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Characteristics of propagation of small-amplitude waves in a cold plasma, assumed
to be fluid-like, compressible, and a mixture of populations of weakly bound elec-
trons, free electrons and ions, is studied. For an elliptically polarized wave, we have
evaluated (i) the zeroth-harmonic magnetic moment, (ii) the damping factor and
cut-off frequency and (iii) the collisional energy absorption. The relative roles of
the frequency (ω0) of the bound electrons, the characteristic frequency of free elec-
trons (ωf), the characteristic frequency of bound electrons (ωb) and the resonance
condition, where ω0 equals the wave frequency ω, and the effects of the cut-off
frequency, is studied. The cut-off frequency has a higher value; in the resonance
case (ω2 = ω2

0) it increases when ω0 is greater than ωf , and decreases when ω0 is
less than ωf . The field of magnetic-moment at this resonance is enhanced when ω0

is large compared to ωf . The exchange of energy between the wave field and the
constituents of this plasma is considered.

PACS numbers: 52.40 Dg, 52.40 Db, 52.25Vy UDC 531.327, 537.52

Keywords: bound electrons, wave-plasma interaction, cut-off frequency, field of magnetic

moment field

1. Introduction

In plasmas, some atoms remain neutral, but their valence electrons are weakly
bound to their respective nuclei in partially ionized plasmas, for example in plasmas
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in the ionosphere, in the cosmic spaces, the solar chromosphere and photosphere,
cool interstellar clouds, etc. Practical importance in modern research cannot be
denied of plasmas containing a population of bound electrons because this model
is more realistic than the models of free-electron plasma. Applicational possibility
of this model also exists in laser-plasma interaction and in wave interaction with
solid state plasmas.

In sodium and other alkali metals, the valence electrons are weakly bound, and
the electron orbits are distorted by incident fields. So, considering these quasi-
free charges as harmonically bound to their respective ionic cores, and ignoring
the anharmonicity from interaction of weak Coulomb field of atomic cores and
other electrons, the optical properties of atoms excited by strong electromagnetic
radiation are determined [1].

Bonnedal and Wilhelmsson [2] investigated nonlinear effects in a model of par-
tially ionized, collisionally damped, homogeneous magnetized plasma of infinite
extent. This plasma is a mixture of a fully-ionized plasma of free electrons, and a
partially ionized plasma of active molecules, whose the energy levels have inverted
population, that is a maser system when the active molecules have a uniform drift
velocity parallel to the magnetization direction. So, these authors replaced the mole-
cules with an inverted-level population with a damped Lorentz oscillator model.
The force acting on these molecules are the same as on the population of bound
electrons.

The force of simple harmonic motion proportional to the field-induced displace-
ment of electrons about their ionic cores, in addition to the Lorentz force, acts on
the bound electrons only. Actually, the conservative central Coulomb potential of
an atomic nucleus reduces to the centrifugal force of rotation of bound electrons
about their nuclei. Its influence on polarization of the bound electrons is included

in the electric displacement vector ~D. Therefore, there exists in the displacement
current in the Ampere-Maxwell equation which also contains the plasma current

of the free charges. ~D moreover appears in Gauss’s theorem. Hence, the concept
of the polarization vector for bound electrons is introduced phenomenologically in
the Maxwell equations, and the Lorentz theory of electrodynamics obtains a closed
form of guiding equations avoiding the empirical state relations of the phenomeno-
logical theory of electrodynamics (see Bloembergen, Ref. [1]). Analytical definition
of polarization, as the sum over all species of charges of the product of charge den-
sity and field-induced displacement, permits this type of mixing of the two classical
theories.

The nonlinear distortion of orbits of bound electrons contributes to the optical
properties of atoms excited by strong electromagnetic (EM) radiation. Electrons of
neutral atoms are considered as harmonically bound to their respective ionic cores.
This binding force originates from the centrifugal force acting on electrons in their
orbital motions. The classical theory is valid when the excited non-oscillating part
of the field of magnetic moment [3 – 5] is not so large that the gyro-radii of the
charges due to this field are of the order of atomic dimensions.

Laser produced plasmas, consisting of multiply-ionised ions and highly charged
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heavy ions, accept many electrons in their high-lying loosely-bound orbitals. When
the number of bound electrons becomes large, the line spectra may become very
dense. The assumption that electrons are bound classically to their core ions seems
valid in the study of this dynamics.

Recently, Chakraborty et al. [6] have considered the closed system of field equa-
tions of the continuum dynamics, including the collective behaviour of the bound
electrons in plasma and developed a classical theory for understanding the dynam-
ical behaviour of such a plasma. It has been found that the Poynting theorem for
energy conservation and the Maxwell stress elements have some new terms. Sub-
sequently, Chakraborty et al. [7] studied the response of this plasma to transverse
waves. They investigated the dependence on temperature of the characteristics of
their propagation through the medium, the related phase velocity and group veloc-
ity and the temperature-dependent total Thomson scattering cross section. They
also discussed the Lagrangian and the Hamiltonian of a compressible plasma due to
thermal motion, having bound electrons in the fluid-mixture approximation. The
mathematical complexity increases considerably even in the study of the familiar
particle dynamical theory for bound electrons, in presence of waves of infinitesimal
amplitude, compared to the same for a free electrons plasma.

We formulate and discuss a non-relativistic, classical, closed systems of field
equations of plasma regarded as a mixture of populations of bound electrons, free
electrons, neutral particles and neutralising ions in the presence of applied wave
fields. Particle dynamics of bound electron in the presence of applied wave fields, in
the classical limit, exists and gives useful results for the Larmour precession effect,
in the scattering theory of light of Rayleigh and Thomson, etc.

In the present paper, we discuss the wave-plasma interaction in a plasma con-
sidering the collective effect of bound electrons, free electrons and ions. The charac-
teristics of propagation of small-amplitude waves in the plasma are investigated. It
is seen that the characteristics of the wave propagation of the medium are modified
and become complicated, compared to those in free-electron plasma. The cut-off
frequency is changed and the resonant modes are different. The expressions for the
zero-frequency magnetic moment generation have been derived which are found to
be different from the those in work of earlier authors.

2. Basic equations

For the study of very small amplitude wave processes, in the presence of collec-
tive effects of bound electrons, free electrons and ions, the plasma is assumed to be
cold, homogeneous, unmagnetized and collisionally damped. Electrons are assumed
to be mobile and the ions to provide static charge-neutralising background. The
closed system of linearized field equations are

m
∂~ub

∂t
= −mω2

0~εb⊥ − e ~E − mνb~ub, (1)
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m
∂~uf

∂t
= −e ~E − mνf~uf , (2)

~∇× ~E = −
1

c

∂ ~B

∂t
, (3)

~∇× ~B =
1

c

∂ ~E

∂t
−

4πe

c

(

n0b~ub + n0f~uf

)

, (4)

~∇ · ~E = 4π
(

ρb + ρf

)

, (5)

~∇ · ~B = 0. (6)

Here ω0 is the natural frequency of orbital motion of bound electrons, ~εb⊥ is the
first-order component of the displacement which is perpendicular to the direction of
wave propagation, ~ub and ~uf are the first-order velocity of bound electrons and free
electrons, νb, νf are the collision frequency of bound and free electrons, respectively,
~E, ~B, ρb, ρf are the electric field, the magnetic field, charge density of bound
and free electrons, respectively, while e, m, n0b and n0f are the electron charge
and mass, the equilibrium number density of the bound electrons and the number
density of the free electrons, respectively.

The elliptically polarized wave field (purely transverse) is

~E =
(

E1e
iθ, −iE2e

−iθ∗

, 0
)

, (7)

where θ = kz −ω1t and θ∗ = kz−ω∗

1t, k is the wave number, and ω1 is the complex
wave frequency. We write

ω1 = ω − iγ and ω∗

1 = ω + iγ,

where ω is the real wave frequency and γ is the real damping term.

3. Dispersion relation

Taking curl of Eq. (3) and substituting the result in (4), and using (5), we get

4π
(

~∇ρb + ~∇ρf

)

−∇2 ~E = −
1

c2

∂2 ~E

∂t2
+

4πe

c2

(

n0b~̇ub + n0f ~̇uf

)

. (8)

Since the plasma is homogeneous, for purely transverse waves we put ~∇ρb = 0 and
~∇ρf = 0 and obtain

(

k2c2 − ω2
1

)

~E = 4πe
(

n0b~̇ub + n0f ~̇uf

)

. (9)

The equations of motion, (1) and (2), give

(

ω2
0 − ω2

1 − iω1νb

)

εbx =
eE1

m
ei(kz−ωt+iγt), (10)
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(

− ω2
1 − iω1νf

)

εfx =
eE1

m
ei(kz−ωt+iγt). (11)

Finally we get

ε̈bx = −
eE1

m

(ω2 − γ2 − 2iγω) ei(kz−ωt+iγt)

(ω2
0 − ω2 + γ2 − νbγ) + i(2γ − νb)ω

, (12)

ε̈fx = −
eE1

m

(ω2 − γ2 − 2iγω) ei(kz−ωt+iγt)

(γ2 − ω2 − νfγ) + i(2γ − νf)ω
. (13)

Substituting Eqs. (12) and (13) in (10), we get, for the complex wave frequency ω
and the real wave number k, the relation

k2c2 − ω2 + γ2 + 2iγω

=
ω2

b

{

(ω2 − γ2)(ω2
0 − ω2 + γ2 − νbγ) − 2γω2(2γ − νb)

}

(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2

−
iω2

b

{

ω(ω2 − γ2)(2γ − νb) + 2γω(ω2
0 − ω2 + γ2 − νbγ)

}

(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2

+
ω2

f

{

(ω2 − γ2)(γ2 − ω2 − νfγ) − 2γω2(2γ − νf)
}

(γ2 − ω2 − νfγ)2 + ω2(2γ − νf )2

−
iω2

f

{

ω(ω2 − γ2)(2γ − νf) − 2γω(γ2 − ω2 − νfγ)
}

(γ2 − ω2 − νfγ)2 + ω2(2γ − νf)2
, (14)

where ω2
b = (4πe2n0b/m), ω2

f = (4πe2n0f/m). So, ωb and ωf are the characteristic
frequencies of the bound electrons and free electrons. The real and imaginary parts
of Eq. (14) approximately give

k2c2 − ω2 + γ2 =
ω2

b

{

(ω2 − γ2)(ω2
0 − ω2 + γ2 − νbγ) − 2γω2(2γ − νb)

}

(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2

+
ω2

f

{

(ω2 − γ2)(γ2 − ω2 − νfγ) − 2γω2(2γ − νf)
}

(γ2 − ω2 − νfγ)2 + ω2(2γ − νf)2
(15)

2γω = −

[

ω2
b

{

ω(ω2 − γ2)(2γ − νb) + 2γω(ω2
0 − ω2 + γ2 − νbγ)

}

(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2

+
ω2

f

{

ω(ω2 − γ2)(2γ − νf) + 2γω(γ2 − ω2 − νfγ)
}

(γ2 − ω2 − νfγ)2 + ω2(2γ − νf)2

]

(16)

for the dispersion relation between the real wave frequency ω and the wave number
k, and the relation for finding the decay constant γ. Since these relations are com-
plicated, we consider some special cases which are easy to explain and understand.
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Case I: ω2 = ω2
0 (resonance)

The dispersion relation and the equation for γ then become

k2c2 − ω2
0 + γ2 =

ω2
b

{

(ω2
0 − γ2)(γ2 − νbγ) − 2γω2

0(2γ − νb)
}

(γ2 − νbγ)2 + ω2
0(2γ − νb)2

+
ω2

f

{

(ω2
0 − γ2)(γ2 − ω2

0 − νfγ) − 2γω2
0(2γ − νf)

}

(γ2 − ω2
0 − νfγ)2 + ω2

0(2γ − νf)2
, (17)

±2γω0 = −

[

ω2
b

{

±ω0(ω
2
0 − γ2)(2γ − νb) ± 2γω0(γ

2 − νbγ)
}

(γ2 − νbγ)2 + ω2
0(2γ − νb)2

+
ω2

f

{

±ω0(ω
2
0 − γ2)(2γ − νf) ± 2γω0(γ

2 − ω2
0 − νfγ)

}

(γ2 − ω2
0 − νfγ)2 + ω2

0(2γ − νf)2

]

. (18)

The collision frequency of both types of electrons and the damping factor γ are
small compared to the incident frequency (ω) and the natural frequency (ω0) of
bound electrons. So, Eqs. (17) and (18) yield

k2c2 = ω2
0 − ω2

f − ω2
bδ, (19)

γ =
1

2

(

γb + ω2
f νf/ω2

0

)

, (20)

where δ =
1

4

(ω2
0νb

ω2
f νf

+ 3
)(ω2

0νb

ω2
f νf

+ 1
)

. (21)

Eq. (19) can be solved with the help of Eqs. (20) and (21).

The modified cut-off frequency is calculated from Eq. (19) by putting k = 0 and
ω2 = ω2

0 = ω2
c1

. Thus, we find that

ω2
c1

= ω2
f + ω2

bδ (22)

or ω2
c1 = ω2

c + ω2
b

(

δ − 1
)

, (23)

where ωc is the cut-off frequency when the bound electrons are also replaced by
free electrons. So,

ω2
c =

4π(n0b + n0f)

m
e2 = ω2

b + ω2
f

when νb ≈ νf , ωf > ω0, and we find that

δ < 1. (24a)

So, ωc1 is decreased due to the presence of the bound electrons. When νb ≈ νf ,
ω0 > ωf , we have

ω2
0νb/ω2

f νf > 1, δ > 1. (24b)
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So, ωc1 is then increased due to the presence of the bound electrons.

Hence the cut off frequency (which is also the incident field frequency) depends
on plasma frequency of electrons or the characteristic frequency of free electrons
and natural frequency of bound electrons, but it is independent of the number
density of bound electrons.

Case II: ω2 /=ω2
0, νb ≈ 0, νf ≈ 0, γ ≪ ω, ωb

In this case the dispersion relation reduces to

k2c2 − ω2 =
ω2

bω2

ω2
0 − ω2

− ω2
f (25)

and the cut-off frequency ωc2 is given by

ω2
c2 = ω2

f −
ω2

bω2
c2

ω2 − ω2
c2

. (26)

Solving this quadratic equation for ω2
c2 we obtain

ω2
c2 =

1

2

(

ω2
0 + ω2

b + ω2
f

)

±

√

1

4

(

ω2
0 + ω2

b + ω2
f

)

− ω2
0ω2

f . (27)

The minus sign is to be neglected to bring the relation ω2 = ω2
f when ω0 = 0 and

n0b = 0. So, approximately,

ω2
c2 ≈ ω2

0 + ω2
b + ω2

f −
ω2

0ω2
f

ω2
0 + ω2

b + ω2
f

. (28)

It can be written as

ω2
c2 = ω2

c +
ω2

0

(

ω2
0 + ω2

b

)

ω2
0 + ω2

b + ω2
f

, (29)

where ω2
c (= ω2

b + ω2
f ) is the cut-off frequency of plasma having the free electron

number density (= n0b +n0f). When ω0 and ωb are large compared to ω, we obtain

ω2
c2 ≈ ω2

c + ω2
0 . (30)

In the reverse case, when ω2
f > ω2

0 , ω2
b, we get

ω2
c2 = ω2

c +
ω2

0

(

ω2
0 + ω2

b

)

ω2
f

. (31)

In the presence of only a residual number density of bound electrons, we write
ω2

0 > ω2
b and obtain

ω2
c2 = ω2

c + ω4
0/ω2

f . (32)

So, the cut-off frequency is increased in the presence of bound electrons, and it
depends on the number density of both types of electrons and the natural frequency
of bound electrons. But, for the resonance of Case I, it is independent of the number
density of bound electrons.
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4. The wave-field-induced zero-frequency magnetic

moment

The expression for the magnetic moment per unit volume, as a function of the
co-ordinates of position ρ and time t, is given by

~µ =
1

2c

∑

s

(

~εs ×~js

)

, (33)

where ~εs is the wave-induced displacement of charges from their average position in
the field free state, ~js(= ns0qs~us) is the surface current density, ns0 is the electron
number density, qs is the charge per particle and ~us is the average velocity of the
sth species of charges. The induced magnetic field is

4π~µ = ~H in =
2π

c

∑

s

(

~εs ×~js

)

. (34)

For our model
~H in =

2π

c

[(

~εb ×~jb
)

+
(

~εf ×~jf
)]

. (35)

From the equations of motion (1) and (2) we get
(

− ω2
1 − iω1νb + ω2

0

)

εbx = −
e

m
E1 eiθ, (36)

(

− ω2
1 − iω1νf

)

εfx = −
e

m
E1 eiθ, (37)

(

− ω∗
2

1 − iω∗

1νb + ω2
0

)

εby =
ie

m
E2 e−iθ∗

, (38)

(

− ω∗
2

1 − iω∗

1νf

)

εby =
ie

m
E2 e−iθ∗

, (39)

where θ = kz − ωt + iγt and θ∗ = kz − ωt − iγt.

The real parts of the components of the displacements and current are

εbx =
AeE1 e−γt

m(A2 + B2)
cos θ0, εby =

AeE2 e−γt

m(A2 + B2)
sin θ0, (40)

εfx =
CeE1 e−γt

m(C2 + D2)
cos θ0, εfy =

CeE2 e−γt

m(C2 + D2)
sin θ0, (41)

jbx =
Ae2n0bE1 e−γt

m(A2 + B2)
(ω sin θ0 − γ cos θ0),

jby =
Ae2n0bE2 e−γt

m(A2 + B2)
(ω cos θ0 − γ sin θ0), (42)
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jfx =
Ce2n0fE1 e−γt

m(C2 + D2)
(ω sin θ0 − γ cos θ0),

jfy =
Ce2n0fE2 e−γt

m(C2 + D2)
(ω cos θ0 − γ sin θ0), (43)

where

θ0 = kz − ωt, A = ω2
0 − ω2 + γ2 − νbγ,

B = ω(2γ − νb), C = γ2 − νfγ − ω2 and D = ω(2γ − νf).

The zeroth-harmonic part of the induced magnetization is

H in
z = −

eE1E2 e−2γt

2mc

[

ωω2
b(ω2

0 − ω2 + γ2 − νbγ)2

{(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2}

2

+
ωω2

f (γ2 − ω2 − νfγ)2

{(γ2 − ω2 − νfγ)2 + ω2(2γ − νf)2}
2

+
ω(ω2

b + ω2
f )(ω2

0 − ω2 + γ2 − νbγ)

(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2

×
γ2 − ω2 − νfγ

(γ2 − ω2 − νfγ)2 − ω2(2γ − νf)2

]

. (44)

Case I: ω2 = ω2
0

For large ω compared to νb, νf and γ, we obtain

H in
z = −

eE1E2 e−2γt

2mc

{

ω2
b

[

γ2(γ − νb)2

ω3
0(2γ − νb)4

−
γ(γ − νb)

ω3
0(2γ − νb)2

]

+ω2
f

[

1

ω3
−

γ(γ − νb)

ω3
0(2γ − νb)2

]}

. (45)

It can be written as

H in
z = −

eE1E2 e−2γt

2mc

[

γ(γ − νb)ω2
b

ω3
0(2γ − νb)2

−
ω2

f

ω3
0

][

γ(γ − νb)

(2γ − νb)2
− 1

]

. (46)

Following (20), we put γ = 1
2 (νb + ω2

f νf/ω2
0) in (45) and obtain

H in
z = −

eE1E2e
−2γt

2mc

1

4ω3
0

[

3 +
ω4

0ν2
b

ω4
f ν2

f

][

ω2
b

4
(1 −

ω4
0ν2

b

ω4
f ν2

f

) − ω2
f

]

. (47)

The numerical estimates for the zeroth-harmonic magnetic fields have been
made for plasma induced by Nd-glass laser [wavelengths are given in µm, pulse
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lengths in nano seconds (ns) and intensities in W/cm2]. Numerical results show
(see Fig. 1) that for ωf > ω0, the induced field is enhanced and it has higher value
for lower values of ω0 which is shown by dotted lines. When ν0

b ≈ ν0
f and ω0 > ωf ,

the induced field is enhanced and it becomes paramagnetic in nature which is shown
by solid lines. Nature of the field depends on both n0b and n0f . If n0b > n0f , then
the induced field is diamagnetic. In the reverse case it is paramagnetic.

Fig. 1. Variation of the logarithms of the zeroth harmonic of the induced mag-
netic field in Gauss with number density of free electrons (nf ) for incident pulsed
laser beam of pulse length τ = 5 ns, wavelength λ = 1.06µm and beam intensity
I = 1015 W/cm2, for four values of ω0 (expressed in s−1).

Case II: ω2 /=ω2
0

For (ω0, ω) > (νb, νf , γ), Eq. (44) reduces to

H in
z = −

eE1E2e
−2γt

2mc

(2ω2 − ω2
0)

ω(ω2
0 − ω2)

[

ω2
b

(ω2
0 − ω2)

−
ω2

f

ω2
0

]

≈ −
eE1E2 e−2γt

2mcω3

(

ω2
b + ω2

f

)

when ω2 ≫ ω2
0 . (48)

In this case the plasma is diamagnetic.
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5. Energy absorption

The energy flux of the propagating modes in a dissipative plasma medium is the
sum of the electromagnetic flux and the kinetic flux due to the correlated movement
of particles with the applied wave field. The zero-frequency part of the kinetic flux
is

〈( ~E ·~j)〉 = −
γe2 e−2γt

8π
(E2

1 + E2
2)

[

ω2
b(ω2

0 − ω2 + γ2 − νbγ)

(ω2
0 − ω2 + γ2 − νbγ)2 + ω2(2γ − νb)2

+
ω2

f (γ2 − ω2 − νfγ)

(γ2 − ω2 − νfγ)2 + ω2(2γ − νf)2

]

. (49)

It represents the exchange of energy between the applied electromagnetic field and
the plasma constituents.

Case I: Resonant absorption

When ω = ±ω0 and ω > (νb, νf , γ), Eq. (49) becomes

〈( ~E ·~j)〉 = −
γe2 e−2γt

8π
(E2

1 + E2
2)

[

ω2
b(γ2 − νbγ)

(γ2 − νbγ)2 + ω2
0(2γ − νb)2

−
ω2

f

ω2
0

]

. (50)

Case II: Non-resonant absorption

For ω /=ω0 and (ω, ω0) > (νb, νfb, γ), we find that

〈( ~E ·~j)〉 = −
γe2 e−2γt

8π
(E2

1 + E2
2)

[

ω2
b

ω2
0 − ω2

−
ω2

f

ω2

]

. (51)

6. Discussion

In the resonant case (ω2 = ω2
0), the dispersion relation, Eq. (19), and the expres-

sion in Eq. (20) for the damping factor have been derived for some physically valid
approximations. The damping factor depends on the collision frequency of both
types of electrons (bound and free), the plasma frequency ωf of free electrons, and
ω0, the natural frequency of bound electrons, but not on ωb, the plasma frequency
of bound electrons. The cut-off frequency of the medium is modified in the presence
of bound electrons. It decreases when ωf is large compared to ω0. But in the reverse
case, the cut-off frequency is increased in the presence of bound electrons compared
to that in a plasma where bound electrons are also replaced by free electrons. In
the non-resonant case, the cut-off frequency increases in the presence of classically
bound electrons.

The zeroth-harmonic part of the generated field of magnetic moment, in the
resonant case (ω2 = ω2

0), is enhanced and is paramagnetic in nature when ω0 (or ω)
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is large compared to ωf , the characteristic frequency of free electrons. In the reverse
case, the induced field is comparatively small and the nature of the field depends
on the number density of both types of electrons. If the number density of bound
electrons is very small compared to that of free electrons, then the moment field
is diamagnetic in nature. In the reverse case it is paramagnetic. The expressions
for the DC part of the kinetic flux (the exchange of energy between the field and

the plasma constituents), ( ~E ·~j), has been derived, both for the non-resonant and
resonant interaction of a wave field with the plasma.

Steiger and Woods [3] found that for Nd-glass laser (I = 1017 W/cm2, and N =
1021/cm3, where I is the intensity of the laser beam and N is the plasma number
density), the magnetic moment is of the order of 5.48× 105 G for waves of circular
polarization. Deschamps et al. [8] observed experimentally uniform magnetization
(≈ 10−2 G) in plasma using pulsed microwaves (1 MW) of frequency of 3000 MHz.

It is to be mentioned here that different kinds of mechanisms (e.g. thermo-
electric process, radiation process, filamentation, resonance absorption, Weibel in-
stability, dynamo effect, ion-acoustic turbulence etc.) for the generation of large-
and small-scale toroidal magnetic field have been proposed by various authors [9 –
15]. Generation of induced magnetization arising out of nonlinear optical response
of the plasma has been theoretically investigated by Chakraborty et al. [16, 17]
and others [18, 19]. Stamper et al. [20] has reviewed the various applications of
such magnetic field in laser-produced plasma. However, Sudan [21] showed that
axial magnetic field of gigagauss strength may be produced owing to the electron
currents driven by spatial gradients and temporal variations of the ponderomotive
force. Recently, Bhattacharyya et al. [22] theoretically investigated simultaneous
generation of toroidal and poloidal magnetic fields in an underdense regoin of a laser
produced plasma considering two-fluid model and neglecting the effect of dissipa-
tion. They showed that toroidal fields decrease with increasing pulse lengths and
increase rather slowly with an increase in laser wavelengths. But the poloidal fields
are insensitive to the laser pulse lengths and they increase exponentially with the
laser wavelengths. All above mentioned authors did not consider the effect of bound
electrons for the generation of the field of magnetic moment in the plasma. In our
future work, we shall study the generation of magnetic field due to inverse Faraday
effect in plasma, taking the collective effects of bound electrons, free electrons, free
ions from which we may get some new information regarding self-generated field of
magnetic moment in the plasma.
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SKUPNI UČINCI VEZANIH I SLOBODNIH ELEKTRONA TE IONA U
MED– UDJELOVANJU VALOVA I PLAZME

Proučavamo značajke širenja valova male amplitude u hladnoj plazmi za koju pret-
postavljamo da je fluidna, stǐsljiva i smjesa slabo vezanih i slobodnih elektrona
te iona. Za eliptički polarizirane valove izveli smo (i) magnetski moment prvog
harmonika, (ii) faktor gušenja i graničnu frekvenciju i (iii) sudarnu apsorpciju en-
ergije. Istražujemo relativnu ulogu frekvencije vezanih elektrona (ω0), karakteri-
stične frekvencije slobodnih elektrona (ωf), karakteristične frekvencije vezanih elek-
trona (ωb) i rezonantnog uvjeta kada je ω0 jednako frekvenciji valova ω te učinaka
granične frekvencije. Granična je frekvencija vǐsa u slučaju rezonancije (ω2 = ω2

0),
ona raste ako je ω0 manji od ωf , a smanjuje se ako je ω0 veći od ωf . Magnetski
moment polja je na rezonanciji povećan ako je ω0 veći od ωf . Razmatramo i izmjenu
energije izmed–u valnog polja i sastavnica plazme.
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