can be set as 0%.
Finally, by observing the three small samples in Table 3, we can find that the number
of attribute in each sample can be set as the different values, which means that the
attribute situation that occurs every day is also different. We think that this situation
including the multi-valued preference and its probability is closer to real life.

Table 2. A multi-valued preference sample.

No.

Attributes
Class
P/NOutlook Temperature Humidity Windy

D21 rain mild normal false ðp21, 1�p21Þ
D22 rain, overcast cool, hot normal, high true ðp22, 1�p22Þ
D23 overcast, sunny, rain hot, mild, cool high false, true ðp23, 1�p23Þ
Source: The Authors.

Table 3. A probabilistic multi-valued preference sample.

No.

Attributes
Class
P/NOutlook Temperature Humidity Windy

D31 rain
o13

mild
t12

normal
h12

false
w12

ðp31, 1�p31Þ

D32 overcast, rain
o22, o23

hot, cool
t21, t23

high, normal
h21, h22

true
w21

ðp32, 1�p32Þ

D33 sunny, overcast, rain
o31, o32, o33

hot, mild, cool
t31, t32, t33

high
h31

true, false
w31,w32

ðp33, 1�p33Þ

Source: The Authors.
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The three different environments aforementioned are three kinds of presentations
and show the different relationships. The multi-valued preference is a development of
the single-valued attribute, while the probabilistic multi-valued preference is a devel-
opment of the multi-valued preference. Therefore, this paper develops the DT model
based on these different environments and analyzes them according to these two sit-
uations which are the main innovations of this paper.

3. The machine learning model in the multi-valued preference
environment

As aforementioned in Section 2.1, the ID3 algorithm is used to calculate the single-
valued discrete data. Then, this method directly selects the optimal attribute by calcu-
lating their information gains and constructs the machine learning model. The
hypothesis of the ID3 algorithm is that the weight of each sample in each column of
attributes is 1. However, the multi-valued and probability multi-valued data sets
studied in this paper have the main characteristics, which are the different numbers
of attribute values in the same attribute and sample. Thus, these two types of data
cannot be directly embedded in the information gain formula to select the optimal
attribute in the calculation process.

With respect to the above discussion, we can find that the build of the DT in the
multi-valued preference environment includes two main steps. The first step is to
solve the aforementioned problem by preprocessing the original training data. In this
step, the numbers and weights of the preferences in the original training data should
be re-matched to balance them. The second step is to construct a DT using the new
training data. Compare with the optimal degree of each attribute and its preference
based on the bifurcation criterion, we can find that the optimal attribute is different.
Based on this, we first propose the weight and quantity matching method under the
multi-valued preference environment in the next subsection.

3.1. The weight and quantity matching in the multi-valued preference
environment

In the multi-valued preference environment, the training data set S contains n sam-
ples for the multi-dimensional attributes which presents a multi-dimensional matrix.
Suppose the attribute A in i th sample contains l preferences can be expressed as
ai1, ai2, . . . , ailf g: Then, the preferences that are selected for the attribute A in the

training data set S can be shown as a matrix below:

SA ¼
a11, a12, a13, . . . , a1l
a21, a22, a23, . . . , a2l

. . .
an1, an2, an3, . . . , anl

2
664

3
775:

where SA represents a matrix includes the different preferences in the attribute A of
all the samples, which is a combination of the n sets fai1, ai2, ai3, . . . , ailg and i ¼
1, 2, . . . , n: ait denotes the i th sample selects the t th preference in the attribute A
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and t ¼ 1, 2, . . . , l, aitj j is defined as the weight of the preference ait: Moreover, let Li
denotes the number of preferences belonging to the attribute A in the i th sample.
However, since each sample exists independently, each Li can be unequal. Therefore,
different preferences have different weights under the attribute A:

To address the issue of uneven weights caused by the unequal numbers, this paper
proposes a weight and quantity matching method. This method is to use the least
common multiple to match the quantity of data. This principle of the least common
multiple can change the amounts of data into the same one. Assume the least com-
mon multiple is marked h ¼ 〚〛: In this multi-valued training data set S, the least
common multiple of the attribute A can be calculated as h ¼ 〚L1, L2, L3, . . . , Ln〛:

The original training data set S can be expanded accordingly and the expansion mul-
tiple is marked with h=Li: Here, we make the number of preferences in each sample
with respect to the attribute A become h: Therefore, the weight reduction of each
preference is a multiple of 1=Li where 1=Li ¼ h

Li
=h: Similarly, the preferences of other

attributes can also obtain new weights using the given weight and quantity matching
method. Then, we can get a new multi-valued preference data set S0, and assume
aitj j=Li ði ¼ 1, 2, . . . , n; t ¼ 1, 2, . . . , lÞ as the new weight of each preference.
Based on this, we finish the process of quantity matching and give a weight and

quantity matching method. Therefore, we complete the weight and quantity matching
in the multi-valued preference environment. Further, we can analyze how to use the
weight and quantity matching method to develop the DT algorithm under the multi-
valued preference environment.

3.2. The DT algorithm in the multi-valued preference environment

As we know, the DT model under the single-valued environment uses the informa-
tion gain to select bifurcation nodes. Similarly, under the multi-valued attribute envir-
onment, we also construct the DT model based on the bifurcation nodes. However,
with respect to the different environments, the selection criterion for the bifurcation
nodes are changed accordingly. In this paper, we develop a new method of selecting
nodes under the multi-valued preference environment as the bifurcation criterion.

The following content explains these concepts in conjunction with the mathemat-
ical expressions and modeling process of the new DTs and machine learning. We
also introduce the notations that are used in the following Sections, which are shown
in Table 4.

Due to the different environments, this paper optimizes the algorithm in the sin-
gle-valued preference environment and improves the information gain as a bifurca-
tion criterion that can handle the multi-valued preferences. Moreover, this paper
divides the node selection into two steps, which are the selection of the root node
and the other nodes. The reason is that the selection of the root node only considers
the changing relationship between the preference and classification. However, the
selection of other nodes needs to be based on the known conditions of the previous
node. Therefore, the weight modification should be considered, as well as the previ-
ous node’s weights.
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With respect to these principles, the calculation of the root node bifurcation criter-
ion in the multi-valued preference environment is summarized as follows:

Mr S
0,Að Þ ¼ bifr S

0ð Þ�conr S0=A
� �

(4)

Then, the bifurcation information entropy bifrðS0Þ of the root node is shown as

bifr S0ð Þ ¼ �
XK

k¼1

Ckj j
S0j j log 2

Ckj j
S0j j (5)

Furthermore, the conditional information entropy of the root node is presented as
follows:

conr S0=A
� � ¼ �

Xn
i¼1

XW
w¼1

aiwj j: 1Li
S0j j

PK
k¼1 aiwkj j: 1

Lik

aiwj j: 1Li
log 2

PK
k¼1 aiwkj j: 1

Lik

aiwj j: 1Li

 !" #
(6)

Similarly, the calculation of the sub node bifurcation criterion in the multi-valued
preference environment is summarized as follows:

Msub S0,Að Þ ¼ bifsub S0ð Þ�consub S0=A
� �

(7)

Then, the bifurcation information entropy bifsubðS0wÞ ðw ¼ 1, 2, . . . ,WÞ of the sub
node is

bifsub S0w
� � ¼ �

Xn
i¼1

XK
k¼1

aiwkj j: 1
Lik

aiwj j: 1Li
log 2

aiwkj j: 1
Lik

aiwj j: 1Li
(8)

Table 4. The main notations in the multi-valued preference environment.
Notations Introduction Notations Introduction

S0 The training data set after
quantity matching

1=Li The multiple of preferences aiw that should
be reduced after quantity matching

jS0j The sample number of S0 1=Lik The multiple of preferences aiwk that should
be reduced after quantity matching

A The attribute of S0 1=Rci The multiple of preferences aciu that should
be reduced after quantity matching

jCkj The sample number of the class Ck 1=Rcik The multiple of preferences aciuk that should
be reduced after quantity matching

jaiw j The weight about the w th preference of
the root node attribute in the i th sample

PZiwðbÞ The preferences aiw of the root node
attribute is under branch Z, where there
are b samples with classification result P

jaiwkj The weight about the w th preference in the
root node attribute belongs to the class k
in the i th sample

PZicuðbÞ The preference aiu of the c th sub node is
under branch Z, where there are b
samples with classification result P

jaciuj The weight about the u th preference of the
sub node attribute c in the i th sample

NZ
iwðgÞ The preference aiw of the root node

attribute is under branch Z, where there
are g samples with classification result N

jaciukj The weight about the u th preference of the
sub node attribute c belongs to class k in
the i th sample

NZ
icuðgÞ The preference aiu of the c th sub node is

under branch Z, where there are g
samples with classification result N

Source: The Authors.
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Moreover, the conditional information entropy of the sub node is presented as

consub S0wc=A
� � ¼ �

Xn
i¼1

QU
u¼1 aiwj j: 1Li : aciu

�� ��: 1
Rc
i

� �
aiwj j: 1Li

�
PK

k¼1 aiwj j: 1Li :
QU

u¼1 a
c
iuk

�� ��: 1
Rc
ik

� �
aiwj j: 1Li :

QU
u¼1 a

c
iu

�� ��: 1
Rc
i

log 2

PK
k¼1 aiwj j: 1Li :

QU
u¼1 a

c
iuk

�� ��: 1
Rc
ik

� �
aiwj j: 1Li :

QU
u¼1 a

c
iu

�� ��: 1
Rc
i

0
B@

1
CA

(9)

Therefore, we can obtain the root node and sub node bifurcation criterion in the
multi-valued preference environment. As we know, after the numbers of attributes
are matched, the preference weights can be changed. When calculating the bifurcation
criterion values of the nodes, the previous nodes should be considered again.
Generally, the larger bifurcation criterion, the more information contained in the
data, and the greater uncertainty.

However, the classification result of the DT can be not accurate at this stage and
the same attribute branch can appear the different classification results. Then, the
final result can be a multi-class result containing probabilities. Therefore, we should
calculate the corresponding probabilities of the classification results in all branches to
help decision-making. Assume that the preference set corresponds to a branch Z and
the classification results are P and N: Then, we can obtain the probability eP that the
classification result is P by Eq. (10). Similarly, we also can get eN :

eP ¼
PB

b¼1ð PZ
iwðbÞ

�� �� � QU
u¼1

PZ
icuðbÞ

�� ��Þ
PB

b¼1ð PZ
iwðbÞ

�� �� � QU
u¼1

PZ
icuðbÞ

�� ��Þ þPG
g¼1ð NZ

iwðgÞ
�� �� � QU

u¼1
NZ

icuðgÞ
�� ��Þ (10)

Thus, the main construction process of the probabilistic DT and machine learning
in the multi-valued preference environment is given. Obviously, we can make a deci-
sion based on the above classification results correspond to each branch. Here, we
choose a classification with a probability greater than 50%. To further demonstrate
the calculation steps, we give the following pseudo-code.

Input: The multi-valued training data set S:
Step 1: Preprocess the multi-valued training data set S to match its weight and quantity, and obtain a new data set
S0:
Step 2: Take each attribute A in the new training data set S0 as a node.
Step 3: Transform the preference in an attribute and divide the corresponding data into the different sub nodes.
Step 4: Use the bifurcation criterion to calculate the optimal preference for partitioning.
Step 5: Convert all the attributes according to the second step, select the best attribute and preference, and derive
the final sub node.
Step 6: Perform Steps 3-5 again for all the nodes until each node becomes a final node, and then we can obtain a
DT.
Step 7: Compare the DT with the original data and obtain classification results under the same bifurcation, and then
calculate the probability of each classification and obtain a probabilistic DT.
Output: A probabilistic DT.
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To understand the above algorithm and its steps, we use an illustrated example to
prove its feasibility in the next subsection.

3.3. An illustrated example

To show the above machine learning model, a simple example is given in this section
to show the operation process. For an intuitive comparison, this section follows the
example in Section 2.2, retains 10 samples, namely Si ði ¼ 1, 2, 3, . . . , 10Þ: We con-
sider four attributes, which are outlook A1, temperature A2, humidity A3, and windy
A4: The training data set S is shown in Table 5 and it is further expanded and shown
in Table 6. The final classification DT is shown in Figure 1.

According to the steps to build a multi-valued DT, this subsection first performs
the quantity matching in the original data set S, and then calculates the least com-
mon multiple of the four attributes, then we can obtain their matching values when
h1 ¼ 6, h2 ¼ 6, h3 ¼ 2, and h4 ¼ 2: Then, based on the result of quantity matching,
the original data set S is expanded to a new data set S0 as shown in Table 6. It is

Table 5. A multi-valued training set containing 10 samples.

No.

Attributes

ClassOutlook Temperature Humidity Windy

S1 sunny hot normal false P
S2 rain mild high true N
S3 rain, sunny cool, mild normal true P
S4 overcast, rain hot, cool high, normal false, true P
S5 overcast mild, hot high, normal false P
S6 sunny, rain hot, cool high true, false N
S7 overcast, rain, sunny cool, mild normal true P
S8 rain, overcast cool, mild, hot normal, high false P
S9 sunny, rain hot, cool, mild normal false, true N
S10 rain, sunny, overcast mild, cool, hot normal, high true, false P

Source: The Authors.

Table 6. A new training sample set after quantity expanding.

No.

Attributes

ClassOutlook Temperature Humidity Windy

S01 sunny; sunny; sunny; sunny;
sunny; sunny

hot; hot; hot; hot; hot; hot normal; normal false; false P

S02 rain; rain; rain; rain; rain; rain mild; mild; mild; mild; mild; mild high; high true; true N
S03 rain, sunny; rain, sunny; rain, sunny cool, mild; cool, mild; cool, mild normal; normal true; true P
S04 overcast, rain; overcast, rain;

overcast, rain
hot, cool; hot, cool; hot, cool high, normal false, true P

S05 overcast; overcast; overcast;
overcast; overcast; overcast

mild, hot; mild, hot; mild, hot high, normal false; false P

S06 sunny, rain; sunny, rain; sunny, rain hot, cool; hot, cool; hot, cool high; high true, false N
S07 overcast, rain, sunny;

overcast, rain, sunny
cool, mild; cool, mild; cool, mild normal; normal; true; true P

S08 rain, overcast; rain, overcast;
rain, overcast

cool, mild, hot; cool, mild, hot normal, high false; false P

S09 sunny, overcast, rain; sunny,
overcast, rain

hot, cool, mild; hot, cool, mild normal; normal false, true N

S010 rain, sunny, overcast; rain,
sunny, overcast

mild, cool, hot; mild, cool, hot normal, high true, false P

Source: The Authors.
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found that the number and weights of attribute values in the same attribute are kept
consistent. Further, we use the bifurcation criterion to select the optimal attributes
and construct a DT.

In the following content, we only show the selection process of the first node. The
calculation processes of other nodes are the same and the results are shown in Table 7.

First, we calculate the bifurcation information of the training data set S and
compute the bifurcation criterion of four attributes, and then select the attribute with
the largest bifurcation criterion value as the root node. The main process is given as
follows:

Figure 1. The DT generated based on the information gain and the data set S0:
Source: The Authors.

Table 7. The bifurcation criterion value in the multi-valued preference environment.
Preference ¼ “sunny” Preference ¼ “rain”

M (S01, A2) ¼0.0222 M (S02, A2) ¼0.1393
M (S01, A3) ¼0.1776 M (S02, A3) ¼0.1463
M (S01, A4) ¼0.0143 M (S02, A4) ¼0.0243
Select the attribute “A3” Select the attribute “A3”
Pre 5 "sunny, high" Pre 5 "sunny, normal" Pre 5 "rain, high" Pre 5 "rain, normal"
M (S011, A2) ¼ 0.1843 M (S012, A2) ¼ 0.0177 M (S021, A2) ¼ 0.1335 M (S022, A2) ¼ 0.0196
M (S011, A4) ¼ 0 M (S012, A4) ¼ 0.0008 M (S021, A4) ¼ 0.1860 M (S022, A4) ¼ 0.0218
Select the attribute “A2”, and the last attribute is “A4” Select the attribute “A4”, and the last attribute is “A2”
Pre 5 “sunny, high, hot” Pre 5 “sunny, normal, hot” Pre 5 “rain, high, true” Pre 5 “rain, normal, true”
“sunny, high, hot, true” “sunny, normal, hot, true” “rain, high, true, hot” “rain, normal, true, hot”
“sunny, high, hot, false” “sunny, normal, hot, false” “rain, high, true, mild” “rain, normal, true, mild”
Pre 5 “sunny, high, mild” Pre5 “sunny, normal, mild” “rain, high, true, cool” “rain, normal, true, cool”
“sunny, high, mild, true” “sunny, normal, mild, true” Pre 5 “rain, high, false” Pre 5 “rain, normal, false”
“sunny, high, mild, false” “sunny, normal, mild, false” “rain, high, false, hot” “rain, normal, false, hot”
Pre 5 “sunny, high, cool” Pre 5 “sunny, normal, cool” “rain, high, false, mild” “rain, normal, false, mild”
“sunny, high, cool, true” “sunny, normal, cool, true” “rain, high, false, cool” “rain, normal, false, cool”
“sunny, high, cool, false” “sunny, normal, cool, false”

Source: The Authors.
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From the above calculation results, we can find that the attribute A1 has the largest
bifurcation criterion value, which is selected as the optimal attribute. Specifically, the
attribute A1 contains three branch nodes “sunny”, “overcast”, and “rain”, which
divides the data set S0 into three preferences S‘1, S

‘
2, and S‘3: Furthermore, we calculate

the classifications under the two branches of “sunny” and “rain”. The results are
shown in Table 7.

In Table 7, the left part shows the classification process under the attribute value is
“sunny”. The right part shows the classification process under the attribute value
is “rain”. Obviously, under the two branches, the bifurcation criterion value of A3 is
greater than the values of A2 and A4: Thus, the attribute A3 is selected as the optimal
node. Since the classification with respect to the attribute A3 still contains P and N,
then, A3 is only used as a bifurcation node. The two preferences “high” and “normal”
of attribute A3 can divide the data set again. Thus, S1 is divided into S11 and S12:
These two sets select the attributes from the remaining attributes A2 and A4 respect-
ively as the next bifurcation node. Table 7 shows the more detailed results.

From the calculation results in Table 7, it can be seen that in S11, the bifurcation
criterion value of the attribute A2 is greater than the value of A4: Thus, A2 is selected
as the bifurcation node in both sets. The last attribute A4 is left as a stop node.
Furthermore, in S12, the bifurcation criterion value of the attribute A2 is greater than
the value of A4, and then A2 is selected as the bifurcation node. Thus, only the last
attribute A4 is left as a stop node. Based on this, we temporarily get a DT that lacks
classification results. Since the classification results also contain probabilities, we need
to calculate them again.

Figure 1 is a probabilistic DT derived from the training data set. The ellipse repre-
sents the attribute of the bifurcation node, the better the classification performance is,
the closer the attribute is to the root of the tree. The line denotes the division
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preference, and the rectangle shows the probability of the classification result. The
upper and lower numbers represent the probabilities of the classification results
respectively under the bifurcation, which are P and N: For example, when the prefer-
ences are “rain, high, false, mild”, we can find that the corresponding classification
result is P ¼ 100% and N ¼ 0%: Obviously, P is better than others under this branch.
If preferences are “sunny, high, cool, false”, we can find that the corresponding classi-
fication result is P ¼ 18:18% and N ¼ 81:82%: Then, N is better than others under
this branch. If preferences are “sunny, high, hot, true”, we can find that the corre-
sponding classification result is P ¼ 55% and N ¼ 45%: There is very little difference
in the classification probabilities between P and N under this branch. Then, both the
alternatives are equal.

As aforementioned, to develop a DT model in machine learning under the multi-
valued preference environment, this section first proposes a weight and quantity
matching method in the multi-valued preference environment. Then, the correspond-
ing DT algorithm is proposed and applied to an illustrated example. In the next sec-
tion, we develop a machine learning model in the probabilistic multi-valued
preference environment.

4. The machine learning model in the probabilistic multi-valued
preference environment

It is found that the probability of each preference is the same in the machine learning
models under the multi-valued preference environment. However, in the real classifi-
cation calculation process, the probability of each preference may be different.
Therefore, in this section, we propose a machine learning model in the probabilistic
multi-valued preference environment. First, we propose a DT algorithm under this
environment in the following subsection.

4.1. The DT algorithm in the probabilistic multi-valued preference environment

The probabilistic multi-valued preference environment is a situation based on the
expansion of the multi-valued preference. The training data set in the probabilistic
multi-valued preference not only contains multi-valued preferences, but also each
preference contains the different probability instead of the equal weight values.

In Section 3.1, to re-match the numbers and weights of the preferences under all
the attributes, the original data S in the multi-valued preference environment needs
to be preprocessed. Then, we can ensure that each attribute is balanced during the
calculation process. However, each preference in the probabilistic multi-valued envir-
onment contains a probability. It is unnecessary to preprocess the data in this envir-
onment and we can directly calculate the bifurcation criterion of each attribute. Based
on this, we can select the optimal bifurcation node and bifurcation sub node.
Additionally, in the probabilistic multi-valued preference environment, it is noted
that since each preference contains the probability, the preference probability need to
be added in the entire calculation process. Therefore, we can build a DT model in
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the probabilistic multi-valued preference environment, which is also a machine learn-
ing model. Some related notations used in this section are given in Table 8.

Although this environment does not require preprocessing of the original training
data set, we need to consider the probability contained in each preference. Then, we
subdivide this modeling process into two steps, namely the selection of the root node
and the other nodes.

The selection of the optimal root node is done individually, and each branch only
considers a certain attribute. We calculate the bifurcation criterion of each attribute
separately, and the attribute with the largest bifurcation criterion is the optimal one.
There is only one optimal root node in a DT, while there may be multiple optimal
sub nodes. The selection principle of all the sub nodes is the same. In this case, the
sub node not only considers the current attribute and its belonging preference, but
also considers all the previous nodes including the root node. Then, we can take the
conditional probability in this environment as the probabilities of other sub nodes
when the root node is known, and the corresponding probabilities are multiplied in
the calculation process.

With respect to these principles, the calculation of the root node bifurcation criter-
ion in the probabilistic multi-valued environment can be shown as

Mpr T
0,Qð Þ ¼ Mpbifr T

0ð Þ�Mpconr T0=Q
� �

(11)

Then, the bifurcation information entropy MpbifrðT0Þ of the root node is shown as

Mpbifr T
0ð Þ ¼ �

XK

k¼1

Ckj j
T0j j log 2

Ckj j
T0j j (12)

Furthermore, the conditional information entropy of the root node is presented as
follows:

Table 8. Some main notations in the probabilistic multi-valued preference environment.
Notations Introduction Notations Introduction

T 0 The new training data set
after quantity matching

jqciuj The weight about the u th preference of the sub
node attribute c in the i th sample

jT 0j The sample number of T 0 jqciukj The weight about the u th preference of the sub
node attribute c belongs to class k in the i
th sample

Q An attribute of T 0 PZiwðbÞ0 The preferences qiw of the root node attribute is
under branch Z, where there are b samples with
classification result P

jCkj The sample number
of the class Ck

PZicuðbÞ0 The preference qiu of the c th sub node is under
branch Z, where there are b samples with
classification result P

jqiw j The weight about the w th
preference of the root node
attribute in the i th sample

NZ
iwðgÞ0 The preference qiw of the root node attribute is

under branch Z, where there are g samples with
classification result N

jqiwkj The weight about the w th
preference in the root node
attribute belongs to the
class k in the i th sample

NZ
icuðgÞ0 The preference qiu of the c th sub node is under

branch Z, where there are g samples with
classification result N

Source: The Authors.
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Mpconr T0=Q
� � ¼ �

Xn
i¼1

XW
w¼1

qiwj j
T0j j

XK
k¼1

qiwkj j
qiwj j log 2

qiwkj j
qiwj j

 !" #
(13)

Similarly, the calculation of the sub node bifurcation criterion in the probabilistic
multi-valued preference environment is summarized as follows:

Mpsub T0,Qð Þ ¼ Mpbifsub T0ð Þ�Mpconsub T0=Q
� �

(14)

Then, the bifurcation information entropy MpbifsubðT0
wÞðw ¼ 1, 2, . . . ,WÞ of the

sub node is

Mpbifsub T0
w

� � ¼ �
Xn
i¼1

XK
k¼1

qiwkj j
qiwj j log 2

qiwkj j
qiwj j (15)

Moreover, the conditional information entropy of the sub node is presented as
follows:

Mpconsub T0
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� � ¼ �
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�� �� � qiwj jÞ
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�
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(16)

Therefore, we can obtain the root node and sub node bifurcation criterion in the
probabilistic multi-valued preference environment. Furthermore, we need to calculate
the probability of each branch in the DT, and then obtain the probability e0P that the
classification result is P by Eq. (17). Similarly, we also can get e0N :

e0P ¼
PB

b¼1ð PZ
iwðbÞ0

�� �� � QU
u¼1

PZ
icuðbÞ0

�� ��Þ
PB

b¼1ð PZ
iwðbÞ0

�� �� � QU
u¼1

PZ
icuðbÞ0

�� ��Þ þPG
g¼1ð NZ

iwðgÞ0
�� �� � QU

u¼1
NZ

icuðgÞ0
�� ��Þ (17)

Thus, we construct the DT model in machine learning under the probabilistic
multi-valued preference environment, and the DT shows the probabilistic character.
The above calculation process can be further shown by the following pseudo-code.

Input: The training data set T:
Step 1: Treat each attribute Q in the new training data set T 0 as a node.
Step 2: Traverse each preference q of the current attribute and divide the data into different sub nodes by preference.
Step 3: Use bifurcation criterion to determine the optimal preference for partitioning.
Step 4: Consider the probability of each preference in the calculation process.
Step 5: Traverse all the attributes by the second step, select the best attribute and the best preference of the attribute,
and get the final sub node.
Step 6: Continue to perform Steps 2-5 for all sub nodes, until each final sub node becomes a stop node, and obtain a DT.
Step 7: Calculate the probability of the classification result under each branch in the DT.
Output: A probabilistic DT.
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4.2. An illustrated example

In this section, to show the effectiveness and feasibility of the above algorithm in the
probabilistic multi-valued preference environment, we give the detailed calculation
process based on an illustrated example. To present the advantages, we follow the
example in Subsection 3.2 and expand the data set to 60 samples which are shown in
Table 9. We can find that the entire data set is divided into two parts, the first 50
samples are taken as the training data sets, and the last 10 samples are taken as the
prediction data sets. In addition, the preference in each sample contains the probabil-
ity and the sum of the preference probabilities is 1 in the same sample and attribute.

In this example, we only show the calculation process of the root node selection.
Similarly, the selection of other sub nodes can be calculated. The calculation results
are shown in Table 10.

bif ðT0Þ ¼ � 27
50

log2
27
50

� 13
50

log2
13
50

¼ 0:9853
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�
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�
9:73
12:91

log 2
9:73
12:91
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The above calculation shows the selection process of the root node. From the
results, we can find that the attribute A1 has the largest bifurcation criterion value,
and then the attribute A1 can be selected as the optimal attribute. Specifically, the
three preferences “sunny”, “overcast”, and “rain” in the attribute A1 divided data set
T0 into three kinds of preferences T0

1, T
0
2, and T0

3:

When the preference contained in the branch is “overcast”, we can find that all
the classification results are unique and the category is P: In this case, there is no
need to further divide this node, and then the classification process is end.

Then, we calculate the bifurcation criterion of other attributes in the two kinds of
preferences T0

1, and T0
3, namely “sunny” and “rain”, to find all the sub nodes. This

calculation process involves more multi-attribute bifurcation criterion. The
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bifurcation criterion values and node selection results are given in Table 10. Then,
we can find that the attribute selection order is A1, A4, A3, and A2: Based on this,
we can get a DT in machine learning. At last, we use Eq. (17) to calculate the prob-
ability of each branch in the tree and get a probabilistic DT, which are shown in
Figure 2.

Based on Figure 2, we can obtain the probabilities of all the branches in the DT
and their corresponding classification results. As shown in Figure 2, the ellipse repre-
sents the bifurcation node, the line represents the division preference, and the rect-
angle denotes the probability of the classification result. The upper and lower
numbers in the rectangle refer to the probabilities of the classification results, which
are P and N respectively. According to this, we can further obtain the classification
results of the prediction data set. Moreover, Figure 2 shows all the probabilities of the
classification results for P and N:

Table 10. The bifurcation criterion value about sub nodes in the probabilistic multi-valued
environment.
Preference ¼ “sunny” Preference ¼ “rain”

M (T01, A2) ¼0.0439 M (T03, A2) ¼0.0010
M (T01, A3) ¼0.0461 M (T03, A3) ¼0.0300
M (T01, A4) ¼0.1767 M (T03, A4) ¼0.0590
Select the attribute “A4” Select the attribute “A4”
Pre 5 “sunny, true” Pre 5 “sunny, false” Pre 5 “rain, true” Pre5 “rain, false”
M (T011, A2) ¼ 0.0825 M (T012, A2) ¼ 0.0177 M (T031, A2) ¼ 0.0036 M (T032, A2) ¼ 0.0016
M (T011, A3) ¼ 0.0971 M (T012, A4) ¼ 0.0008 M (T031, A3) ¼ 0.1470 M (T032, A3) ¼ 0.0192
Select the attribute “A3”, and the last attribute is “A2” Select the attribute “A3”, and the last attribute is “A2”
Pre 5 “sunny, true, high” Pre5 “sunny, true, normal” Pre 5 “rain, true, high” Pre 5 “rain, false, high”
“sunny, true, high, hot” “sunny, true, normal, hot” “rain, true, high, hot” “rain, false, high, hot”
“sunny, true, high, mild” “sunny, true, normal, mild” “rain, true, high, hot” “rain, false, high, mild”
“sunny, true, high, cool” “sunny, true, normal, cool” “rain, true, high, hot” “rain, false, high, cool”
Pre 5 “sunny, false, high” Pre 5 “rain, true, normal” Pre 5 “rain, false, normal”

“rain, true, normal, hot” “rain, false, normal, hot”
“rain, true, normal, mild” “rain, false, normal, mild”
“rain, true, normal, cool” “rain, false, normal, cool”

Source: The Authors.

Figure 2. The DT based on the information gain and the data set T0:
Source: The Authors.
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As aforementioned, in this section, we propose a DT model in machine learning
under the probabilistic multi-valued preference environment. In addition, we apply
them to an illustrated example which reflects their feasibility and effectiveness.

5. Conclusions

In the classification process, the data are often not unique, there may be multiple val-
ues and probabilities, and then it is meaningful to develop an appropriate method to
make a classification decision in this situation. To do this, this paper has given the
multi-valued preference environment and probabilistic multi-valued preference envir-
onment, and then constructed two optimization machine learning methods based on
the new DT models. First, in the multi-valued preference environment, a training
data set with matching quantity and weight has been obtained through data prepro-
cessing, and a DT model in the multi-valued preference environment has been pro-
posed by using the entropy to generate several branches and probabilistic
classifications. Then, according to the different probabilities, we have developed a DT
model in the probabilistic multi-valued preference environment, and the branches
and their corresponding probabilities have been similarly generated. Meanwhile, we
have given two illustrated examples to show the calculation process and proved the
feasibility of the proposed machine learning methods. Therefore, there are three con-
tributions of this paper: (1) This paper has proposed a data preprocessing method to
match the weights and numbers in the multi-valued preference environment; (2) This
paper has developed a machine learning method and a DT algorithm in the multi-
valued preference environment to obtain the corresponding probability classification;
(3) This paper has constructed a machine learning method and a DT algorithm in
the probabilistic multi-valued preference environment, and the corresponding prob-
ability classification has been obtained.

The machine learning methods and the DT algorithms in the multi-valued prefer-
ence and probabilistic multi-valued preference environments have been proposed in
this paper. These can show the practical significance and provide decision makers
with reasonable classification decision suggestions. However, these methods also have
some limitations in data preprocessing. For example, they are only suitable for the
small samples. These limitations are also the focus of our future research.
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