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 The present paper is devoted to fracture analysis of an 
inhomogeneous non-linear elastic beam configuration with three 
parallel longitudinal cracks. The material is continuously 
inhomogeneous along the beam height. The beam is subjected to 
four-point bending. The longitudinal fracture behavior is studied 
by applying the J-integral approach. Solutions to the J-integral 
are obtained for the three cracks. For this purpose, the curvature 
and the coordinates of neutral axes of the crack arms are 
determined by using the equations for equilibrium of the 
elementary forces in the cross-sections of different portions of the 
beam. The solutions to the J-integral are valid for arbitrary 
locations of the cracks along the beam height. Thus, the solutions 
are very useful for evaluating of the effects of locations of cracks 
on the fracture. The longitudinal fracture behavior is studied also 
in terms of the strain energy release rate in order to verify the 
solutions to the J-integral. Solutions to the strain energy release 
rate are derived for the three cracks by considering the 
complementary strain energy in the beam. The solutions to the J-
integral are applied to evaluate the effects of locations of the 
cracks, the material inhomogeneity, the sizes of the beam cross-
section, and the coordinates of the applications points of the 
external forces on the longitudinal fracture behavior of the beam. 
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1    Introduction  

 

Continuously (smoothly) inhomogeneous structural materials are nowadays widely used in various areas 
of engineering. These materials exhibit continuous variation of their properties along one or more coordinates 
in a structural member [1, 2, 3]. Thus, the material properties are continuous functions of one or more spatial 
coordinates. Among various kinds of continuously inhomogeneous structural materials, the functionally 
graded materials present a great deal of interest for practical engineering [4, 5, 6]. The functionally graded 
materials are relatively new inhomogeneous composites made of two or more constituent materials. Smooth 
variation of material properties of functionally graded material is obtained by gradually varying the 
composition of constituent materials during the manufacturing process. It should be mentioned that the 
macroscopic properties of the functionally graded materials can be formed technologically. The smooth 
variation of properties of functionally graded materials in one or more spatial coordinates can be tailored on 
order to achieve a better performance of the structural member to the external loads and influences. Thus, it is 
not surprising that the functionally graded materials have been used recently in more and more sophisticated 
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areas such as aerospace, aeronautics, nuclear power plants, robotics and biomedicine. Therefore, the 
mechanical reliability of the continuous inhomogeneous (functionally graded) structural members and 
components becomes increasingly important. In this relation, many authors have studied fracture in 
functionally graded structures [7, 8, 9, 10, 11]. These studies, however, usually deal with transversal or inclined 
cracks.   

The significant interest in studying the mechanics of the longitudinal fracture of the continuously 
inhomogeneous beam structures is due to the fact that certain kinds of inhomogeneous materials such as the 
functionally graded materials can be built-up layer by layer [12, 13, 14] which favors appearance of 
longitudinal cracks between layers. These longitudinal cracks strongly influence the mechanical behavior and 
the integrity and reliability of the inhomogeneous beams. Besides, the longitudinal cracks may lead even to 
catastrophic failure of the entire structure. Thus, the operational performance of the inhomogeneous load-
bearing engineering structures depends largely on their longitudinal fracture behavior. It should be noted that 
in the previous papers, the longitudinal fracture have been studied assuming presence of one longitudinal crack 
in the inhomogeneous beam [15, 16, 17, 18, 19, 20, 21]. However, the low transversal strength of 
inhomogeneous beam structures is a premise for appearance of more parallel longitudinal cracks between 
layers. Therefore, in contrast to [15, 16, 17, 18, 19, 20, 21], the present paper addresses the problem of 
longitudinal fracture by analyzing of an inhomogeneous four-point bending beam configuration with three 
parallel longitudinal cracks.  

The tips of the three cracks are located in the middle portion of the beam that is under pure bending. The 
beam exhibits continuous material inhomogeneity along its height. The material has non-linear elastic 
behavior. The longitudinal fracture is studied by applying the J-integral approach. The longitudinal fracture 
behavior is analyzed also in terms of the strain energy release rate in order to verify the solutions of the J-
integral for the three cracks obtained in the present paper. The strain energy release rate is derived by 
considering the complementary strain energy in the beam. The effects of various factors such as locations of 
the three cracks, material inhomogeneity, loading conditions and others on the longitudinal fracture behavior 
of the inhomogeneous non-linear elastic beam configuration are evaluated and discussed. The present paper 
may be regarded also as a contribution towards a better understating of peculiarities of the longitudinal fracture 
of continuously inhomogeneous non-linear elastic beams of layered structure.         
 
1 Theoretical considerations  
 

1.1 Calculation of the J-integral 
 

An inhomogeneous beam with three parallel longitudinal cracks is shown in Figure 1. The beam is 
subjected to four-point bending by two vertical forces, F , applied at distance, 1l , from the ends of the beam. 

The length of the beam is l . The cross-section of the beam is a rectangle of width, b , and height, h . The three 
cracks are located arbitrary along the beam height. The heights of the cross-sections of crack arms 1, 2, 3 and 
4 are denoted by 1h , 2h , 3h  and 4h , respectively. The tips of the three cracks are located in beam portion, 

51HH . The beam is continuously inhomogeneous in the height direction.  
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Figure 1. Geometry and loading of an inhomogeneous beam configuration with three longitudinal cracks. 
 

Besides, the material of the beam has non-linear elastic mechanical behavior that is treated by applying the 
following stress-strain relation [22]: 
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where   is the stress,   is the strain, B  and D  are material properties. The distribution of B  along the beam 
height is written as 
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In (2), 1B  is the value of B  in the upper surface of the beam, m  is a material property that controls the 
material gradient along the height of the beam, the z -axis is shown in Fig. 1. It should be mentioned that at 

m=0, the beam is homogeneous. At m>0 the beam is inhomogeneous. In this paper, we consider the case 
0m .   

   
The longitudinal fracture behavior of the beam is analyzed by applying the J-integral approach [23]. First, 

crack 1 is considered. The J-integral is solved along the integration contour, L, shown by a dashed line in 
Figure 1. The solution of the J-integral is obtained as 
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where 
1LJ , 

2LJ  and 
3LJ  are the J-integral values in segments, 1L , 2L  and 3L , of the integration contour, 

respectively. The segments, 1L , 2L  and 3L , coincide with the cross-sections of crack arm 2, part, 32HH , 

of the beam (the boundaries of this part of the beam are 1ax , 2ax , 2/hz   and 212/ hhhz  ) 
and crack arm 1, respectively.    
      In segment, 1L , the J-integral is written as  
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where 01u  is the strain energy density,   is the angle between the outwards normal vector to the contour of 

integration and the crack direction, xp  and yp  are the components of the stress vector, u and v are the 

components of the displacement vector and sd  is a differential element along the contour of integration.  

 

 
 

Figure 2. Cross-section of crack arm 2. 
 
The components of (5) are found as 
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In (8), 2z  is the vertical centroidal axis of the cross-section of crack arm 2 (Figure 2). Thus,  
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The distribution of the strains that are involved in (10) is treated by applying the Bernoulli’s hypothesis 
for plane sections because a beam of high span to height ratio is under consideration in the present paper. 
Hence, the distribution of strains in the cross-section of crack arm 2 is written as 
 
  nzz 221   , (12) 

 
where 1  is the curvature, nz2  is the coordinate of the neutral axis (Figure 2). It should be mentioned that 

the neutral axis, nn  , shifts from the centroid since the beam exhibits continuous material inhomogeneity in 

the height direction.   
   
The curvature and the coordinate of neutral axis are determined in the following way. First, the equations for 
equilibrium of the elementary forces in the cross-section of crack arm 2 are written as 
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where 2N , 2M  and 2A  are the axial force, the bending moment and the area of the cross-section of this 

crack arm. From Figure 1, it follows that  
  
 02N . (15) 

 
Equation (15) holds since we assume that there is no friction between the crack arms in the plane of each crack. 
As a result of this, the axial forces in the crack arms are zero.     
In order to express the distribution of B  in the cross-section of crack arm 2, formula (2) is re-written as  
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By substituting of (1), (12), (15) and (16) in (13) and (14), one obtains 
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where   hmhhf /2/ 12  , hmg / . There are three un-known quantities ( 2M , 1  and nz2 ) in 

equations (18) and (19). Additional equations are composed by considering the equilibrium of the elementary 
forces in the cross-sections of the crack arms 1, 3 and 4 and by using the fact that the bending moment in the 
beam portion, 21HH , is distributed on the four crack arms. Besides, the four crack arms have the same 

curvature. Thus, by replacing of 2h  and nz2  with 1h  and the coordinate of neutral axis, nz1 , in (18) and (19), 

the equations for equilibrium of the elementary forces in the cross-section of crack arm 1 are written as 
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where )2/(11 hmhf  . In (21), 1M  is the bending moment in crack arm 1, nz1  is the coordinate of the neutral 

axis of this crack arm.   
Analogically, the equations for equilibrium of the elementary forces in the cross-sections of crack arms 3 and 
4 are obtained as 
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where   hmhhhf /2/ 2132  ,   hmhhhhf /2/ 32143  . The equation for equilibrium of the 

bending moments is written as (Figure 3) 
 

 
 

Figure 3. Bending moments in the four crack arms. 
 
 

4321 MMMMM  , (26) 

 
The bending moment, M , in the beam portion, 51HH , that is involved in (26) is found as (Figure 1) 

 
 

1FlM  . (27) 
 
In (22) – (25), nz3  and nz4  are the coordinates of the neutral axes of cross-sections of crack arms 3 and 4, 

3M  and 4M  are the bending moments in these crack arms. Equations (18) - (26) are solved with respect to 

1 , nz1 , nz2  nz3 , nz4 , 1M , 2M , 3M  and 4M  by using the MatLab computer program.  

The strain distribution through the beam height for characteristic cross-sections is shown schematically in 
Figure 4. One can observe the schematic distribution of stresses in Figure 5.   
 

 
 

Figure 4. Schematic presentation of strain distribution through the beam height for characteristic cross-
sections.  
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The strain energy density, 01u , that is involved in (5) is found by integrating of (1). The result is 
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where   is obtained by (12).  
The J-integral in segment, 2L , of the integration contour is expressed as (Figure 1) 
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The quantities which are involved in (29) are obtained as  
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Figure 5. Schematic presentation of stresses distribution through the beam height for characteristic cross-
sections.  

 
The strain energy density, 02u , that is involved in (29) is found by (28). For this purpose,   is replaced with 

32HH . The distribution of 
32HH  is obtained by replacing of 1 , 2z  and nz2  with 2 , 5z  and nz5  in 

(12). Here 2  is the curvature of the beam in portion, 32HH . The coordinate of the neutral axis is denoted 

by nz5 .        

      In order to determine the quantities, 2  and nz5 , first, the equations for equilibrium of the elementary 

forces in the cross-section of part, 32HH , of the beam are composed. For this purpose, 2M , 1 , nz2  and 2h  

are replaced, respectively, with 1M , 2 , nz5  and 21 hh   in (18) and (19) where 1M  is the bending moment 

in part, 32HH , of the beam 
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where   )2/(214 hmhhf  . Further, by replacing of 2M , 1 , nz2  and 2h  with 2M , 2 , nz6  and 3h  in 

(18) and (19), the equations for equilibrium of elementary forces in the cross-section of crack arm 3 in portion, 

32HH , are written as 
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where   hmhhhf /2/ 2135  . In (37) and (38), 2M  is the bending moment in crack arm 3 in portion, 

32HH , nz6  is the coordinate of the neutral axis. 

       The equations for equilibrium of the elementary forces in the cross-section of crack arm 4 in portion, 

32HH , are obtained by replacing of 2M , 1 , nz2  and 2h  with 3M , 2 , nz7  and 4h  in (18) and (19) 
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where   hmhhhhf /2/ 32146  . In (39) and (40), 3M  and nz7  are the bending moment and the 

coordinate of neutral axis of crack arm 4 in portion, 32HH . The equation for equilibrium of the bending 

moments in beam portion, 32HH , is written as 

 
 MMMM   321 . (41) 

 
Equations (35) – (41) are solved with respect to 1M , 2M , 3M , 2 , nz5 , nz6  and nz7  by using the MatLab 

computer program. The J-integral in segment, 3L , of the integration contour is written as 
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where  
 
 
 33

LxL
P  . (43) 

 
The stress, 

3L , is obtained by replacing of   with 1  in (1). The distribution of strain, 1 , in portion, 

21HH , of crack arm 1 is derived by replacing of 2z  and nz2  with 1z  and nz2  in (12) where 1z  is the 

vertical centroidal axis of the cross-section of crack arm 1. 
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where 2/2/ 111 hzh  . 
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The strain energy density, 03u , that is involved in (42) is obtained by replacing of   with 1  in (28). By 

substituting of (5), (29) and (42) in (4), one arrives at 
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(48) 

 
The integration in (48) is performed by the MatLab computer program. The J-integral approach is applied 

also to investigate crack 2. The integration is carried-out along the integration contour, S , shown by a dashed 

line in Figure 1. Integration contour segments, 1S , 2S  and 3S , which coincide with the cross-sections of 

crack arm 3, part, 43HH , of the beam (the boundaries of this part of the beam are 2ax , 3ax , 2/hz   

and 3212/ hhhhz  ) and part, 32HH , of the beam, respectively. The components of the J-integral in 

segments, 1S , 2S  and 3S , are found by using the corresponding expressions for components in segments, 

1L , 2L  and 3L . For this aim, the following replacements are performed: 
cxp , 

cyp , sd , cos , cxu  / , 

2Lxp , 
2Lyp , 

2Lyp , 
2

d Ls , 
2

cos L , 
2

/ Lxu  , 
3Lyp , 

3
d Ls , 

3
cos L  and 

3
/ Lxu   are replaced with 

1S , 0 , 

6dz , 1 , 1 , 
2S , 0, 7dz , 1, 

43HH , 
2L , 0, 5dz , -1 and 

32 HH , respectively. Here the vertical 

centroidal axis, 6z , of the cross-section of crack arm 3 varies in the interval  2/;2/ 33 hh . Besides, the 

vertical centroidal axis, 8z , of part, 43HH , of the beam varies in the interval 

     2/;2/ 321321 hhhhhh  .  

The equation for equilibrium of the bending moments in the crack arms in portions, 32HH  and 43HH , 

of the beam are used when determining the curvatures and the coordinates of the neutral axes which are needed 
for the J-integral. The J-integral solution for crack 3 is derived along the integration contour with segments 

1T , 2T  and 3T  (Figure 1) by performing replacements analogical to these described above for crack 2.    
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1.2 Verification  
 

In order to verify the solutions to the J-integral, the fracture behavior of the beam is studied also in terms of 
the strain energy release rate, G . First, crack 1 is considered. The strain energy release rate is derived by 
applying the following differential dependence [15]: 
 
 

1

*

d

d

ab

U
G  , (49) 

 
where *U  is the complementary strain energy, 1da  is an elementary increase of crack 1. Only the 

complementary strain energy cumulated in beam portion, 51HH , is used when calculating the strain energy 

release rate by (49) since the tips of three cracks are located in this beam portion. Thus, the complementary 
strain energy is written as 
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where *
1U , *

2U , *
3U , *

4U , *
5U , *

6U  and *
7U  are the complementary strain energies cumulated in crack 

arm 1, crack arm 2, crack arm 3, crack 4, part, 32HH , of the beam, part, 43HH , of the beam and beam 

portion, 54HH , respectively.  

The complementary strain energy in crack arm 1 is expressed as  
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where *
01u , is the complementary strain energy density. The following dependence is applied to obtain *

01u  

[16]: 
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By using of stress-strain relation (1) formula (52) is transformed as 
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The complementary strain energy densities in other parts of the beam are derived by (53) by replacing of   

with the strain in the corresponding part of the beam. The complementary strain energies, *
2U , *

3U , *
4U , 

*
5U , *

6U  and *
7U , are found by integrating of the corresponding complementary strain energy density.   

 By substituting of complementary strain energies in (49), one derives 
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The integration in (54) is performed by the MatLab computer program. It should be noted that the strain energy 
release rate obtained by (54) is match of the J-integral value found by (4). This fact is a verification of the 
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analysis of crack 1. Formula (54) is applied also to derive the strain energy release rate for cracks 2 and 3 after 
carrying-out the required replacements.   
It should be mentioned that at 0D , EB/1  (here E  is the modulus of elasticity of homogeneous material) 

and 0m , the solutions of J-integral derived here transform in  
 
 

32

218

hEb

M
J  , (55) 

 
which is exact match of the solution of the strain energy release rate for homogeneous linear-elastic beam with 
a longitudinal crack in the mid-plane known from the literature [24]. This fact is an indication for correctness 
of the non-linear solutions since at 0D , EB/1   and 0m  the non-linear stress-strain relation (1) 
transforms in the Hook’s law.    
 
2 Numerical results  
 

The J-integral solutions are applied here in order to obtain numerical results which illustrate the effects of 
locations of cracks and the material inhomogeneity on the fracture behavior of the beam with three parallel 
longitudinal cracks. The J-integral value is presented in non-dimensional form by using the formula 

bJBJ N /1 . The locations of cracks 1, 2 and 3 along the height of the beam are characterized by hh /1 , 

hhh /)( 21   and hhhh /)( 321   ratios, respectively. It is assumed that 015.0b m, 400.0l m and 

19.0 BD  .  
In order to illustrate the effect of the location of crack 1 along the beam height on the longitudinal fracture 

behavior, the J-integral in non-dimensional form is plotted against hh /1  ratio in Figure 6 by using the J-

integral solution (4) assuming that 6.0/)( 21  hhh  and 8.0/)( 321  hhhh . 

 
 

 
 

Figure 6. The J-integral value in non-dimensional form plotted against hh /1  ratio. 
 
     The effect of the sizes of the cross-section of the beam is illustrated also in Figure 6.  
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Figure 7. The J-integral value in non-dimensional form plotted against the external force, F .  
 
For this purpose, three curves obtained at different bh /  ratios are presented in Figure 6.  
 

 
 

Figure 8. The J-integral value in non-dimensional form plotted against the material property, m .  
 
One can observe in Figure 6 that the J-integral value increases with increasing of hh /1  ratio. It can also be 

observed in Figure 6 that the J-integral value decreases with increasing of bh /  ratio.  

 

 
 

Figure 9. The J-integral value in non-dimensional form plotted against ll /1  ratio.  
 

The influence of the location of crack 2 along the beam height on the longitudinal fracture is illustrated in 
Figure 7 where the J-integral value in non-dimensional form is plotted against the external force, F , at three 

hhh /)( 21   ratios by applying the J-integral solution (73) assuming that 2.0/1 hh  and 

7.0/)( 321  hhhh . The curves in Figure 7 indicate that the J-integral value increases with increasing of 

hhh /)( 21   ratio.  
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The influences of material inhomogeneity in the height direction and the location of crack 3 on the 
longitudinal fracture behavior of the beam are investigated too. For this purpose, the J-integral value in non-
dimensional form is plotted against the material property, m , in Figure 8 at three values of hhhh /)( 321   

ratio by using the J-integral solution (93) assuming that 3.0/1 hh  and 5.0/)( 21  hhh . The curves in 

Figure 8 show that the J-integral value increases with increasing of hhhh /)( 321   ratio. One can observe 

also in Figure 8 that the J-integral value increases with increasing of m .  
 

 
 

Figure 10. The J-integral value for crack 1 in non-dimensional form plotted against 1/ BD  ratio. 
 

The effect of the coordinates of the application points of the external forces on the longitudinal fracture 
behavior of the beam is illustrated in Figure 9 where the J-integral value in non-dimensional form is plotted 
against  ll /1  ratio by using the J-integral solutions for the three cracks assuming that 3.0/1 hh , 

6.0/)( 21  hhh  and 9.0/)( 321  hhhh . It can be observed in Figure 9 that the J-integral value 

increases with increasing of ll /1  ratio. The curves in Figure 9 indicate that the J-integral value for crack 2 is 
higher than the J-integral values for cracks 1 and 3.  

The J-integral value for crack 3 is lower than the J-integral values for cracks 1 and 2 (Figure 9). The J-
integral value for crack 1 is intermediate with respect to the J-integral values for cracks 2 and 3. Concerning 
the influence of the length of cracks, it should be mentioned that when the tips of the cracks are located in the 
middle portion of the beam, the J-integral values do not depend on the crack length since the bending moment 
in the middle portion of the beam is constant. Therefore, in order to investigate the influence of the crack 
length, it is assumed that the tip of crack 1 is located in the first portion of the beam where the bending moment 
is found as 1FxM   (here 110 lx  ). The analysis indicates that when the tip of crack 1 is in the first 
portion of the beam, the J-integral value increases with increasing of the length of this crack (characterized by 

11 / la  ratio) as shown in Figure 10.  
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Figure. 11. Inhomogeneous beam configuration with friction forces, 621 ...,,, ttt FFF . 

  
Finally, an analysis that takes into account the friction between the crack arms in the plane of each crack is 
developed. For this purpose, six friction forces, 621 ...,,, ttt FFF , between crack surfaces are introduced as 

shown in Figure 11. The friction forces are expressed as  
 
 

11 FFt  , 22 FFt  , 33 FFt  ,    (56) 

  

44 FFt  , 55 FFt  , 66 FFt  ,    (57) 

 
where 621 ...,,, FFF  are the normal forces between crack surfaces in points 621 ...,,, RRR ,   is the coefficient 

of friction. Further, the equations of equilibrium of axial forces in the four crack arms are written as 
 
 0211  tt FFN , (58) 

  
043212  tttt FFFFN , (59) 

  
065433  tttt FFFFN , (60) 

  
0654  tt FFN , (61) 

 
where 1N , 2N , 3N  and 4N  are the axial forces in crack arms 1, 2, 3 and 4, respectively. The equations of 

equilibrium, 0 iV , for crack arms 1, 2 and 3 are also used, i.e. 

 
 021  FFF , (62) 
  

04321  FFFF , (63) 

  
06543  FFFF . (64) 
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From equations (56) – (64), it follows that 
  

FN 1 , 02 N ,      (65) 

  
03 N , FN 4 .                   (66) 

 
The axial forces found by formulas (65) and (66) are substituted in the left-hand side of equilibrium equations 
(18), (20), (22) and (24). Thus, the left-hand side of equations (20) and (24) become F  and F , 

respectively. Then equations (18) – (26) are solved with respect to 1 , nz1 , nz2 , nz3 , nz4 , 1M , 2M , 3M  

and 4M  by using the MatLab computer program. The left-hand sides of equilibrium equations (35) and (39) 

are also modified. They become F  and F , respectively. Solution of the J-integral along the integration 

contour, L, is determined by (4).  
 

 
 

Figure 12. The J-integral value in non-dimensional form plotted against  . 

 
Similar procedure is applied to derive the solutions of the J-integral along the integration contours, S and T. 
These J-integral solutions are verified by applying the differential dependence (49) for determination of the 
strain energy release rate. The J-integral values are plotted versus   in Figure 12 for the three cracks. One 

can observe that increase of   generates increase of the J-integral value (Figure 12).          
 
3 Conclusion 
  

Fracture behavior of an inhomogeneous non-linear elastic beam with three parallel longitudinal cracks is 
analyzed by using the J-integral approach. The beam is loaded in four-point bending. The three cracks are 
located arbitrary along the beam height. The beam exhibits continuous material inhomogeneity in the height 
direction. Solutions to the J-integral are derived for the three cracks. The longitudinal fracture behavior is 
analyzed also in terms of the strain energy release rate for verification of the solutions to the J-integral. The 
effects of locations of the cracks along the beam height on the fracture are evaluated. The analysis reveals that 
the J-integral value increases with increasing of hh /1 , hhh /)( 21   and hhhh /)( 321   ratios.  

The effect of the sizes of the cross-section of the beam on the fracture behavior is evaluated too. It is found 
that the J-integral value decreases with increasing of bh /  ratio. Concerning the effect of the material 

inhomogeneity on the fracture behavior, the investigation shows that the J-integral value increases with 
increasing of material property, m . The effect of the coordinates of the application points of the external 

forces on the fracture is also studied. It is found that the J-integral value increases with increasing of ll /1  
ratio. It is found also that the J-integral value for crack 2 is higher than the J-integral values for cracks 1 and 
3.  
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The lowest value has the J-integral for crack 3. The J-integral value for crack 1 is intermediate with respect 
to the J-integral values for cracks 2 and 3. The friction between the cracks arms is also considered. Thus, one 
of the essential novelties in the present paper is the fact that effects of three important factors (non-linear elastic 
behavior, continuous material inhomogeneity and friction between the arms of the longitudinal cracks) are 
taken into account. It should be mentioned that the present analysis can be developed further for different crack 
configurations with more than three parallel cracks. From practical viewpoint, the solutions derived can be 
applied to check for crack propagation. For this purpose, the J-integral values calculated by using the proposed 
solutions for the three cracks should be compared with corresponding individual critical values (i.e., the 
fracture resistance) of each crack in order to check whether cracks will start to propagate.  

These corresponding individual critical values should be determined experimentally. However, there is a 
fracture resistance profile along the height of the beam due to the fact that the beam is inhomogeneous in the 
height direction. Therefore, fracture tests with initial longitudinal crack located at different positions along the 
beam height have to be carried-out.  
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